首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
J Favor 《Mutation research》1999,428(1-2):227-236
Mouse germ cell specific locus mutagenesis data and a molecular characterization of mutant alleles have been reviewed to arrive at an understanding of the mechanism of mutation induction in mammals. (a) The spermatogenic stage specificity for the sensitivity to mutation induction by 20 chemical mutagens is considered. (b) The effects of a saturable repair process and its recovery over time are examined for the mutagenic efficiency of ethylnitrosourea. (c) The mutagenic events following methylnitrosourea and chlorambucil are shown to be mainly deletions. In contrast the mutations recovered after ethylnitrosourea treatment are almost exclusively base pair substitutions. (d) It is emphasized that to date very few specific locus experiments have been designed to test for mutagenic events outside the interval stem cell spermatogonia-mature spermatozoa. A specific locus mutation has recently been shown to be due to loss of heterozygosity via mitotic recombination in an early zygote stage and suggests a broader range of possible mechanisms of mutation when these stages are considered. (e) With the cloning of all 7 marker loci mutation analysis at the molecular level will allow a more direct assessment of the mutation process in future studies.  相似文献   

2.
The induction of dominant cataract mutations by procarbazine was studied concomitantly with the induction of specific-locus mutations in treated male mice. The most effective dose in the specific-locus test, 600 mg/kg of procarbazine, and a fractionated dose of 5 X 200 mg/kg were used. The frequencies of dominant cataract mutations were higher, but not significantly different from the historical control. The ratio between the number of recovered specific-locus and dominant cataract mutations was in accordance with that found in our experiments with gamma-rays (Ehling et al., 1982; Kratochvilova, 1981) or in experiments with ethylnitrosourea (Favor, 1986). A total of 3 dominant cataract mutations were recovered in the offspring of procarbazine-treated spermatogonial stem cells. Two mutations had complete penetrance while the third exhibited a reduced penetrance of approximately 70%. The viability and fertility of the heterozygotes of all 3 mutations were not affected. Only 1 mutation was shown to be viable as a homozygote.  相似文献   

3.
J Favor 《Mutation research》1986,162(1):69-80
A systematic comparison of the frequency of dominant cataract and recessive specific-locus mutations in mice has been extended to include results for 80 and 160 mg ethylnitrosourea per kg body weight spermatogonial treatment. The frequency of confirmed dominant cataract mutations in the historical control, 80 and 160 mg/kg ethylnitrosourea treatment groups was 1/22594, 8/5090 and 14/6435, respectively. The frequency of recessive specific-locus mutations in the same dose groups was, respectively, 19/227805, 20/13274 and 35/8658. These present results confirm previous results, which indicate that ethylnitrosourea is effective in inducing both recessive specific-locus and dominant cataract mutations although the per locus mutation rate to recessive alleles was observed to be approximately 6 times greater than the per locus mutation rate to dominant alleles. The exclusion of certain classes of lens opacity variant phenotypes, previously demonstrated not to be due to a dominant mutation, from the group of suspected dominant cataract mutations subjected to a genetic confirmation test has greatly improved the efficiency of the test. A total of 23 dominant cataract mutations were confirmed from a group of 67 phenotypic variants. Of the 23 confirmed dominant cataract mutations, 8 were shown to have reduced transmission to the following generation of offspring expressing the mutant phenotype. These results are also consistent with previous results for ethylnitrosourea or radiation treatment in which it was shown that approximately one-third of the recovered mutations have reduced penetrance. One group of dominant cataract mutations, with phenotypic effects on the polar, sub-capsular or corneal regions, is overly represented in the group of recovered mutations with a reduced transmission of offspring expressing the mutant phenotype. Two hypotheses are suggested for this observation, both dependent on the fact that the regions affected indicate that the mutations are expressed later in the development of the eye. Either all carrier individuals have not expressed the phenotype at the time of examination and classification, or later acting mutations are more subject to environmental interactions resulting in more variable expression. Finally, it is argued that a dominant cataract mutation test represents a most practicable protocol to screen for induced dominant mutations in germ cells of the mouse. The imposition of the criterion that suspected variants be subjected to a genetic confirmation test has at least two advantages beside the fact that results represent unambiguous mutational events.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
Jack Favor 《Mutation research》1998,405(2):1488-226
Ethylnitrosourea is the most efficient chemical mutagen in spermatogonial stem cells of the mouse and its mutagenic activity has been intensively studied. The pertinent specific-locus mutation test results for a discussion of low dose–effect studies have been summarized and indicate: (1) A threshold dose response best characterizes the relationship between dose and mutation rate. (2) The reduced effectiveness of ethylnitrosourea in the low dose range is likely due to a saturable repair process. (3) The recovery of the saturable repair process as assessed in fractionated dose experiments is long (ca. 168 h). The dynamics of stem cell spermatogonia suggests a long time interval before the cell population passes through at least one cell division and this may be relevant to an interpretation of the fractionation effects. (4) There is a slight but important discrepancy between the predicted and observed mutagenic activity of ethylnitrosourea in the low dose range. This is interpreted to be due to the differences between a mathematical abstraction and the biological realities of the system being studied.  相似文献   

