首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
We have examined binding properties of and dissociation induced by the intercalating dye ethidium bromide when it interacts with the nucleosome core particle under low ionic strength conditions. Ethidium binding to the core particle results in a reversible dissociation which requires the critical binding of 14 ethidium molecules. Under low ionic strength conditions, dissociation is about 90% completed in 5 h. The observed ethidium binding isotherm was corrected for the presence of free DNA due to particle dissociation. The corrected curve reveals that the binding of ethidium to the core particle itself is a highly cooperative process characterized by a low intrinsic binding constant of KA = 2.4 X 10(4) M-1 and a cooperativity parameter of omega = approximately 140. The number of base pairs excluded to another dye molecule by each bound dye molecule (n) is 4.5. Through the use of a chemical probe, methidiumpropyl-EDTA (MPE), we have localized the initial binding sites of ethidium in the core particle to consist of an average of 27 +/- 4 bp of DNA that are distributed near both ends of the DNA termini. MPE footprint analysis has also revealed that, prior to dissociation, the fractional population of core particles which bind the dye (f) may be as low as 50%. Comparison of the binding and dissociation data showed that the cooperative maximum of the binding curve occurred at or near the critical value, i.e., at the point where dissociation began. The data were used to generate a detailed model for the association of ethidium with chromatin at the level of the nucleosome.  相似文献   

5.
6.
alpha-Chymotrypsin was used to probe accessible hydrophobic amino acid residues in nucleosome cores. Small amounts of chymotrypsin rapidly and selectively cleaved at leucine 20 of histone H3. Cleavage at this site caused partial unfolding of the nucleosome core at low ionic strengths indicated by a small decrease in sedimentation coefficient and increase in circular dichroism in the 265-285-nm range. Unfolding did not occur at moderate ionic strengths, probably because of more effective electrolyte screening of residual negative charge on the nucleosome core. More extensive treatment with chymotrypsin partially degraded other core histones in nucleosome cores at similar rates. The primary sites of cleavage were assigned to Leu115 of H2a, Val18 or Gln22 of H2b, and Leu10 plus Leu22 of H4. We conclude that these primary sites of chymotrypsin cleavage of the four core histones lie on or near the nucleosome core surface, while the large number of other hydrophobic histone residues located in more central sequences must be inaccessible. Extensive chymotrypsin treatment yielded a set of "limit" products approximately 80-100 residues long that were similar to the limit products of trypsin digestion. Sedimentation coefficients and circular dichroism spectra of nucleosome cores treated to near limits with chymotrypsin or chymotrypsin followed by trypsin were not consistent with significant unfolding of the proteolyzed cores at moderate ionic strength. These results indicate that the amino-terminal 20-30 residues of H2b, H3, and H4 and the amino- and carboxyl-terminal approximately 12 residues of H2a, in toto, interact weakly if at all with DNA of isolated nucleosome cores. These histone termini stabilize less than two turns and perhaps only one turn on each DNA terminus.  相似文献   

7.
Solvent binding in the nucleosome core particle containing a 147 base pair, defined-sequence DNA is characterized from the X-ray crystal structure at 1.9 Å resolution. A single-base-pair increase in DNA length over that used previously results in substantially improved clarity of the electron density and accuracy for the histone protein and DNA atomic coordinates. The reduced disorder has allowed for the first time extensive modeling of water molecules and ions.Over 3000 water molecules and 18 ions have been identified. Water molecules acting as hydrogen-bond bridges between protein and DNA are approximately equal in number to the direct hydrogen bonds between these components. Bridging water molecules have a dual role in promoting histone-DNA association not only by providing further stability to direct protein-DNA interactions, but also by enabling formation of many additional interactions between more distantly related elements. Water molecules residing in the minor groove play an important role in facilitating insertion of arginine side-chains. Water structure at the interface of the histones and DNA provides a means of accommodating intrinsic DNA conformational variation, thus limiting the sequence dependency of nucleosome positioning while enhancing mobility.Monovalent anions are bound near the N termini of histone α-helices that are not occluded by DNA phosphate groups. Their location in proximity to the DNA phosphodiester backbone suggests that they damp the electrostatic interaction between the histone proteins and the DNA. Divalent cations are bound at specific sites in the nucleosome core particle and contribute to histone-histone and histone-DNA interparticle interactions. These interactions may be relevant to nucleosome association in arrays.  相似文献   

