首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rhizomania is a serious disease of sugar beet, caused by beet necrotic yellow vein virus (BNYVV). The disease can only be controlled by the use of resistant cultivars. The accession Holly contains a single dominant gene for resistance, called Rz. The identification of a locus for resistance that differs from Rz would provide possibilities to produce cultivars with multiple resistance to BNYVV. Inheritance of resistance to BNYVV was studied by screening progenies of crosses between resistant plants of the accessions Beta vulgaris subsp. maritima WB42 and B. vulgaris subsp. vulgaris Holly-1–4 or R104. Observed and expected segregation ratios were compared to elucidate whether the resistance genes in the three accessions are alleles or situated on different loci. STS markers, linked to the genes for resistance, were used to study the segregation in more detail. The results demonstrated that the genes for resistance to BNYVV inHolly-1-4 and WB42 are closely linked. The gene for resistance in R104 is at the same locus as in Holly-1-4, and also closely linked to the gene in WB42. As the Holly resistance gene has been named Rz, the name Rz2 is proposed to refer to the resistance gene in WB42. Consequently, the gene Rz should be referred to as Rz1. Received: 29 October 1998 / Accepted: 12 March 1999  相似文献   

2.
The cytoplasmic male sterility (CMS) of wild-abortive (WA) cytoplasm has been widely used for breeding hybrid rice. Two restorer genes for the CMS have been found by traditional genetic analysis. To tag the restorer genes we used a set of near-isogenic lines (NILs) of Zhenshan 97 carrying different genotypes for fertility restoration from IR24, to perform RAPD analysis. From the survey of 720 random primers, six RAPD markers were identified to be associated with Rf-3. Three of these OPK05-800, OPU10-1100 and OPW01-350, were mapped on chromosome 1. Two populations from the crosses between Zhenshan 97 A and a near-isogenic restorer line ZSR21 and between Zhenshan 97 A and IR24 were used for mapping Rf-3. The three RAPD markers and three RFLP markers, RG532, RG140 and RG458, were found to be closely linked to Rf-3 in the two populations. The same location of Rf-3 was also found in a population from the cross of IR58025 A//IR36/IR58025 B. At the RG532 locus, different alleles were found between two CMS lines, Zhenshan 97 A and IR58025 A, and between two restorer lines, IR24 and IR36. The use of these molecular markers closely linked to Rf-3 in facilitating the development of hybrid rice is discussed. Received: 3 January 1996 / Accepted: 17 May 1996  相似文献   

3.
A method based upon targetting of intro-gressed markers in a Phomopsis-resistant line (R) of cultivated sunflower, issuing from a H. argophyllus cross was used to mark the Phomopsis resistance regions. Our study was based upon 203 families derived from a cross between an inbred line susceptible to Phomopsis (S1) and the introgressed resistant line (R). Families were checked for Phomopsis resistance level in a design with replicated plots and natural infection was re-inforced by pieces of contaminated stems. Thirty four primers were employed for RAPD analysis. Out of 102 polymorphic fragments between (S1) and H. argophyllus, seven were still present in (R) suggesting that they marked introgressions of H. argophyllus into (R). The plants were scored for the presence or absence of 19 fragments obtained from five primers, and the relationships between the presence/absence of fragments in plants and Phomopsis resistance/susceptiblity in the progenies was determined by using an analysis of variance. We found that at least two introgressed regions, as well as favourable factors from sunflower, contributed to the level of Phomopsis resistance in cultivated sunflower. Received: 28 June 1996 / Accepted: 5 July 1996  相似文献   

4.
 Bulked segregant analysis (BSA) was used to identify seven random amplified polymorphic DNA (RAPD) markers linked to the Rpf 1 gene. Rpf 1 confers resistance to Phytophthora fragariae var. fragariae, the causal agent of red stele root rot in Fragaria spp. The bulked DNAs represented subsets of a F1 population obtained from the cross Md683×Senga Sengana which consisted of 60 plants and segregated in a 1:1 ratio for resistance or susceptibility to race 2.3.4 isolate NS2 of P.  fragariae. Seven markers were shown to be linked to Rpf 1 and were generated from four primers; five of these markers were in coupling phase and two in repulsion phase with respect to the gene. A linkage map of this resistance gene region was generated using JoinMap 2.0TM. The manner in which Rpf 1 and the linked markers co-segregated indicated that they are inherited in a disomic fashion. These markers could enable gene pyramiding and marker-assisted selection of resistance genes in strawberry breeding programmes. Received: 26 August 1996 / Accepted: 20 December 1996  相似文献   

