首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long chain n-3 PUFA docosahexaenoic acid (DHA) is important for heart and brain function. Investigations of biologically plausible mechanisms using animal models associate cardioprotection with DHA incorporation into myocardial membranes that are largely derived from supra-physiological fish oil (FO) intake. We measured the incorporation of DHA into myocardial membranes of rats from low dietary FO intake within human dietary range and quantitatively assessed the influence of dietary n-6 PUFA. With rats fed diets containing 0.16%–5% FO, equal to 0.12%–8.7% energy (%en) as eicosapentaenoic acid (EPA) and DHA (EPA+DHA), and either 1.5%en or 7.5%en n-6 PUFA (linoleic acid) for four weeks, dietary n-6:n-3 PUFA ratios ranged from 74 to 0.3. Myocardial DHA concentration increased in a log-linear fashion with a dietary threshold of 0.019%en as EPA+DHA and half maximal dietary [EPA+DHA] equal to 0.29%en (95% CI, 0.23–0.35). Dietary linoleic acid intake did not influence myocardial DHA. Myocardial membranes are sensitive to absolute dietary intake of long chain n-3 PUFA at low %en in the rat, equivalent to a human intake of one meal of fatty fish per week or less. The dietary ratio of n-6:n-3 PUFA has no influence on long chain n-3 PUFA cellular incorporation from dietary fish oil.  相似文献   

2.
Epidemiological evidence from Greenland Eskimos and Japanese fishing villages suggests that eating fish oil and marine animals can prevent coronary heart disease. Dietary studies from various laboratories have similarly indicated that regular fish oil intake affects several humoral and cellular factors involved in atherogenesis and may prevent atherosclerosis, arrhythmia, thrombosis, cardiac hypertrophy and sudden cardiac death. The beneficial effects of fish oil are attributed to their n-3 polyunsaturated fatty acid (PUFA; also known as omega-3 fatty acids) content, particularly eicosapentaenoic acid (EPA; 20:5, n-3) and docosahexaenoic acid (DHA; 22:6, n-3). Dietary supplementation of DHA and EPA influences the fatty acid composition of plasma phospholipids that, in turn, may affect cardiac cell functions in vivo. Recent studies have demonstrated that long-chain omega-3 fatty acids may exert beneficial effects by affecting a wide variety of cellular signaling mechanisms. Pathways involved in calcium homeostasis in the heart may be of particular importance. L-type calcium channels, the Na+-Ca2+ exchanger and mobilization of calcium from intracellular stores are the most obvious key signaling pathways affecting the cardiovascular system; however, recent studies now suggest that other signaling pathways involving activation of phospholipases, synthesis of eicosanoids, regulation of receptor-associated enzymes and protein kinases also play very important roles in mediating n-3 PUFA effects on cardiovascular health. This review is therefore focused on the molecular targets and signaling pathways that are regulated by n-3 PUFAs in relation to their cardioprotective effects.  相似文献   

3.
BackgroundDietary linoleic acid (LA, 18:2n-6) lowering in rats reduces n-6 polyunsaturated fatty acid (PUFA) plasma concentrations and increases n-3 PUFA (eicosapentaenoic (EPA) and docosahexaenoic acid (DHA)) concentrations.ObjectiveTo evaluate the extent to which 12 weeks of dietary n-6 PUFA lowering, with or without increased dietary n-3 PUFAs, alters unesterified and esterified plasma n-6 and n-3 PUFA concentrations in subjects with chronic headache.DesignSecondary analysis of a randomized trial. Subjects with chronic headache were randomized for 12 weeks to (1) average n-3, low n-6 (L6) diet; or (2) high n-3, low n-6 LA (H3–L6) diet. Esterified and unesterified plasma fatty acids were quantified at baseline (0 weeks) and after 12 weeks on a diet.ResultsCompared to baseline, the L6 diet reduced esterified plasma LA and increased esterified n-3 PUFA concentrations (nmol/ml), but did not significantly change plasma arachidonic acid (AA, 20:4n-6) concentration. In addition, unesterified EPA concentration was increased significantly among unesterified fatty acids. The H3–L6 diet decreased esterified LA and AA concentrations, and produced more marked increases in esterified and unesterified n-3 PUFA concentrations.ConclusionDietary n-6 PUFA lowering for 12 weeks significantly reduces LA and increases n-3 PUFA concentrations in plasma, without altering plasma AA concentration. A concurrent increase in dietary n-3 PUFAs for 12 weeks further increases n-3 PUFA plasma concentrations and reduces AA.  相似文献   