5.
Male mice were X-irradiated with 3.0 + 3.0 Gy or 5.1 + 5.1 Gy (fractionation interval 24 h). The offspring were screened for dominant cataract and recessive specific locus mutations. In the 3.0 + 3.0-Gy spermatogonial treatment group, 3 dominant cataract mutations were confirmed in 15 551 offspring examined and 29 specific locus mutations were recovered in 18 139 offspring. In the post-spermatogonial treatment group, 1 dominant cataract mutation was obtained in 1120 offspring and 1 recessive specific locus mutation was recovered in 1127 offspring. The induced mutation rate per locus, per gamete, per Gy calculated for recessive specific locus mutations is 2.0 X 10(-5) in post-spermatogonial stages and 3.7 X 10(-5) in spermatogonia. For dominant cataract mutations, assuming 30 loci, the induced mutation rate is 5.0 X 10(-6) in the post-spermatogonial stages and 1.1 X 10(-6) in spermatogonia. In the 5.1 + 5.1-Gy spermatogonial treatment group, 3 dominant cataract mutations were obtained in 11 205 offspring, whereas in 13 201 offspring 27 recessive specific locus mutations were detected in the spermatogonial group. In the post-spermatogonial treatment group no dominant cataract mutation was observed in 425 offspring and 2 recessive specific locus mutations were detected in 445 offspring. The induced mutation rate per locus, gamete and Gy in spermatogonia for recessive specific locus mutations is 2.8 X 10(-5) and for dominant cataract mutations 0.9 X 10(-6). In post-spermatogonial stages, the mutation rate for recessive specific locus alleles is 6.2 X 10(-5). In the concurrent untreated control group, in 11 036 offspring no dominant cataract mutation and in 23 518 offspring no recessive specific locus mutation was observed. Litter size and the number of carriers at weaning have been determined in the confirmation crosses of the obtained dominant cataract mutants as indicators of viability and penetrance effects. Two mutants had a statistically significantly reduced litter size and one mutant had a statistically significantly reduced penetrance.  相似文献   

6.
The ability of 13 chemicals of known germ-cell mutagenicity to induce unscheduled DNA synthesis (UDS) in rat spermatocytes was examined. At selected times following i.p. injection of test compounds, spermatocytes were isolated from Fischer 344 rats by enzymatic digestion of the seminiferous tubules and cultured for 24 h in the presence of [3H]thymidine. 7 compounds, methyl methanesulfonate, triethylenemelamine, cyclophosphamide, methylnitrosourea, ethylnitrosourea, procarbazine, and dibromochloropropane produced positive UDS responses in spermatocytes. These chemicals are also positive for specific locus mutations, heritable translocations, or dominant lethal mutations when administered to male rodents. Mitomycin C, which produces DNA interstrand crosslinks and induces heritable mutations and translocations in male germ cells, failed to stimulate UDS in rat spermatocytes. Germ-cell nonmutagens N-methyl-N'-nitro-N-nitrosoguanidine, dimethylnitrosamine, 4-nitroquinoline 1-oxide, and ethylene dibromide were negative in the rat spermatocyte UDS assay. Correlation of these results with those of other assays for heritable mutations in germ cells indicates that the in vivo/in vitro spermatocyte DNA repair assay is useful in predicting the mutagenic potential of chemicals in male germ cells.  相似文献   

