首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cell polarity is a fundamental aspect of eukaryotic cells. A central question for cell biologists is how the polarity of a cell is established and maintained. Root hairs are exceptionally polarized structures formed from specific root epidermal cells. The morphogenesis of root hairs is characterized by the localized cell growth in a small dome at the tip of the hair, a process called tip growth. Root hairs are thus an attractive model system to study the establishment and maintenance of cell polarity in eukaryotes. Research on Arabidopsis root hairs has identified a plethora of molecular and cellular components that are important for root hair tip growth. Recently, studies on RHD3 and Atlastin have revealed a surprising similarity with respect to the role of the tubular ER network in tip growth of root hairs in plants and the axonal outgrowth of corticospinal neurons in neurological disorders known as hereditary spastic paraplegia (HSP). In this mini-review, we highlight recent progress in understanding of the function and regulation of RHD3 in the generation of the tubular ER network and discussed ways in which RHD3 could be involved in the establishment and maintenance of root hair tip growth.  相似文献   

2.
Pollen tubes expand by tip growth and extend directionally toward the ovule to deliver sperms during pollination. They provide an excellent model system for the study of cell polarity control and tip growth, because they grow into uniformly shaped cylindrical cells in culture. Mechanisms underlying tip growth are poorly understood in pollen tubes. It has been demonstrated that ROP1, a pollen-specific member of the plant-specific Rop subfamily of Rho GTPases, is a central regulator of pollen tube tip growth. Recent studies in pollen from Arabidopsis and other species have revealed a ROP-mediated signalling network that is localized to the apical PM region of pollen tubes. The results provide evidence that the localization of this signalling network establishes the site for tip growth and the localized activation of this signalling network regulates the dynamics of tip F-actin. These results have shown that the ROP1-mediated dynamics of tip F-actin is a key cellular mechanism behind tip growth in pollen tubes. Current understanding of the molecular basis for the regulation of the tip actin dynamics will be discussed.  相似文献   

3.
Tip growth is a mode of cell expansion in which all growth is restricted to a small area that forms a tip in an elongating cell. In green plants, tip growth has been shown to occur in root hairs, pollen tubes, rhizoids, and caulonema. Each of these cell types has a longitudinally elongated shape, longitudinally oriented microtubules and actin microfilaments, and a characteristic cytoplasmic organization at the growing tip which is required for growth. Chloronema are elongated cylindrical shaped cells that form during the development of the moss protonema. Since there are no published reports on the precise mode of chloronema elongation and conflicting interpretations of its cytology, the mechanism of cell growth has remained unclear. To determine if chloronema elongate by tip or diffuse growth, time-lapse light microscopy was employed to follow the movement of fluorescent microspheres attached to the surface of growing cells. It is shown here that chloronemal cells elongate by a form of tip growth. However, the slower growth of chloronema compared with caulonema is probably the result of differences in cytological organization of the growing tip.  相似文献   

4.
Ustilago maydis is a dimorphic Basidiomycete fungus with a yeast-like form and a hyphal form. Here we present a comprehensive analysis of bud formation and the actin and microtubule cytoskeletons of the yeast-like form during the cell cycle. We show that bud morphogenesis entails a series of shape changes, initially a tubular or conical structure, culminating in a cigar-shaped cell connected to the mother cell by a narrow neck. Labelling of cells with concanavalin A demonstrated that growth occurs at bud tip. Indirect immunofluorescence studies revealed that the actin cytoskeleton consists of patches and cables that polarize to the presumptive bud site and the bud tip and an actin ring that forms at the neck region. Because the bud tip corresponds to the site of active cell wall growth, we hypothesize that actin is involved in secretion of cell wall components. The microtubule cytoskeleton has recently been shown to consist of a cytoplasmic network during interphase that disassembles at mitosis when a spindle and astral microtubules are formed. We have carried out studies of U. maydis cells synchronized by the microtubule-depolymerizing drug thiabendazole which allow us to construct a temporal sequence of steps in spindle formation and spindle elongation during the cell cycle. These studies suggest that astral microtubules may be involved in early stages of spindle orientation and migration of the nucleus into the bud and that the spindle pole bodies may be involved in reestablishment of the cytoplasmic microtubule network.  相似文献   