4.
Dietary n-6 polyunsaturated fatty acid (PUFA) deprivation in rodents reduces brain arachidonic acid (20:4n-6) concentration and 20:4n-6-preferring cytosolic phospholipase A(2) (cPLA(2) -IVA) and cyclooxygenase (COX)-2 expression, while increasing brain docosahexaenoic acid (DHA, 22:6n-3) concentration and DHA-selective calcium-independent phospholipase A(2) (iPLA(2) )-VIA expression. We hypothesized that these changes are accompanied by up-regulated brain DHA metabolic rates. Using a fatty acid model, brain DHA concentrations and kinetics were measured in unanesthetized male rats fed, for 15 weeks post-weaning, an n-6 PUFA 'adequate' (31.4 wt% linoleic acid) or 'deficient' (2.7 wt% linoleic acid) diet, each lacking 20:4n-6 and DHA. [1-(14) C]DHA was infused intravenously, arterial blood was sampled, and the brain was microwaved at 5 min and analyzed. Rats fed the n-6 PUFA deficient compared with adequate diet had significantly reduced n-6 PUFA concentrations in brain phospholipids but increased eicosapentaenoic acid (EPA, 20:5n-3), docosapentaenoic acid n-3 (DPAn-3, 22:5n-3), and DHA (by 9.4%) concentrations, particularly in ethanolamine glycerophospholipid (EtnGpl). Incorporation rates of unesterified DHA from plasma, which represent DHA metabolic loss from brain, were increased 45% in brain phospholipids, as was DHA turnover. Increased DHA metabolism following dietary n-6 PUFA deprivation may increase brain concentrations of antiinflammatory DHA metabolites, which with a reduced brain n-6 PUFA content, likely promotes neuroprotection and alters neurotransmission.  相似文献   