7.
The frequency of dominant cataract and recessive specific-locus mutations and mutation mosaics was determined in F1 mice derived from post-spermatogonial germ-cell stage treatment with 2 X 80, 160 or 250 mg/kg ethylnitrosourea. A total of 5 dominant cataract mutations, 3 dominant cataract mutation mosaics, 1 specific-locus mutation and 9 specific-locus mutation mosaics were recovered in 15,542 screened F1 offspring. Results indicate that ethylnitrosourea treatment increases the mutation rate of dominant cataract and recessive specific-locus alleles in post-spermatogonial germ-cell stages of the mouse and that the mutations occur mainly as mosaics. Genetic confirmation of newly induced mutations occurring as mosaics is more problematical for induced recessive alleles than for induced dominant alleles and should be considered when evaluating such mutagenicity results.  相似文献   

8.
Melphalan (MLP), a bifunctional alkylating agent structurally related to the highly mutagenic chemical chlorambucil (CHL), was found to induce high frequencies of specific-locus mutations in postspermatogonial germ cells of the mouse, and to be one of only a few chemicals that is also mutagenic in spermatogonial stem cells. Productivity patterns following MLP exposures resembled those that had been found for CHL. Mutation rates in successive male germ-cell stages were measured at three MLP-exposure levels in a total of 95,375 offspring. While the induced (experimental minus historical-control) mutation rate is relatively low in stem-cell spermatogonia (1.2 x 10(-5) per locus at a weighted-mean exposure of 7.3 mg/kg), it is about 5 times higher in poststem-cell stages overall, and peaks at 26.7 x 10(-5) per locus in early spermatids at a weighted-mean exposure of only 5.7 mg/kg. This "type-2 pattern" of mutation yield (Russell et al., 1990), i.e., peak sensitivity in early spermatids, has heretofore been found for only one other chemical, CHL. Mutation-rate data earlier reported for CHL (Russell et al., 1989) were augmented in the present study for comparison with MLP-induced rates. Because of the greater toxicity of MLP, average exposures used for this chemical were only about one-half of those for CHL. When MLP and CHL mutation rates are extrapolated to equimolar doses, they appear very similar for poststem-cell stages overall. However, in the case of CHL, a somewhat higher proportion of the mutations is induced in early spermatids than in the case of MLP.  相似文献   

9.
The data are presented in favour of nonthresholdness of the dose-effect relationships in exposure of mouse germ cells to chemical mutagens. The data were obtained by the method of dominant lethal mutations and by the analysis of specific locus mutations with single and fractionated treatment at different germ cell stages.  相似文献   