5.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

6.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

7.
 Foliar resistance to Ascochyta lentis is controlled at a single major locus by a dominant gene (AbR 1 ) in the lentil accession ILL5588 (cv ‘Northfield’). Flanking RAPD markers that are closely linked to the resistance locus in coupling phase were identified by bulked segregant analysis. Out of 261 decanucleotide primers screened 7 produced a polymorphic marker that segregated with the resistance locus, and all markers were found to exist within a single linkage group. Five of the seven RAPD markers were within 30 cM of the resistance locus. Log likelihood analysis for detecting QTL associated with the foliar resistance revealed that a single narrow peak accounted for almost 90% of the variance of resistance between the bulks. Preliminary mapping in an F3 population revealed that the closest flanking markers were approximately 6 and 14 centiMorgans (cM) away from the resistance locus. These markers should be useful for the discrimination of resistant germplasm through marker-assisted selection in future breeding programmes and represent the first essential step towards the map-based cloning of this resistance gene. Received: 18 December 1997 / Accepted: 9 June 1998  相似文献   

8.
 Powdery mildew caused by Blumeria graminis DC. f. sp. triticiém. Marchal is an important disease of wheat (Triticum aestivum L. em Thell). We report here the identification of three random amplified polymorphic DNA (RAPD) markers closely linked to a gene for resistance to B. graminis in wheat. RAPD-PCR (polymerase chain reaction) analysis was conducted using bulked segregant analysis of closely related lines developed from a segregating F5 family. The F5 family was derived from a cross between the susceptible cultivar Clark and the resistant line Zhengzhou 871124. Genetic analysis indicated that resistance of Zhengzhou 871124 to powdery mildew is conferred by the gene Pm1. After performing RAPD-PCR analysis with 1300 arbitrary 10-mer primers and agarose-gel electrophoresis, two RAPD markers, UBC320420 and UBC638550, were identified to be co-segregating with the disease resistance. No recombinants were observed between either of the RAPD markers and the gene for resistance to powdery mildew after analysis of 244 F2 plants. The third RAPD marker, OPF12650, was identified with denaturing gradient-gel electrophoresis (DGGE), and was determined to be 5.4±1.9 cM from the resistance gene. UBC320420 and UBC638550 were present in wheat powdery mildew differential lines carrying the gene Pm1, suggesting linkage between these markers and the Pm1 resistance gene. Co-segregation between Pm1 and the two markers UBC320420 and UBC638550 was confirmed in a segregating population derived from a cross with CI14114, the wheat differential line carrying Pm1. The method of deriving closely related lines from inbred families that are segregating for a trait of interest should find wide application in the identification of DNA markers linked to important plant genes. The RAPD marker UBC638550 was converted to a sequence tagged site (STS). RAPD markers tightly linked to target genes may facilitate selection and enable gene pyramiding for powdery mildew resistance in wheat breeding programs. Received: 10 December 1995 / Accepted: 13 September 1996  相似文献   

9.
 The molecular basis of resistance to diseases in plants can be better understood if the genes coding for resistance can be cloned. The single major dominant gene (R) that confers resistance to the white pine blister rust fungus (Cronartium ribicola Fisch.) in sugar pine (Pinus lambertiana Dougl.) has been previously mapped. The objectives of the present study were to saturate the region flanking R with tightly linked markers and to construct genetic maps for each of four individual seed trees. Bulked segregant analysis (BSA) and haploid segregation analysis were employed to identify random amplified polymorphic DNA (RAPD) markers linked to R. Automated PCR analysis was used to assay 1115 primers with susceptible and resistant DNA pools from each of four seed trees (8920 PCR reactions). Thirteen RAPD loci were identified that were linked to R. The linkage analyses programs JoinMap 1.4 and Mapmaker 2.0 were used to order RAPD loci relative to R and to construct maps for each of the individual seed trees. Two seed trees, 5701 and 6000, had a large number of tightly linked markers flanking R. These trees will be used in subsequent high-resolution mapping experiments to identify very tightly linked markers to facilitate the eventual cloning of R. Received: 1 May 1998 / Accepted: 13 July 1998  相似文献   