5.
The purpose of this investigation was to determine whether diets supplemented with oils from three different marine sources, all of which contain high proportions of long-chain n-3 polyunsaturated fatty acids (PUFA), result in qualitatively distinct lipid and fatty acid profiles in guinea pig heart. Albino guinea pigs (14 days old) were fed standard, nonpurified guinea pig diets (NP) or NP supplemented with menhaden fish oil (MO), harp seal oil (SLO) or porbeagle shark liver oil (PLO) (10%, w/w) for 4-5 weeks. An n-6 PUFA control group was fed NP supplemented with corn oil (CO). All animals appeared healthy, with weight gains marginally lower in animals fed the marine oils. Comparison of relative organ weights indicated that only the livers responded to the diets, and that they were heavier only in the marine-oil fed guinea pigs. Heart total cholesterol levels were unaffected by supplementing NP with any of the oils, whereas all increased the triacylglycerol (TAG) content. The fatty-acid profiles of totalphospholipid (TPL), TAG and free fatty acid (FFA) fractions of heart lipids showed that feeding n-3 PUFA significantly altered the proportions of specific fatty-acid classes. For example, all marine-oil-rich diets were associated with increases in total monounsaturated fatty acids in TPL (p < 0.05), and with decreases in total saturates in TAG (p < 0.05). Predictably, the n-3 PUFA enriched regimens significantly increased the cardiac content of n-3 PUFA and decreased that of n-6 PUFA, although the extent varied among the diets. As a result, n-6/n-3 ratios were significantly lower in all myocardial lipid classes of marine-oil-fed guinea pigs. Analyses of the profiles of individual PUFA indicated that quantitatively, the fatty acids of the three marine oils were metabolized and/or incorporated into TPL, TAG and FFA in a diet-specific manner. In animals fed MO-enriched diets in which eicosapentaenoic acid (EPA) > docosahexacnoic acid (DHA), ratios of DHA /EPA in the hearts were 1.2, 2.2 and 1.5 in TPL, TAG and FFA, respectively. In SLO-fed guinea pigs in which dietary EPA DHA, ratios of DHA/EPA were 0.9, 3.4 and 2.1 in TPL, TAG and FFA, respectively. Feeding NP + PLO (DHA/EPA = 4.8), resulted in values for DHA/EPA in cardiac tissue of 2.1, 10.6 and 2.9 in TPL, TAG and FFA, respectively. In the TAG and FFA, proportions of n-3 docosapentaenoic acid (n-3 DPA) were equal to or higher than EPA in the SLO- and PLO-fed animals. The latter group exhibited the greatest difference between the DHA/n-3 DPA ratio in the diet and in cardiac TAG and FFA fractions (7, 3.4 and 3.1, respectively). Quantitative analysis indicated that 85% of the n-3 PUFA were in TPL, 7-11% were in TAG, and 2-6% were FFA. Specific patterns of distribution of EPA, DPA and DHA depended on the dietary oil. Both the qualitative and quantitative results of this study demonstrated that in guinea pigs, n-3 PUFA in different marine oils are metabolized and/or incorporated into cardiac lipids in distinct manners. In support of the concept that the diet-induced alterations reflect changes specifically in cardiomyocytes, we observed that direct supplementation of cultured guinea pig myocytes for 2-3 weeks with EPA or DHA produced changes in the PUFA profiles of their TPL that were qualitatively similar to those observed in tissue from the dietary study. The factors that regulate specific deposition of n-3 PUFA from either dietary oils or individual PUFA are not yet known, however the differences that we observed could in some manner be related to cardiac function and thus their relative potentials as health-promoting dietary fats.  相似文献   

6.
Anandamide (AEA) is an endogenous agonist for the cannabinoid receptor 2 (CB2) which is expressed in osteoblasts. Arachidonic acid (AA) is the precursor for AEA and dietary n-3 polyunsaturated fatty acids (PUFA) are known to reduce the concentrations of AA in tissues and cells. Therefore, we hypothesized that n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), which reduce AA in cells, could lower AEA in osteoblasts by altering enzyme expression of the endocannabinoid (EC) system. MC3T3-E1 osteoblast-like cells were grown for 6, 10, 15, 20, 25 or 30 days in osteogenic medium. Osteoblasts were treated with 10 μM of AA, EPA, DHA, oleic acid (OA) or EPA+DHA (5 μM each) for 72 h prior to their collection for measurement of mRNA and alkaline phosphatase (ALP) activity. Compared to vehicle control, osteoblasts treated with AA had higher levels of AA and n-6 PUFA while those treated with EPA and DHA had lower n-6 but higher n-3 PUFA. Independent of the fatty acid treatments, osteoblasts matured normally as evidenced by ALP activity. N-acyl phosphatidylethanolamine-selective phospholipase D (NAPE-PLD), fatty acid amide hydrolase (FAAH) and CB2 mRNA expression were higher at 20 days compared to 10 days. NAPE-PLD and CB2 mRNA was lower in osteoblasts treated with EPA compared to all other groups. Thus, mRNA expression for NAPE-PLD, FAAH, and CB2 increased during osteoblast maturation and EPA reduced mRNA for NAPE-PLD and CB2 receptor. In conclusion, EPA lowered mRNA levels for proteins of the EC system and mRNA for AEA synthesis/degradation is reported in osteoblasts.  相似文献   