10.
Strain BALB/c and DBA/2 mice were chosen to investigate the effects of genetic background on the radiation-induced mutation rate since they exhibit differences in their radiation sensitivity. Males were exposed to 3 + 3-Gy X-irradiation and mated to untreated specific locus Test-stock females. Offspring resulting from treated spermatogonia were screened for induced specific locus forward and reverse mutations and dominant cataract mutations. Since BALB/c mice are homozygous brown and albino, specific locus forward mutations could be screened at 5 of the 7 specific loci (a, d, se, p, s), while reverse mutations could be screened at the b and c loci. Strain DBA/2 is homozygous non-agouti, brown and dilute. Therefore, specific locus forward mutations could be screened at 4 loci (c, se, p, s) and reverse mutations were screened at the a, b and d loci. Results indicate no effect of genetic background on the sensitivity to mutation induction of specific locus forward mutations, while for the dominant cataract alleles strain DBA/2 exhibited a higher mutation rate than either strain BALB/c or similarly treated (101/El X C3H/El)F1 mice. If, by confirmation, these differences should be demonstrated to be real, it is interesting that strain DBA/2 should exhibit a greater sensitivity to radiation-induced dominant mutations. First, strain DBA/2 was chosen as radiation resistant or repair competent. The observation that DBA/2 exhibited a higher sensitivity to radiation-induced mutation may indicate a role for repair, albeit misrepair, in the mutation process. Second, that the effect of genotype was only observed for the mutation rate to dominant cataract alleles may reflect a difference in the spectrum of DNA alterations which result in dominant or recessive alleles. A dominant allele is more likely misinformation, such that as heterozygote it interferes with the wild-type allele. By comparison, a recessive allele may result from any DNA alteration leading to the loss of a functional gene product. One reverse mutation at each of the a and d loci was recovered in the present experiments. The similarities of the present results for radiation-induced reverse mutations with the extensive data on the spontaneous reverse mutation rates are interesting. Reverse mutations were recovered only at the a and d loci. Further, the reverse mutations recovered at the a locus were to alternate alleles (at, Aw or Asy) while true reverse mutations were apparently recovered at the d locus.  相似文献   

11.
Jack Favor 《Mutation research》1983,110(2):367-382
Mice were derived from parental males treated with 250 mg ethylnitrosourea per kg body weight. The mice were screened simultaneously for induced dominant cataract and recessive specific-locus mutations. In the spermatogonial treatment group, 16 dominant cataract, 1 dominant corneal opacity and 60 recessive specific-locus mutations were recovered and genetically confirmed in 9352 offspring observed. This lower yield of dominant cataract mutations, when compared with the yield of recessive specific-locus mutations, is similar to results observed by Kratochvilova in a series of experiments on dominant cataract mutations induced by radiation treatment. These results taken with reported results from other dominant mutation test systems, suggest a lower per-locus mutation rate to dominant than to recessive alleles. A corollary to the hypothesis that most dominantly expressed alleles code for an alteration in the function of the normal gene product is that a limited subset of mutations could normally lead to a dominantly expressed mutation. This may explain the lower per-locus mutation rate to dominant than to recessive alleles.

Genetic confirmation tests of recovered presumed dominant cataract mutations indicate that a certain category of phenotypic variants (bilateral, severe or unique lens opacity) is likely to be a true mutation but only represents 7 of the 19 mutations recovered. A second category of phenotypic variants (unilateral, neither severe nor unique lens opacity) has an extremely low probability of being a true mutation. Only 1 confirmed mutation in 181 phenotypic variants was obtained. The remaining category of phenotypic variants (either unilateral severe or unique, or bilateral neither severe nor unique lens opacity) represented the majority, 11, of the confirmed mutations obtained. However, 266 presumed mutations in this category were recovered. If a sub-class of phenotypic variants within this category could be identified that could be ignored owing to a very low probability of being a true mutation, the efficiency of recovery of confirmed dominant cataract mutations would be greatly increased with no sacrifice in the accuracy of the observed mutation rate.

Finally, the 17 confirmed dominant cataract mutations obtained included a class of 7 that produced significantly fewer than the Mendelian expectation of offspring exhibiting the mutant phenotype. This class probably represents both mutations with penetrance effects and mutations with viability effects.