5.
Role of microtubules in tip growth of fungi   总被引:1,自引:0,他引:1  
Polarized cell growth is observed ubiquitously in all living organisms. Tip growth of filamentous fungi serves as a typical model for polar growth. It is well known that the actin cytoskeleton plays a central role in cellular growth. In contrast, the role of microtubules in polar growth of fungal tip cells has not been critically addressed. Our recent study, using a green fluorescent protein (GFP)-labeled tubulin-expressing strain of the filamentous fungus Aspergillus nidulans and treatment with an anti-microtubule reagent, revealed that microtubules are essential for rapid hyphal growth. Our results indicated that microtubule organization contributes to continuous tip growth throughout the cell cycle, which in turn enables the maintenance of an appropriate mass of cytoplasm for the multinucleate system. In filamentous fungi, the microtubule is an essential component of the tip growth machinery that enables continuous and rapid growth. Recent research developments are starting to elucidate the components of the tip growth machinery and their functions in many organisms. This recent knowledge, in turn, is starting to enhance the importance of fungal systems as simple model systems to understand the polar growth of cells.  相似文献   

6.
It has been proposed that the acropetal initiation of lateral roots is a built‐in process specified as part of the general process of cell division and differentiation in the parent root tip. Conversely, it is commonly reported that root branching is essentially a variable feature. In the present study, the interlateral distance along the parent root has been investigated using three banana varieties (Musa spp.) grown in two substrates. The pattern of lateral root initiation was obscured by variations of root growth patterns and vascular structure among roots, genotypes and substrates. A framework model is formulated showing the influence of growth pattern and vascular structure on branching density. The model raises a distinction between growth components which should not affect the branching density (i.e. rate of cell division) and which may affect it (i.e. size of mature cells and number of transverse divisions performed by cells executing their trajectory in the meristem). It appears also that lateral root density and root growth rate might be independently modulated by appropriate changes of root growth patterns, in banana and presumably many other taxa.  相似文献   

7.
In development, wound healing, and pathology, cell biomechanical properties are increasingly recognized as being of central importance. To measure these properties, experimental probes of various types have been developed, but how each probe reflects the properties of heterogeneous cell regions has remained obscure. To better understand differences attributable to the probe technology, as well as to define the relative sensitivity of each probe to different cellular structures, here we took a comprehensive approach. We studied two cell types—Schlemm’s canal endothelial cells and mouse embryonic fibroblasts (MEFs)—using four different probe technologies: 1) atomic force microscopy (AFM) with sharp tip, 2) AFM with round tip, 3) optical magnetic twisting cytometry (OMTC), and 4) traction microscopy (TM). Perturbation of Schlemm’s canal cells with dexamethasone treatment, α-actinin overexpression, or RhoA overexpression caused increases in traction reported by TM and stiffness reported by sharp-tip AFM as compared to corresponding controls. By contrast, under these same experimental conditions, stiffness reported by round-tip AFM and by OMTC indicated little change. Knockout (KO) of vimentin in MEFs caused a diminution of traction reported by TM, as well as stiffness reported by sharp-tip and round-tip AFM. However, stiffness reported by OMTC in vimentin-KO MEFs was greater than in wild type. Finite-element analysis demonstrated that this paradoxical OMTC result in vimentin-KO MEFs could be attributed to reduced cell thickness. Our results also suggest that vimentin contributes not only to intracellular network stiffness but also cortex stiffness. Taken together, this evidence suggests that AFM sharp tip and TM emphasize properties of the actin-rich shell of the cell, whereas round-tip AFM and OMTC emphasize those of the noncortical intracellular network.  相似文献   

8.
The organization and dynamics of the actin cytoskeleton play key roles in many aspects of plant cell development. The actin cytoskeleton responds to internal developmental cues and en-vironmental signals and is involved in cell division, subcellular organelle movement, cell polarity and polar cell growth. The tip-growing pollen tubes provide an ideal model system to investigate fundamental mechanisms of underlying polarized cell growth. In this system, most signaling cascades required for tip growth, such as Ca~(2+)-, small GTPases- and lipid-mediated signaling have been found to be involved in transmitting signals to a large group of actin-binding proteins. These actin-binding proteins subsequently regulate the structure of the actin network, as well as the rapid turnover of actin filaments (F-actin), thereby eventually controlling tip growth. The actin cytoskeleton acts as an integrator in which multiple signaling pathways converge, providing a general growth and regulatory mechanism that applies not only for tip growth but also for polarized diffuse growth in plants.  相似文献   