7.
Treatment with the ω-3 polyunsaturated fatty acids (PUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) exerts cardioprotective effects, and suppresses Ca2+-induced opening of the mitochondrial permeability transition pore (MPTP). These effects are associated with increased DHA and EPA, and lower arachidonic acid (ARA) in cardiac phospholipids. While clinical studies suggest the triglyceride lowering effects of DHA and EPA are equivalent, little is known about the independent effects of DHA and EPA on mitochondria function. We compared the effects of dietary supplementation with the ω-3 PUFAs DHA and EPA on cardiac mitochondrial phospholipid fatty acid composition and Ca2+-induced MPTP opening. Rats were fed a standard lab diet with either normal low levels of ω-3 PUFA, or DHA or EPA at 2.5% of energy intake for 8 weeks, and cardiac mitochondria were isolated and analyzed for Ca2+-induced MPTP opening and phospholipid fatty acyl composition. DHA supplementation increased both DHA and EPA and decreased ARA in mitochondrial phospholipid, and significantly delayed MPTP opening as assessed by increased Ca2+ retention capacity and decreased Ca2+-induced mitochondria swelling. EPA supplementation increased EPA in mitochondrial phospholipids, but did not affect DHA, only modestly lowered ARA, and did not affect MPTP opening. In summary, dietary supplementation with DHA but not EPA, profoundly altered mitochondrial phospholipid fatty acid composition and delayed Ca2+-induced MPTP opening.  相似文献   

8.
Epidemiological data and clinical trials suggest that n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have preventive and therapeutic effects on depression; however, the underlying mechanism remains elusive. The present study aimed to examine the behavioral effects and antidepressant mechanism of n-3 PUFA using a forced swimming test. Eleven-week-old male Sprague-Dawley rats were fed an American Institute of Nutrition-93M diet containing 0%, 0.5% or 1% EPA and DHA relative to the total energy intake in their diet for 12 weeks (n=8 per group). Total dietary intake, body weight and hippocampus weights were not significantly different among groups. The groups administered 0.5% and 1% EPA+DHA diets had significantly higher levels of n-3 PUFA in their brain phospholipids compared to those in the control group. The immobility time was significantly decreased and the climbing time was significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Plasma serotonin concentration and hippocampus c-AMP response element binding protein (CREB) expression were significantly increased in the 0.5% and 1% EPA+DHA groups compared with those in the 0% EPA+DHA group. Conversely, interleukin (IL)-6 expression was significantly reduced in the 0.5% and 1% EPA+DHA groups compared with that in the 0% EPA+DHA group. However, there were no dose-dependent effects of n-3 PUFA and no significant differences in expressions of IL-1β, tumor necrosis factor-α, brain-derived neurotrophic factor or phosphorylated CREB. In conclusion, long-term intake of EPA+DHA induced antidepressant-like effects in rats and overexpression of CREB via decreased IL-6 expression.  相似文献   

9.
The conversion of the plant-derived omega-3 (n-3) α-linolenic acid (ALA, 18:3n-3) to the long-chain eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) can be increased by ALA sufficient diets compared to ALA deficient diets. Diets containing ALA above an optimal level result in no further increase in DHA levels in animals and humans. The present study evaluates means of maximizing plasma DHA accumulation by systematically varying both linoleic acid (LA, 18:2n-6) and ALA dietary level. Weanling rats were fed one of 54 diets for three weeks. The diets varied in the percentage of energy (en%) of LA (0.07–17.1 en%) and ALA (0.02–12.1 en%) by manipulating both the fat content and the balance of vegetable oils. The peak of plasma phospholipid DHA (>8% total fatty acids) was attained as a result of feeding a narrow dietary range of 1–3 en% ALA and 1–2 en% LA but was suppressed to basal levels (~2% total fatty acids) at dietary intakes of total polyunsaturated fatty acids (PUFA) above 3 en%. We conclude it is possible to enhance the DHA status of rats fed diets containing ALA as the only source of n-3 fatty acids but only when the level of dietary PUFA is low (<3 en%).  相似文献   