The present experiments represent the first systematic comparison of induced genetically confirmed dominant and recessive mutations for a chemical mutagen in mice. Such results contribute to our limited understanding of the mutation process to dominant alleles.  相似文献   


12.
A dose-response analysis was carried out with 2 independent data sets available for ethylnitrosourea-induced specific-locus mutations in spermatogonia of the mouse. It was assumed that the occurrence of mutation is binomially distributed and maximum-likelihood procedures were employed to determine the appropriateness of 4 alternative models, Linear, Linear-Quadratic, Power, and Threshold, in describing the dependence of the binomial parameter on dose. For both data sets, the Threshold model yielded a far superior fit and the threshold dose was estimated to be between 34 and 39 mg/kg. These results are supported by the relatively inefficient response of ethylnitrosourea at lower doses in inducing DNA adducts. Relevant specific-locus mutation results in the mouse for low-dose fractionated treatment as well as the recovery of mutation mosaics indicate the threshold model to be an oversimplification. Rather than a threshold dose below which 100% of the induced DNA adducts are repaired, we propose that some DNA adducts which may eventually be fixed as a mutation persist through a number of repair-competent cell divisions and do not interfere with normal cell function nor do they induce a repair response before being eventually fixed as a mutation. We interpret the thresholded response for ethylnitrosourea-induced specific-locus mutations to be due to a saturable repair process which at lower doses results in ethylnitrosourea being less efficient in inducing mutation. Once this repair process is saturated, a clear dose-related increase in the mutation rate is observed.  相似文献   

13.
A total of 219 specific-locus, 35 dominant cataract and 44 enzyme-activity mutations induced in spermatogonia of mice by radiation or ethylnitrosourea (ENU) treatment were characterized for homozygous viability as well as fitness effects on heterozygous carriers. For all 3 genetic endpoints, the frequency of homozygous lethal mutations was higher in the group of radiation-induced mutations than in the ENU-treatment group. These observations are consistent with the hypothesis that radiation-induced mutations recovered in the mouse are mainly due to small deletions while ENU induces mainly intragenic mutations. The overall fitness of mutant heterozygotes was reduced for the group of radiation-induced specific-locus, dominant cataract and enzyme-activity mutations while the ENU-induced mutations exhibited no reduction in fitness. The fitness reduction of heterozygous carriers for a newly occurring mutation in a population is important in determining the persistence of the mutation in a population, and thus the total number of individuals affected before a mutation is eventually eliminated from the population. For the present results a maximal persistence of 12 generations and a minimal persistence of 3 generations is estimated. These results are consistent with the 6-7-generation persistence time assumed by UNSCEAR (1982) in an estimate of the overall effects of radiation-induced mutations in man.  相似文献   

14.
Nonsyndromic low-frequency sensorineural hearing loss (LFSNHL) is an unusual type of hearing loss that affects frequencies at 2,000 Hz and below. Recently, we reported five different heterozygous missense mutations in the Wolfram syndrome gene, WFS1, found to be responsible for LFSNHL in six families. One of the five mutations, A716T, may be a common cause of LFSNHL, as it has been reported in three families to date (Bespalova et al., 2001; Young et al., 2001). We have developed a PCR-based restriction fragment-length polymorphism (RFLP) assay to detect the A716T mutation in a simple, specific test. This method was evaluated with DNA samples from a family in which the A716T mutation was segregating with LFSNHL. This simple assay successfully detected the presence of the A716T mutation in all of the individuals predicted to be affected, based on audiologic results. Therefore, this assay can be routinely used for initial screening of the A716T mutation in patients with LFSNHL, before screening the entire coding region of the WFS1 gene.  相似文献   