9.
Root hairs and pollen tubes are formed through tip growth, a process requiring synthesis of new cell wall material and the precise targeting and integration of these components to a selected apical plasma membrane domain in the growing tips of these cells. Presence of a tip-focused calcium gradient, control of actin cytoskeleton dynamics, and formation and targeting of secretory vesicles are essential to tip growth. Similar to cells undergoing diffuse growth, cellulose, hemicelluloses, and pectins are also deposited in the growing apices of tip-growing cells. However, differences in the manner in which these cell wall components are targeted and inserted in the expanding portion of tip-growing cells is reflected by the identification of elements of the plant cell wall synthesis machinery which have been shown to play unique roles in tip-growing cells. In this review, we summarize our current understanding of the tip growth process, with a particular focus on the subcellular targeting of newly synthesized cell wall components, and their roles in this form of plant cell expansion.  相似文献   

10.
BACKGROUND: CLIP-170 and EB1 protein family members localize to growing microtubule tips and link spatial information with the control of microtubule dynamics. It is unknown whether these proteins operate independently or whether their actions are coordinated. In fission yeast the CLIP-170 homolog tip1p is required for targeting of microtubules to cell ends, whereas the role of the EB1 homolog mal3p in microtubule organization has not been investigated. RESULTS: We show that mal3p promotes the initiation of microtubule growth and inhibits catastrophes. Premature catastrophes occur randomly throughout the cell in the absence of mal3p. mal3p decorates the entire microtubule lattice and localizes to particles along the microtubules and at their growing tips. Particles move in two directions, outbound toward the cell ends or inbound toward the cell center. At cell ends, the microtubule tip-associated mal3p particles disappear followed by a catastrophe. mal3p localizes normally in tip1-deleted cells and disappears from microtubule tips preceding the premature catastrophes. In contrast, tip1p requires mal3p to localize at microtubule tips. mal3p and tip1p directly interact in vitro. CONCLUSIONS: mal3p and tip1p form a system allowing microtubules to target cell ends. We propose that mal3p stimulates growth initiation and maintains growth by suppressing catastrophes. At cell ends, mal3p disappears from microtubule tips followed by a catastrophe. mal3p is involved in recruiting tip1p to microtubule tips. This becomes important when microtubules contact the cell cortex outside the cell ends because mal3p dissociates prematurely without tip1p, which is followed by a premature catastrophe.  相似文献   

11.
Outer dendritic segments of olfactory receptor neurons tuned to sex pheromone components were measured morphometrically on the antenna of male European corn borers. Ostrinia nubilalis, to determine if a correlation exists between the diameter of the outer dendritic segment and the spike amplitude. The olfactory sensilla investigated each contained three receptor cells. Two cells were each specific for one of the two pheromone components, (Z)-11-tetradecenyl acetate (Z11-14:OAc) and (E)-11-tetradecenyl acetate (E11-14:OAc). Two strains of cornborers (Z and E) differ as to which of the two pheromone components is the main one. In both strains a large difference could be observed between the spike amplitudes elicited in the receptor cells by the two pheromone components, the main component always eliciting the large spike. In F1-hybrids (EZ) of these two strains, producing both pheromone components in similar quantities, the spike amplitudes were equal in the two pheromone-specific receptor cells. The third cell responded specifically to a behavioural antagonist. (Z)-9-tetradecenyl acetate (Z9-14:OAc) in both the parental and hybrid strains, and always showed the smallest spike amplitude. In a morphometric study, the outer dendritic segments were shown to differ more in diameter between the largest and second largest cell in the two parental strains than in the hybrid strain, while the smallest diameter cell did not differ between the different strains. These results imply that receptor cells with larger diameter produce spikes with greater amplitude. The data also show that all three types of receptor neurons display outer dendritic segments with strong variation in the diameter along the length of the segment, and with a pronounced taper towards the tip.  相似文献   