10.
The cardiovascular consequences of eicosapentaenoic acid (EPA)- and docosahexaenoic acid (DHA)-specific intake were evaluated in vivo in a hyperinsulinemia (HI) model induced by dietary fructose intake. Wistar rats were fed a diet containing (or not for control) either EPA or DHA. The rise in blood pressure (BP), heart rate, and ECG were continuously monitored using an intra-abdominal telemetry system. The myocardial phospholipid fatty acid profile was significantly affected by DHA intake but less by EPA intake. The data indicated a reduced rise in BP in both DHA and EPA HI groups compared with controls. This result was confirmed by tail-cuff measurement after 5 wk [133.3 +/- 1.67 and 142.5 +/- 1.12 mmHg in n-3 polyunsaturated fatty acid (PUFA) and control groups, respectively], whereas n-3 PUFA did not affect BP in non-HI rats (116.3 +/- 3.33 mmHg). The heart rate was lower in the HI DHA group than in the other two dietary HI groups. Moreover, DHA induced a significantly shorter QT interval. It is concluded that the cardioactive component of fish oils is DHA through a mechanism that may involve the cardiac adrenergic system.  相似文献   

11.
The aim of this study was to evaluate the effects of dietary pure eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the physiology of the heart in normoxic conditions and during postischemic reperfusion. These effects were compared with those of dietary n-6 polyunsaturated fatty acids (PUFA). Rats were fed a diet containing either sunflower seed oil (75 g x kg(-1), SSO group), or a mixture of EPA (20:5 n-3) ethyl ester and SSO (10:90, EPA group), or a mixture of DHA (22:6 n-3) ethyl ester and SSO (10:90, DHA group), or a mixture of EPA + DHA ethyl esters and SSO (4.2:5.8:90, e+D group) for 6 weeks. The hearts were then perfused according to the working mode. The perfusion was maintained either in normoxic conditions or stopped for 17 min (global zero-flow ischemia) and restored for 33 min (reperfusion). The aortic and coronary flows, aortic developed pressure, and electrocardiogram were continuously monitored. When rats were fed a diet containing either EPA and (or) DHA, the n-6/n-3 PUFA ratio of cardiac phospholipids decreased. The proportion of arachidonic acid was reduced more with DHA than dietary EPA. In the EPA group, the percentage of DHA was lower than in the DHA group, but the percentage of EPA and docosapentaenoic acid (22:5 n-3) was higher. These changes in membrane fatty acid composition altered the cardiac function. In normoxic conditions, the coronary flow was higher in the SSO group than in the DHA and EPA groups. The heart rate was lower in the DHA and e+D groups than in the EPA and SSO groups. The aortic flow, cardiac output, and aortic developed pressure were not affected. During postischemic reperfusion, the recovery of aortic flow, coronary flow, and aortic developed pressure was similar in the four groups. A slightly improved recovery of cardiac function was noticed in the EPA group, but the difference was not significant. Feeding rats 5% fish oil + 5% SSO instead of 10% SSO for 8 weeks increased the incorporation of EPA in cardiac phospholipids and favored the recovery (+120%) of aortic flow during postischemic reperfusion. In conclusion, the beneficial effect of dietary fish oil on the recovery of cardiac pump activity during reperfusion was not observed with DHA or EPA alone. It appears to be positively related to the accumulation of EPA in membrane phospholipids. The dietary conditions favouring EPA accumulation remain to be determined.  相似文献   