8.
Nucleosome phasing on highly repetitive DNA was investigated using a novel strategy. Nucleosome cores were prepared from mouse liver nuclei with micrococcal nuclease, exonuclease III and nuclease S1. The core DNA population that contains satellite sequences was then purified from total core DNA by denaturation of the DNA, reassociation to a low Cot value and hydroxyapatite chromatography to separate the renatured satellite fraction. After end-labeling, the termini of the satellite core DNA fragments were mapped with an accuracy of +/- 1 base-pair relative to known restriction sites on the satellite DNA. Sixteen dominant nucleosome positions were detected. There is a striking correlation between these nucleosome frames and an internal highly diverged 9 base-pair subrepeat of the satellite DNA. The results are consistent with a sequence-dependent association of histone octamers with the satellite DNA. Our finding that histone octamers can interact with a given DNA in a number of different defined frames has important implications for the possible biological significance of nucleosome phasing.  相似文献   

9.
10.
Free DNA in solution exhibits an untwisting of the double helix with increasing temperature. We have shown previously that when DNA is reconstituted with histones to form nucleosome core particles, both the core DNA and the adjacent linker DNA are constrained from thermal untwisting. The origin of this constraint is unknown. Here we examine the effect of two modifications of nucleosome structure on the constraint against thermal untwisting, and also on DNA topology. In one experiment, we removed the highly positively charged histone amino and carboxy termini by trypsinization. Alternatively, we added histone H5, a histone H1 variant from chick erythrocytes. Neither of these modifications had any major effect on DNA topology or twist in the nucleosome.  相似文献   

11.
12.
13.
Nucleosome structure and repair of N-methylpurines were analyzed at nucleotide resolution in the divergent GAL1-10 genes of intact yeast cells, encompassing their common upstream-activating sequence. In glucose cultures where genes are repressed, nucleosomes with fixed positions exist in regions adjacent to the upstream-activating sequence, and the variability of nucleosome positioning sharply increases with increasing distance from this sequence. Galactose induction causes nucleosome disruption throughout the region analyzed, with those nucleosomes close to the upstream-activating sequence being most striking. In glucose cultures, a strong correlation between N-methylpurine repair and nucleosome positioning was seen in nucleosomes with fixed positions, where slow and fast repair occurred in nucleosome core and linker DNA, respectively. Galactose induction enhanced N-methylpurine repair in both strands of nucleosome core DNA, being most dramatic in the clearly disrupted, fixed nucleosomes. Furthermore, N-methylpurines are repaired primarily by the Mag1-initiated base excision repair pathway, and nucleotide excision repair contributes little to repair of these lesions. Finally, N-methylpurine repair is significantly affected by nearest-neighbor nucleotides, where fast and slow repair occurred in sites between pyrimidines and purines, respectively. These results indicate that nucleosome positioning and DNA sequence significantly modulate Mag1-initiated base excision repair in intact yeast cells.  相似文献   

14.
15.
The nucleosome is the fundamental packing unit of the eukaryotic genome, and CpG methylation is an epigenetic modification associated with gene repression and silencing. We investigated nucleosome assembly mediated by histone chaperone Nap1 and the effects of CpG methylation based on three-color single molecule FRET measurements, which enabled direct monitoring of histone binding in the context of DNA wrapping. According to our observation, (H3-H4)2 tetramer incorporation must precede H2A-H2B dimer binding, which is independent of DNA termini wrapping. Upon CpG methylation, (H3-H4)2 tetramer incorporation and DNA termini wrapping are facilitated, whereas proper incorporation of H2A-H2B dimers is inhibited. We suggest that these changes are due to rigidified DNA and increased random binding of histones to DNA. According to the results, CpG methylation expedites nucleosome assembly in the presence of abundant DNA and histones, which may help facilitate gene packaging in chromatin. The results also indicate that the slowest steps in nucleosome assembly are DNA termini wrapping and tetramer positioning, both of which are affected heavily by changes in the physical properties of DNA.  相似文献   