15.
The extensive knowledge of the genetics of Drosophila melanogaster and the long experimental experience with this organism have made it of unique usefulness in mutation research and genetic toxicology. The development of somatic mutation and recombination tests (SMART) has provided sensitive, rapid and cheap assays for investigations of mutagenic and recombinogenic properties of chemicals. The present paper deals with the SMART wing spot assay, developed by Graf et al. (1984). The use of two genetic markers, multiple wing hair (mwh) and flare (flr) in the third chromosome, makes it possible to discern localized recombinogenic effects on the two intervals--the major, euchromatic, part of the chromosome, and the mostly heterochromatic centromere region. The distribution of induced mitotic recombination varied between test chemicals. Ethylene oxide caused a specific increase of twin spots, indicating a localized induction of somatic recombination in the centromere region. The wing spot assay has turned out to be suitable for combined treatment with chemicals in order to study antimutagenic and other modulating effects by mutagenic and recombinogenic chemicals. Examples of the use of this assay for such a purpose are presented in this paper. The inhibitor of poly ADP-ribosylation, 3-aminobenzamide (3AB), caused a pronounced increase of wing spots, induced by alkylating agents. The data indicate that this interaction between alkylating agents and 3AB is solely due to an effect on somatic recombination but not on point mutations. The inhibitor of topoisomerases, novobiocin, which presumably acts on the chromatin configuration, had different modulating effects on spots induced by methyl methanesulfonate (MMS) and ethylnitrosourea (ENU). Novobiocin essentially acted as an antirecombinogenic agent in cotreatment experiments with MMS and as antimutagenic agent with ENU. Attempts to interfere with mutagenic and recombinogenic effects of the radical-generating agents bleomycin, menadione and paraquat, by agents acting on the defence mechanisms against oxygen radicals, were essentially unsuccessful.  相似文献   

16.
The mutagenic effectiveness of ethylnitrosurea (ENU) was assessed in treated spermatogonia of DBA/2 mice. In a total of 17,515 offspring examined following 160 mg ENU/kg body weight treatment of parental males, 26 forward specific-locus mutations, 2 reverse specific-locus mutations and 9 dominant cataract mutations were recovered. ENU increased the mutation rate to all 3 genetic endpoints. However, ENU was less effective in treated DBA/2 mice than in the standard experimental protocol employing treated hybrid (102 X C3H)F1 male mice. This observed difference for a direct-acting mutagen such as ENU may result from differences in the detoxification of ENU or from differences in the DNA-repair capabilities of strain DBA/2. The first documented reverse mutation of the b allele is reported. The reversion was shown to be due to an AT to GC transition. To date, in addition to the reverse mutation of the b allele, 5 independent ENU-induced mutations recovered in germ cells of the mouse have been molecularly characterized and all have been shown to be base substitutions at an AT site. This is in contrast to the expected mechanism of ENU mutation induction due to O6-ethylguanine adduct formation which results in a GC to AT base-pair substitution and emphasizes the complexities of mutagenesis in germ cells of mammals.  相似文献   

17.
The generation of expression curves and the evaluation of mutagenic responses of mammalian cells using standard mutagenesis assays can be inaccurate because mutant and wild-type cells are usually mixed during the expression phase. If some mutant progenitors or mutants grow more slowly than the wild-type cells during the expression period, there will be a decrease in the mutant to wild-type ratio with time and the mutant fraction will not accurately represent the number of mutational events that occurred. The mutant fraction may also inaccurately assess the number of mutations if these mutations are expressed over a number of generations during the time before selection. We previously showed that recovery of L5178Y mouse cell mutants is not complete when mutations are allowed to express in suspension because slowly growing mutants and/or mutant progenitors are diluted out during this time (Rudd et al., 1990). In order to more accurately quantitate the mutagenic response of the cells, we developed an in situ procedure which segregates and immobilizes cells during expression. Because of this immobilization, slowly growing mutant progenitors and mutants expressed at different times will have an equal probability of being scored as mutants. Thus, one mutation leads to one mutant colony and the measurement of the mutagenic response of the cells to the chemical accurately reflects the mutational events that occurred. We plated L5178Y tk+/− mouse cells in semisolid medium immediately after treatment. As the cells grew and formed microcolonies, the selective agent TFT was added as an overlay at specified times, permitting only TFTr cells to survive. In this procedure, each mutation was captured as an individual colony; consequently, the measured mutation fraction accurately reflected the mutational events that occurred at the selected locus. In addition, the induced mutant colonies arising in the agar are the result of independent mutational events. We previously described the in situ protocol for L5178Y cells and showed that the spontaneous mutation rate measured was 50-fold greater than when the cells expressed the phenotype in suspension (Rudd et al., 1990). From this we concluded that the slow growth phenotype was expressed before TFT resistance. In the present paper, we evaluate the effect of chemical treatment on the mutation fraction as a function of the time to TFT addition. Using the in situ protocol, we generated expression curves for three nucleotide analogs, 5-azacytidine, TFT and AraC. The numbers of TFTr colonies produced at various times after treatment indicated that chemically-treated cultures had higher mutation fractions than the solvent controls. The maximal differential increase in mutation rate occured between 30 and 60 h for 5-azacytidine and between 20 and 40 h for TFT and AraC. Our results document the feasibility of quantitating induced mutation fractions using the in situ protocol, confirm the mutagenicity of AraC and 5azacytidine and demonstrate the mutagenic activity of TFT at the tk locus. In addition to recovering mutants more accurately than the suspension protocol, the in situ protocol has the advantage of being experimentally less labor and time intensive. Therefore, we believe that this method should be considered for evaluation as an assay to measure the potential mutagenic effects of chemicals in mammalian cells in vitro.  相似文献   