12.
Patients and models of cystic fibrosis (CF) exhibit consistent abnormalities of polyunsaturated fatty acid composition, including decreased linoleate (LA) and docosahexaenoate (DHA) and variably increased arachidonate (AA), related in part to increased expression and activity of fatty acid desaturases. These abnormalities and the consequent CF-related pathologic manifestations can be reversed in CF mouse models by dietary supplementation with DHA. However, the mechanism is unknown. This study investigates this mechanism by measuring the effect of exogenous DHA and eicosapentaenoate (EPA) supplementation on fatty acid composition and metabolism, as well as on metabolic enzyme expression, in a cell culture model of CF. We found that both DHA and EPA suppress the expression and activity of Δ5- and Δ6-desaturases, leading to decreased flux through the n-3 and n-6 PUFA metabolic pathways and decreased production of AA. The findings also uncover other metabolic abnormalities, including increased fatty acid uptake and markedly increased retroconversion of DHA to EPA, in CF cells. These results indicate that the fatty acid abnormalities of CF are related to intrinsic alterations of PUFA metabolism and that they may be reversed by supplementation with DHA and EPA.  相似文献   

13.
There is much data on the effects of dietary n-3 fatty acids on tissue fatty acid compositions, but comparable comprehensive data on their oxygenated metabolites (oxylipins) is limited. The effects of providing female and male rats with diets high in α-linolenic acid (ALA), EPA or DHA for 6 weeks on oxylipins and fatty acids in kidney, liver and serum were therefore examined. The oxylipin profile generally reflected fatty acids, but it also revealed unique effects of individual n-3 fatty acids that were not apparent from fatty acid data alone. Dietary ALA increased renal and serum DHA oxylipins even though DHA itself did not increase, while dietary EPA did not increase DHA oxylipins in kidney or liver, suggesting that high EPA may inhibit this conversion. Oxylipin data generally corroborated fatty acid data that indicated that DHA can be retroconverted to EPA and that further retroconversion to ALA is limited. Dietary n-3 fatty acids decreased n-6 fatty acids and their oxylipins (except linoleic acid and its oxylipins), in order of effectiveness of DHA > EPA > ALA, with some exceptions: several arachidonic acid oxylipins modified at carbon 15 were not lower in all three sites, and EPA had a greater effect on 12-hydroxy-eicosatetraenoic acid and its metabolites in the liver. Oxylipins were predominantly higher in males, which was not reflective of fatty acids. Tissue-specific oxylipin profiles, therefore, provide further information on individual dietary n-3 fatty acid and sex effects that may help explain their unique physiological effects and have implications for dietary recommendations.  相似文献   

14.
Despite established anti-atherogenic action, previous reports have shown that fish oils or n-3 poly-unsaturated fatty acid (PUFA) increase plasma LDL-C in animals and humans. However, which component of n-3 PUFAs and what mechanisms contribute to this increase are unclear. We investigated the effects of the major components of n-3 PUFA, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), on plasma LDL-C in high fat diet-fed hamsters. While LDL-C increased significantly with n-3 PUFA oil and DHA, EPA had no effect on LDL-C. Interestingly, a positive correlation was found between plasma cholesterol ester transfer protein (CETP) activity and LDL-C. Only DHA increased plasma CETP activity and significantly decreased LDL receptor expression in the liver. Our data suggest that DHA, not EPA, is a major factor in the LDL-C increasing effect of n-3 PUFA oil. These differential effects on LDL-C may arise from differences in plasma CETP activity and LDL receptor expression.  相似文献   