10.
Pyrenophora graminea is the seed-borne pathogen causal agent of barley leaf stripe disease. Near-isogenic lines (NILs) carrying resistance of the cv ”Thibaut” against the highly virulent isolate Dg2 were obtained by introgressing the resistance into the genetic background of the susceptible cv ”Mirco”. The segregation of the resistance gene was followed in a F2 population of 128 plants as well as on the F3 lines derived from the F2 plants; the segregation fitted the 1:2:1 ratio for a single gene. By using NILs, a RAPD marker associated with the resistance gene was identified; sequence-specific (STS) primers were designed on the basis of the amplicon sequence and a RILs mapping population with an AFLP-based map were used to position this molecular marker to barley chromosome 1 S (7HS). STS and CAPS markers were developed from RFLPs mapped to the telomeric region of barley chromosome 7HS and three polymorphic PCR-based markers were developed. The segregation of these markers was followed in the F2 population and their map position with respect to the resistance gene was determined. Our results indicate that the Thibaut resistance gene, which we designated as Rdg2a, maps to the telomeric region of barley chromosome 7HS and is flanked by the markers OPQ-9700 and MWG 2018 at distances of 3.1 and 2.5 cM respectively. The suitability of the PCR-based marker MWG2018 in selection- assisted barley breeding programs is discussed. Received: 22 June 2000 / Accepted: 16 October 2000  相似文献   

11.
Identification of RAPD markers for 11 Hessian fly resistance genes in wheat   总被引:7,自引:0,他引:7  
 The pyramiding of genes that confer race- or biotype-specific resistance has become increasingly attractive as a breeding strategy now that DNA-based marker-assisted selection is feasible. Our objective here was to identify DNA markers closely linked to genes in wheat (Triticum aestivum L.) that condition resistance to Hessian fly [Mayetiola destructor (Say)]. We used a set of near-isogenic wheat lines, each carrying a resistance gene at 1 of 11 loci (H3, H5, H6, H9, H10, H11, H12, H13, H14, H16 or H17) and developed by backcrossing to the Hessian fly-susceptible wheat cultivar ‘Newton’. Using genomic DNA of these 11 lines and ‘Newton’, we have identified 18 randomly amplified polymorphic DNA (RAPD) markers linked to the 11 resistance genes. Seven of these markers were identified by denaturing gradient gel electrophoresis and the others by agarose gel electrophoresis. We confirmed linkage to the Hessian fly resistance loci by cosegregation analysis in F2 populations of 50–120 plants for each different gene. Several of the DNA markers were used to determine the presence/absence of specific Hessian fly resistance genes in resistant wheat lines that have 1 or possibly multiple genes for resistance. The use of RAPD markers presents a valuable strategy for selection of single and combined Hessian fly resistance genes in wheat improvement. Received: 20 March 1996 / Accepted: 6 September 1996  相似文献   

12.
 In tomato, Bulked Segregant Analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a quantitative trait locus (QTL) involved in the resistance to the Tomato Yellow Leaf Curl Virus. F4 lines were distributed into two pools, each consisting of the most resistant and of the most susceptible individuals, respectively. Both pools were screened using 600 random primers. Four RAPD markers were found to be linked to a QTL responsible for up to 27.7% of the resistance. These markers, localized in the same linkage group within a distance of 17.3 cM, were mapped to chromosome 6 on the tomato RFLP map. Received: 21 August 1996 / Accepted: 4 April 1997  相似文献   