18.
Polymorphisms of the chicken antiviral MX gene   总被引:1,自引:0,他引:1  
  相似文献   

19.
Mutagenic, reproductive, and toxicity effects of two closely related chemicals, ethylnitrosourea (ENU) and methylnitrosourea (MNU), were compared at equimolar and near-equimolar doses in the mouse specific-locus test in a screen of all stages of spermatogenesis and spermiogenesis. In stem-cell spermatogonia (SG), ENU is more than an order of magnitude more mutagenic than MNU. During post-SG stages, both chemicals exhibit high peaks in mutation yield when differentiating spermatogonia (DG) and preleptotene spermatocytes are exposed. The mutation frequency induced by 75mgMNU/kg during this peak interval is, to date, the highest induced by any single-exposure mutagenic treatment - chemical or radiation - that allows survival of the exposed animal and its germ cells, producing an estimated 10 new mutations per genome. There is thus a vast difference between stem cell and differentiating spermatogonia in their sensitivity to MNU, but little difference between these stages in their sensitivity to ENU. During stages following meiotic metaphase, the highest mutation yield is obtained from exposed spermatids, but for both chemicals, that yield is less than one-quarter that obtained from the peak interval. Large-lesion (LL) mutations were induced only in spermatids. Although only a few of the remaining mutations were analyzed molecularly, there is considerable evidence from recent molecular characterizations of the marker genes and their flanking chromosomal regions that most, if not all, mutations induced during the peak-sensitive period did not involve lesions outside the marked loci. Both ENU and MNU treatments of post-SG stages yielded significant numbers of mutants that were recovered as mosaics, with the proportion being higher for ENU than for MNU. Comparing the chemicals for the endpoints studied and additional ones (e.g., chromosome aberrations, toxicity to germ cells and to animals, teratogenicity) revealed that while MNU is generally more effective, the opposite is true when the target cells are SG.  相似文献   

20.
The base analogue 2-amino-N6-hydroxyadenine (AHA) was mutagenic in the spot test in (T x HT)F1 mouse embryos. Females were injected with single doses of 20 or 40 mg AHA per kg body weight on the 9th day of pregnancy. To rank the mutagenic potency of different compounds, the frequencies of genetically relevant spots induced by 1 mg/kg body weight were calculated. The observed somatic mutation frequency for 1 mg/kg AHA was lower (1.95 x 10(-3)) spots of genetic relevance) than that of mitomycin C (16 x 10(-3)), ethylnitrosourea (6.8 x 10(-3)) and cyclophosphamide (6.4 x 10(-3)) and therefore AHA was not classified as a very potent mutagen in this test system. The doubling dose to induce genetically relevant spots was calculated to be 20 mg/kg b.w. Based on these data, AHA is suggested to be a candidate to induce recessive specific-locus mutations in germ cells of mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号