15.
The desaturation of [1-(14)C] 18:3n-3 to docosahexaenoic acid (DHA; 22:6n-3) is enhanced in an essential fatty acid deficient cell line (EPC-EFAD) in comparison with the parent cell line (EPC) from carp. In the present study, the effects of DHA on lipid and fatty acid compositions, and the metabolism of [1-(14)C]18:3n-3 were investigated in EPC-EFAD cells in comparison with EPC cells. DHA supplementation had only relatively minor effects on lipid content and lipid class compositions in both EPC and EPC-EFAD cells, but significantly increased the amount of DHA, 22:5n-3, eicosapentaenoic acid (EPA; 20:5n-3), total n-3 polyunsaturated fatty acids (PUFA), total PUFA and saturated fatty acids in total lipid and total polar lipid in both cell lines. Retroconversion of supplemental DHA to EPA was significantly greater in EPC cells. Monounsaturated fatty acids, n-9 and n-6PUFA were all decreased in total lipid and total polar lipid in both cell lines by DHA supplementation. The incorporation of [1-(14)C]18:3n-3 was greater into EPC-EFAD compared to EPC cells but DHA had no effect on the incorporation of [1-(14)C]18:3n-3 in either cell line. In contrast, the conversion of [1-(14)C]18:3n-3 to tetraenes, pentaenes and total desaturation products was similar in the two cell lines and was significantly reduced by DHA supplementation in both cell lines. However, the production of DHA from [1-(14)C]18:3n-3 was significantly greater in EPC-EFAD cells compared to EPC cells and, whereas DHA supplementation had no effect on the production of DHA from [1-(14)C]18:3n-3 in EPC cells, DHA supplementation significantly reduced the production of DHA from [1-(14)C] 18:3n-3 in EPC-EFAD cells. Greater production of DHA in EPC-EFAD cells could be a direct result of significantly lower levels of end-product DHA in these cells' lipids compared to EPC cells. Consistent with this, the suppression of DHA production upon DHA supplementation was associated with increased cellular and membrane DHA concentrations in EPC-EFAD cells. However, an increase in cellular DHA content to similar levels failed to suppress DHA production in DHA-supplemented EPC cells. A possible explanation is that greatly increased levels of EPA, derived from retroconversion of the added DHA, acts to offset the suppression of the pathway by DHA by stimulating conversion of EPA to DHA in DHA-supplemented EPC cells.  相似文献   

16.
Although dietary fat has been associated with inflammation and cardiovascular diseases (CVD), most studies have focused on individuals with preexisting diseases. However, the role of dietary fatty acids on inflammatory pathways before the onset of any abnormality may be more relevant for identifying initiating factors and interventions for CVD prevention. We fed young male pigs one of three diets differing in n-6 and n-3 polyunsaturated fatty acids (PUFA) linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (ALA, 18:3n-3) for 30 days. Cardiac membrane phospholipid fatty acids, phospholipase A(2) (PLA(2)) isoform activities, and cyclooxygenase (COX)-1 and -2 and 5-lipoxygenase (5-LO) expression were measured. The low PUFA diet (% energy, 1.2% LA+0.06% ALA) increased arachidonic acid (AA) and decreased eicosapentaenoic acid (EPA) in heart membranes and increased Ca(2+)-independent iPLA(2) activity, COX-2 expression, and activation of 5-LO. Increasing dietary ALA while keeping LA constant (1.4% LA+1.2% ALA) decreased the heart membrane AA, increased EPA, and prevented proinflammatory enzyme activation. However, regardless of high ALA, high dietary LA (11.6% LA and 1.2% ALA) decreased EPA and led to a high heart membrane AA, and Ca(2+)-dependent cPLA(2) with a marked increase in nitrosative stress. Our results suggest that the potential cardiovascular benefit of ALA is achieved only when dietary LA is reduced concomitantly rather than fed with high LA diet. The increased nitrosative stress in the unstressed heart with high dietary LA suggests that biomarkers of nitrosative stress may offer a useful early marker of the effects of dietary fat on oxidative tissue stress.  相似文献   