13.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

14.
Inheritance studies have indicated that resistance to the root-knot nematode (Meloidogyne javanica) in carrot inbred line ’Brasilia-1252’ is controlled by the action of one or two (duplicated) dominant gene(s) located at a single genomic region (designated the Mj-1 locus). A systematic search for randomly amplified polymorphic DNA (RAPD) markers linked to Mj-1 was carried out using bulked segregant analysis (BSA). Altogether 1000 ten-mer primers were screened with 69.1% displaying scorable amplicons. A total of approximately 2400 RAPD bands were examined. Four reproducible markers (OP-C21700, OP-Q6500, OP-U12700, and OP-AL15500) were identified, in coupling-phase linkage, flanking the Mj-1 region. The genetic distances between RAPD markers and the Mj-1 locus, estimated using an F2 progeny of 412 individuals from ’Brasilia 1252’×’B6274’, ranged from 0.8 to 5.7 cM . The two closest flanking markers (OP-Q6500 and OP-AL15500) encompassed a region of 2.7 cM . The frequency of these RAPD loci was evaluated in 121 accessions of a broad-based carrot germplasm collection. Only five entries (all resistant to M. javanica and genetically related to ’Brasilia 1252’) exhibited the simultaneous presence of all four markers. An advanced line derived from the same cross, susceptible to M. javanica but relatively resistant to another root-knot nematode species (M. incognita), did not share three of the closest markers. These results suggest that at least some genes controlling resistance to M. incognita and M. javanica in ’Brasilia 1252’ reside at distinct loci. The low number of markers suggests a reduced amount of genetic divergence between the parental lines at the region surrounding the target locus. Nevertheless, the low rate of recombination indicated these markers could be useful landmarks for positional cloning of the resistance gene(s). These RAPD markers could also be used to increase the Mj-1 frequency during recurrent selection cycles and in backcrossing programs to minimize ’linkage drag’ in elite lines employed for the development of resistant F1 hybrids. Received: 22 June 1999 / Accepted: 6 July 1999  相似文献   

15.
RFLP and RAPD mapping in flax (Linum usitatissimum)   总被引:1,自引:0,他引:1  
A map of flax (Linum usitatissimum) using restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs), and comprising 15 linkage groups containing 94 markers, has been developed covering about 1000 cM. The mapping populations were the F2 populations from two crosses between diverse cultivars. From one cross, CI1303 and Stormont Cirrus, 20 RFLP and 520 RAPD markers were analyzed. Thirteen RFLP and 80 RAPD markers were on the 15 linkage groups, in addition to one sequence-tagged site (STS). Seven polymorphic RAPD markers were found to have unusual segregation patterns. RAPDs were expressed as dominant markers, but for these markers a prevalence of the progeny lacked a band rather than the expected one-fourth ratio. However, these exceptions may be related to the instability of the genome of Stormont Cirrus in which stable and heritable genomic changes can be induced by environmental factors. The current map could be used for the identification of markers linked to loci controlling the ability to generate heritable changes in response to environmental growth conditions, and to develop anchor loci with STSs for a more general application. Received: 20 March 1999 / Accepted: 16 December 1999  相似文献   

16.
Cha YS  Ji H  Yun DW  Ahn BO  Lee MC  Suh SC  Lee CS  Ahn EK  Jeon YH  Jin ID  Sohn JK  Koh HJ  Eun MY 《Molecules and cells》2008,26(2):146-151
The brown planthopper (BPH) is a major insect pest in rice, and damages these plants by sucking phloem-sap and transmitting viral diseases. Many BPH resistance genes have been identified in indica varieties and wild rice accessions, but none has yet been cloned. In the present study we report fine mapping of the region containing the Bph1 locus, which enabled us to perform marker-aided selection (MAS). We used 273 F8 recombinant inbred lines (RILs) derived from a cross between Cheongcheongbyeo, an indica type variety harboring Bph1 from Mudgo, and Hwayeongbyeo, a BPH susceptible japonica variety. By random amplification of polymorphic DNA (RAPD) analysis using 656 random 10-mer primers, three RAPD markers (OPH09, OPA10 and OPA15) linked to Bph1 were identified and converted to SCAR (sequence characterized amplified region) markers. These markers were found to be contained in two BAC clones derived from chromosome 12: OPH09 on OSJNBa0011B18, and both OPA10 and OPA15 on OSJNBa0040E10. By sequence analysis of ten additional BAC clones evenly distributed between OSJNBa0011B18 and OSJNBa0040E10, we developed 15 STS markers. Of these, pBPH4 and pBPH14 flanked Bph1 at distances of 0.2 cM and 0.8 cM, respectively. The STS markers pBPH9, pBPH19, pBPH20, and pBPH21 co-segregated with Bph1. These markers were shown to be very useful for marker-assisted selection (MAS) in breeding populations of 32 F6 RILs from a cross between Andabyeo and IR71190, and 32 F5 RILs from a cross between Andabyeo and Suwon452.  相似文献   