16.
The Xenopus borealis somatic 5S ribosomal RNA gene was used as a model system to determine the mutual effects of nucleosome folding and formation of ultraviolet (UV) photoproducts (primarily cis-syn cyclobutane pyrimidine dimers, or CPDs) in chromatin. We analyzed the preferred rotational and translational settings of 5S rDNA on the histone octamer surface after induction of up to 0.8 CPD/nucleosome core (2.5 kJ/m(2) UV dose). DNase I and hydroxyl radical footprints indicate that UV damage at these levels does not affect the average rotational setting of the 5S rDNA molecules. Moreover, a combination of nuclease trimming and restriction enzyme digestion indicates the preferred translational positions of the histone octamer are not affected by this level of UV damage. We also did not observe differences in the UV damage patterns of irradiated 5S rDNA before or after nucleosome formation, indicating there is little difference in the inhibition of nucleosome folding by specific CPD sites in the 5S rRNA gene. Conversely, nucleosome folding significantly restricts CPD formation at all sites in the three helical turns of the nontranscribed strand located in the dyad axis region of the nucleosome, where DNA is bound exclusively by the histone H3-H4 tetramer. Finally, modulation of the CPD distribution in a 14 nt long pyrimidine tract correlates with its rotational setting on the histone surface, when the strong sequence bias for CPD formation in this tract is minimized by normalization. These results help establish the mutual roles of histone binding and UV photoproducts on their formation in chromatin.  相似文献   

17.
The precise positioning of nucleosomes plays a critical role in the regulation of gene expression by modulating the DNA binding activity of trans-acting factors. However, molecular determinants responsible for positioning are not well understood. We examined whether the removal of the core histone tail domains from nucleosomes reconstituted with specific DNA fragments led to alteration of translational positions. Remarkably, we find that removal of tail domains from a nucleosome assembled on a DNA fragment containing a Xenopus borealis somatic-type 5S RNA gene results in repositioning of nucleosomes along the DNA, including two related major translational positions that move about 20 bp further upstream with respect to the 5S gene. In a nucleosome reconstituted with a DNA fragment containing the promoter of a Drosophila alcohol dehydrogenase gene, several translational positions shifted by about 10 bp along the DNA upon tail removal. However, the positions of nucleosomes assembled with a DNA fragment known to have one of the highest binding affinities for core histone proteins in the mouse genome were not altered by removal of core histone tail domains. Our data support the notion that the basic tail domains bind to nucleosomal DNA and influence the selection of the translational position of nucleosomes and that once tails are removed movement between translational positions occurs in a facile manner on some sequences. However, the effect of the N-terminal tails on the positioning and movement of a nucleosome appears to be dependent on the DNA sequence such that the contribution of the tails can be masked by very high affinity DNA sequences. Our results suggest a mechanism whereby sequence-dependent nucleosome positioning can be specifically altered by regulated changes in histone tail-DNA interactions in chromatin.  相似文献   

18.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

19.
Nucleosomes containing a human histone variant, H2A.B, in an aqueous solution were analyzed by small-angle neutron scattering utilizing a contrast variation technique. Comparisons with the canonical H2A nucleosome structure revealed that the DNA termini of the H2A.B nucleosome are detached from the histone core surface, and flexibly expanded toward the solvent. In contrast, the histone tails are compacted in H2A.B nucleosomes compared to those in canonical H2A nucleosomes, suggesting that they bind to the surface of the histone core and/or DNA. Therefore, the histone tail dynamics may function to regulate the flexibility of the DNA termini in the nucleosomes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号