17.
Maternal and umbilical fatty acid status in relation to maternal diet   总被引:1,自引:0,他引:1  
The aim of this study was to describe the dietary fat intake during pregnancy and to study the relationship between the intake of polyunsaturated fatty acids (PUFAs) and the fatty acid composition of maternal and umbilical plasma phospholipids (PLs) and cholesterol esters (CEs) at delivery. In addition, the contribution of food groups to the intake of total fat and fatty acids in the diet was quantified.Maternal and umbilical blood samples were collected at delivery from 30 healthy pregnant women. The women completed a food frequency questionnaire during the first and third trimesters. The total fat intake during pregnancy is 85 (SD 24) g/day. The mean intake of saturated fatty acids (SFAs) is 33.4 g/day, of monounsaturated fatty acids (MUFAs) 28.6 g/day and of PUFA 15.2 g/day. Major sources of fat, MUFA and PUFA are fats, oils and sauces. Major sources of SFA are meat and poultry followed by cheese and eggs. Meat and poultry contribute the most to the intake of 20:4n-6 whereas fish is the major source of 20:5n-3 (EPA) and 22:6n-3 (docosahexaenoic acid (DHA)) in the diet. Linoleic acid, EPA and DHA (w%) in PL of maternal plasma are positively related to the intake of these fatty acids during pregnancy. No association is found between the maternal intake of the two parent essential fatty acids (18:2n-6 and 18:3n-3) and their fraction in umbilical PL or CE. EPA and the sum of n-6 fatty acids (w%) in umbilical plasma PL are positively correlated with the dietary intake of these fatty acids.  相似文献   

18.
N-3 polyunsaturated fatty acids (PUFA) have anti-inflammatory effects and may be useful for the treatment of inflammatory diseases such as rheumatoid arthritis (RA).We examined the efficacy of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) supplementation on RA on top of standard anti-inflammatory treatment. Patients with RA were randomized into two groups in a double-blind, placebo-controlled, parallel-design multicenter study. One hundred nine patients received five capsules of either n-3 PUFA (2.090 g of EPA and 1.165 g of DHA) or high-oleic-acid sunflower oil for 16 weeks. Eighty-one patients completed the study, and no adverse effects were reported. Dietary intake did not change significantly during the study. There were significant increases in n-3 PUFA and EPA levels in erythrocytes in the n-3 PUFA group versus the placebo group, but decreases in n-6 PUFA, 18:2n6, 20:4n6 and 18:1n9 levels in the n-3 PUFA group versus the placebo group. N-3 PUFA supplementation had no significant effects on nonsteroidal anti-inflammatory drug (NSAID) requirements, clinical symptoms of RA or the concentration of cytokines, eicosanoids and bone turnover markers. However, n-3 PUFA supplementation significantly decreased NSAID requirements and leukotriene B4 levels in patients who weighed more than 55 kg. Our results suggest that n-3 PUFA supplementation has no significant effect on RA but may decrease the requirement for NSAIDs in Korean patients with RA who weigh more than 55 kg.  相似文献   

19.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

20.
The long-chain polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA, 20:5n-3), docosahexaenoic acid (DHA, 22:6n-3), and arachidonic acid (AA, 20:4n-6), are critical for health. These PUFAs can be synthesized in liver from their plant-derived precursors, α-linolenic acid (α-LNA, 18:3n-3) and linoleic acid (LA, 18:2n-6). Vegetarians and vegans may have suboptimal long-chain n-3 PUFA status, and the extent of the conversion of α-LNA to EPA and DHA by the liver is debatable. We quantified liver conversion of DHA and other n-3 PUFAs from α-LNA in rats fed a DHA-free but α-LNA (n-3 PUFA) adequate diet, and compared results to conversion of LA to AA. [U-(13)C]LA or [U-(13)C]α-LNA was infused intravenously for 2h at a constant rate into unanesthetized rats fed a DHA-free α-LNA adequate diet, and published equations were used to calculate kinetic parameters. The conversion coefficient k(?) of DHA from α-LNA was much higher than for AA from LA (97.2×10(-3) vs. 10.6×10(-3)min(-1)), suggesting that liver elongation-desaturation is more selective for n-3 PUFA biosynthesis on a per molecule basis. The net daily secretion rate of DHA, 20.3μmol/day, exceeded the reported brain DHA consumption rate by 50-fold, suggesting that the liver can maintain brain DHA metabolism with an adequate dietary supply solely of α-LNA. This infusion method could be used in vegetarians or vegans to determine minimal daily requirements of EPA and DHA in humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号