17.
 A SCAR (sequence characterised amplified region) has been developed for optimal tagging of the dwarf Bzh gene in Brassica napus. A RAPD marker named OPMO7-730 was previously found closely linked to the dwarf locus at 0.8±0.7 cM. The DNA band corresponding to this marker was cloned and sequenced, and specific PCR primers were designed. The PCR test allowed us to amplify the locus corresponding to OPM07-730. With a restriction endonuclease digest and optimal electrophoresis conditions, three allelic forms of this marker have been recovered on the 40 B. napus accessions tested. The usefullness of this marker in breeding dwarf rapeseed lines is discussed. Received: 20 April 1998 / Accepted: 29 April 1998  相似文献   

18.
Anthracnose caused by Colletotrichum graminicola is one of the major diseases of sorghum. The locus for disease resistance in sorghum [Sorghum biocolor (L.) Moench] accession G73 was found to segregate as a simple recessive trait in a cross to susceptible cultivar HC136. In order to identify molecular markers linked to the locus for disease resistance, random amplified polymorphic DNA (RAPD) analysis was coupled with bulk segregant analysis. DNA from the parental cultivars and the bulks were, screened by PCR amplification with 114 RAPD primers. Three RAPD primers amplified a sequence that consegregated with the recessive resistance allele, while another three amplified a band linked to the susceptible allele. The six disease linked markers were screened with individual resistant and susceptible genotypes to observe degree of linkage of identified RAPD markers with the gene for resistance. Two primer sequences (OPI 16 and OPD 12) were found to be closely linked to the locus for disease resistance.  相似文献   

19.
Aegilops markgrafii contains resistance genes to powdery mildew, leaf rust and stripe rust, and also has high crude protein and lysine contents, which can be useful for wheat improvement. These important traits are localized on different chromosomes. Disomic Triticum aestivum-Ae. markgrafii addition lines and euploid introgression lines showing leaf-rust and powdery mildew resistance were screened with RAPDs to detect chromosome-specific markers which can accelerate the breeding process. RAPD markers for all six available disomic addition lines were obtained. The additional chromosomes B, C, D, E, F and G were identified by three, three, three, two, one and seven primers, respectively. All three chromosome-B-specific RAPD markers demonstrated the presence of alien chromatin in the leaf-rust-resistant 42-chromosome introgression lines as well as in the segregating progeny. The three chromosome-C-identifying primers also demonstrated the presence of that chromosome in powdery mildew-resistant euploid introgression lines. The substitution lines (5A)5C and (5D)5C with different genetic backgrounds for both parents, in comparison to the lines mentioned above, showed the chromosome C-specific band with only two of the three primers. The chromosome F-specific primer and a primer evident on all the Ae. markgrafii chromosomes analysed did not generate the expected fragments on the chromosome Fdel addition line, indicating that the markers are located on the deleted part of chromosome F. Received: 20 August 1996 / Accepted 17 January 1997  相似文献   

20.
Sd 1 is a dominant gene for resistance to biotypes 1 and 2 of the rosy leaf curling aphid, Dysaphis devecta Wlk., which can cause economic damage to apple trees. This report describes the identification of three RFLP and four RAPD markers linked to Sd 1 in a cross between the D. devecta susceptible variety ‘Prima’ (sd 1 sd 1) and the resistant variety ‘Fiesta’ (Sd 1 sd 1). Potted trees were artificially infested in the glasshouse, and the ratio of resistant:susceptible plants supported the hypothesis that the resistance was under the control of a single dominant gene. The position of the gene was mapped to a single locus on a ‘Fiesta’ chromosome, within 2 cM of three tightly linked RFLP markers (MC064a, 2B12a and MC029b); the four RAPD markers were located further away (between 13 and 46 cM). This is the first report of molecular markers for an aphid resistance gene in tree fruit crops. The potential application of these markers in a marker-assisted resistance breeding programme is discussed. Received: 1 July 1996/Accepted: 23 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号