12.
BACKGROUND: Morphogenesis on a cellular level includes processes in which cytoskeleton and cell wall expansion are strongly involved. In brown algal zygotes, microtubules (MTs) and actin filaments (AFs) participate in polarity axis fixation, cell division and tip growth. Brown algal vegetative cells lack a cortical MT cytoskeleton, and are characterized by centriole-bearing centrosomes, which function as microtubule organizing centres. SCOPE: Extensive electron microscope and immunofluorescence studies of MT organization in different types of brown algal cells have shown that MTs constitute a major cytoskeletal component, indispensable for cell morphogenesis. Apart from participating in mitosis and cytokinesis, they are also involved in the expression and maintenance of polarity of particular cell types. Disruption of MTs after Nocodazole treatment inhibits cell growth, causing bulging and/or bending of apical cells, thickening of the tip cell wall, and affecting the nuclear positioning. Staining of F-actin using Rhodamine-Phalloidin, revealed a rich network consisting of perinuclear, endoplasmic and cortical AFs. AFs participate in mitosis by the organization of an F-actin spindle and in cytokinesis by an F-actin disc. They are also involved in the maintenance of polarity of apical cells, as well as in lateral branch initiation. The cortical system of AFs was found related to the orientation of cellulose microfibrils (MFs), and therefore to cell wall morphogenesis. This is expressed by the coincidence in the orientation between cortical AFs and the depositing MFs. Treatment with cytochalasin B inhibits mitosis and cytokinesis, as well as tip growth of apical cells, and causes abnormal deposition of MFs. CONCLUSIONS: Both the cytoskeletal elements studied so far, i.e. MTs and AFs are implicated in brown algal cell morphogenesis, expressed in their relationship with cell wall morphogenesis, polarization, spindle organization and cytokinetic mechanism. The novelty is the role of AFs and their possible co-operation with MTs.  相似文献   

13.
Abstract: Nascent cellulosic cell wall microfibrils and transverse (with respect of cell growth axis) arrays of cortical microtubules (MTs) beneath the plasma membrane (PM) are two well established features of the periphery of higher plant cells. Together with transmembrane synthase complexes, they represent the most characteristic form of a “cell periphery complex” of higher plant cells which determines the orientation of the diffuse (intercalary) type of their cell growth. However, there are some plant cell types having distinct cell cortex domains which are depleted of cortical MTs. These particular cell cortex domains are, instead, typically enriched with components of the actin‐based cytoskeleton. In higher plants, this feature is prominent at extending apices of two cell types displaying tip growth ‐ pollen tubes and root hairs. In the latter cell type, highly dynamic F‐actin meshworks accumulate at extending tips, and they appear to be critical for the apparently motile character of these subcellular domains. Importantly, tip growth of both root hairs and pollen tubes is immediately stopped when the most dynamic F‐actin population is depolymerized with low levels of anti‐F‐actin drugs. Intriguingly, MTs of tip‐growing plant cells are organized in the form of longitudinal arrays, throughout the cytoplasm, which interconnect the extending tips with the subapical nuclei. This suggests that actin‐rich cell cortex domains polarize plant “cell bodies” represented by nucleus‐MTs complexes. A similar polarization of “cell bodies” is typical of mitotic and cytokinetic plant cells. A further type of MT‐depleted and actomyosin‐enriched plant cell cortex domain comprises the plasmodesmata. Primary plasmodesmata are formed during cytokinesis as part of the myosin VIII‐enriched callosic cell plates, representing “juvenile” forms of the plant “cell periphery complex”. In phylogenetic terms the association between F‐actin and the PM may be considered for a more “primitive” form of cellular organization than does the association of cortical MTs with the PM. We hypothesize that the actin cytoskeleton is a natural partner of the PM in all eukaryotic cells. In most plant cells, however, it was replaced by a tubulin‐based “cell periphery apparatus” which regulates, via still unknown mechanisms, the spatial deposition of nascent cellulosic microfibrils synthesized by PM‐associated synthase complexes.  相似文献   

14.
Summary The ultrastructural organization of the cortical cytoplasm has been examined in caulonemata, branches and buds of the mossFunaria hygrometrica, which were prepared by rapid freeze-fixation and freeze-substitution (FS). The same structural components occur in the cortex of all three cell types: microtubules (MTs), endoplasmic reticulum (ER), coated and uncoated vesicles, coated pits, and dictyosomes. However, the configuration and density of the cortical ER varies between the three. Caulonemata have an open, polygonal network of ER associated with long MTs oriented mostly parallel to the length of the cell. Lamellar ER, covered with polysomes, is interspersed in the network. Branches have a more tightly arranged ER network, at places occurring in a thick layer, and occasional polysome-decorated lamellae. MTs, which extend to the tip of the branch, are oriented mainly parallel to the cell's long axis and are associated with the cortical ER. Buds have the tightest ER network, which is frequently arranged in a thick layer. Tubules in the polygonal ER of buds are densely covered with ribosomes, whereas tubules in the ER network of caulonemata and branches range from nearly smooth to moderately rough. Closely-spaced ER lamellae, with many polysomes, occur in some buds. The MTs of buds extend into the apical dome and are associated with the cortical ER, but are more randomly oriented than in caulonemata or branches. Close appositions between the ER and PM are observed in all three cells, but are more frequent in buds.Abbreviations DiOC6(3) 3,3-dihexyloxacarbocyanine iodide - ER endoplasmic reticulum - FS freeze-substitution - MT microtubule - MF microfilament - PM plasma membrane  相似文献   

15.
16.
The polarization of sterol-enriched lipid microdomains has been linked to morphogenesis and cell movement in diverse cell types. Recent biochemical evidence has confirmed the presence of lipid microdomains in plant cells; however, direct evidence for a functional link between these microdomains and plant cell growth is still lacking. Here, we reported the involvement of lipid microdomains in NADPH oxidase (NOX)-dependent reactive oxygen species (ROS) signaling in Picea meyeri pollen tube growth. Staining with di-4-ANEPPDHQ or filipin revealed that sterol-enriched microdomains were polarized to the growing tip of the pollen tube. Sterol sequestration with filipin disrupted membrane microdomain polarization, depressed tip-based ROS formation, dissipated tip-focused cytosolic Ca2+ gradient and thereby arrested tip growth. NOX clustered at the growing tip, and corresponded with the ordered membrane domains. Immunoblot analysis and native gel assays demonstrated that NOX was partially associated with detergent-resistant membranes and, furthermore, that NOX in a sterol-dependent fashion depends on membrane microdomains for its enzymatic activity. In addition, in vivo time-lapse imaging revealed the coexistence of a steep tip-high apical ROS gradient and subapical ROS production, highlighting the reported signaling role for ROS in polar cell growth. Our results suggest that the polarization of lipid microdomains to the apical plasma membrane, and the inclusion of NOX into these domains, contribute, at least in part, to the ability to grow in a highly polarized manner to form pollen tubes.  相似文献   

17.
Aspergillus nidulans is an ideal model to study nuclear migration and intracellular transport by dynein and kinesin owing to its long neuron‐like hyphae, conserved transport mechanisms, and powerful genetics. In this organism, as in other filamentous fungi, microtubules have been implicated in patterning cell shape through polarized tip growth – the hallmark mode of growth that generates the elongated hyphae. Exactly how microtubules regulate tip growth is incompletely understood and remains a fascinating question for various cell types, such as pollen tubes and root hairs. Zeng et al. (2014) describe important new findings in A. nidulans regarding the role of EBA, the master regulator of microtubule plus end‐tracking proteins, in specifying microtubule dynamics required for directional tip growth at the hyphal tip.  相似文献   

18.
19.
Tobacco pollen tubes were used as a standard in vitro system to investigate cell growth aberrations caused by some of the Multicentre Evaluation of In Vitro Cytotoxicity (MEIC) programme chemicals and other toxic compounds. Changes in cytoskeletal pattern were observed in the tube cells by using tubulin immunofluorescence and rhodamin-phalloidin fluorescence for the localisation of microtubules and actin filaments, respectively. Four different types of cell malformation were found: screw-like growth, isodiametric tip swelling, hook formation, and pollen grain enlargement. We suggest that these malformations resulted from an interference by the chemicals with the cytosolic calcium gradient which controls tip growth and the orientation of the pollen tube. The results may contribute to a general understanding of toxicity-based cell malformations.  相似文献   

20.
The establishment of polarity is a fundamental property of most cells. In tip‐growing plant and in fucoid algal cells, polarization specifies a growth pole, the center of localized secretion of new plasma membrane and cell wall material, generating a protrusion with a dome‐shaped apex. Although much progress has been made concerning the cellular machinery required to execute tip growth, less is known regarding the signaling mechanisms involved in selecting the growth site and regulating vectorial cell division and expansion. Fucoid algal zygotes use extrinsic cues to orient their growth axes and are thus well‐suited for studies of de novo selection of an axis. This process has been investigated largely by both pharmacological and immuno‐localization studies. In tip growing plant cells, polarity is often predetermined, as in the formation of root hairs or moss protonema branches. More focus has been on genomic and genetic studies to reveal the molecules involved in expressing a growth axis. Here we review the common roles of the cytoskeleton and signal transduction pathways in the formation of a developmental axis in fucoid algal cells and the control of tip growth in higher plant cells. Mol. Reprod. Dev. 77: 751–758, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号