首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lysosomal acid proteinase of rabbit liver   总被引:23,自引:15,他引:8       下载免费PDF全文
1. The interference mechanism of carbonyl cyanide m-chlorophenylhydrazone with the respiratory process and with phosphorylation coupled to respiration has been investigated in resting cells of Escherichia coli. 2. Preincubation of the cells with carbonyl cyanide m-chlorophenylhydrazone in the absence of substrate caused strong inhibition of succinate oxidation. The inactivation of the respiratory system proved to be time-dependent and temperature-dependent and could be arrested by adding the substrate. Inhibition of incorporation of 32P into acid-soluble organic phosphate esters exceeded the inhibition of oxygen uptake. 3. In contrast with succinate, the rate of oxidation of glucose was increased by carbonyl cyanide m-chlorophenylhydrazone. The sensitivity of other substrates to the inhibitor was less than that of succinate. 4. Various observations are described in support of the view that respiratory inhibition induced by carbonyl cyanide m-chlorophenylhydrazone is a result of its interference with ATP synthesis. The capacity of a given substrate to increase intracellular ATP concentration appeared to be directly related to its resistance to inhibition. In cell-free extracts carbonyl cyanide m-chlorophenylhydrazone still suppressed 32P incorporation but had no effect on respiration. 5. Carbonyl cyanide m-chlorophenylhydrazone-induced stimulation of glucose oxidation and the acceleration of succinate oxidation by ADP or AMP in cells rendered permeable to nucleotides are tentatively interpreted as an indication that a certain part of respiration in E. coli is under phosphate-acceptor-mediated control.  相似文献   

2.
The respiration of both glucose-grown and hydrocarbon-grown cells of Candida tropicalis pK 233 harvested in the stationary phases was not inhibited by cyanide when glucose was used as oxidation substrate, but the former was rather stimulated in the presence of cyanide. When n-alkanes were used as oxidation substrate, cyanide lowered the respiratory activities of both cells to about 50%. With respect to the susceptibility to cyanide, the younger cells growing on n-alkanes were less sensitive in hydrocarbon oxidizing ability than the older cells, whereas the older cells growing on glucose or n-alkanes were more resistant in glucose oxidizing ability than the younger cells. Acetate was oxidized by both glucose-grown and hydrocarbon-grown cells of the yeast. Laurate was oxidized by hydrocarbon-grown cells, but not by glucose-grown cells. The respiration on laurate was inhibited completely by 3.3 mM of cyanide. In general, hydrocarbon-grown cells of Candida tropicalis pK 233 were more sensitive to various respiratory inhibitors than glucose-grown cells, although the oxidation substrates had a significant effect.

The respiration of both glucose-grown and hydrocarbon-grown cells of C. albicans, C. guilliermondii and C. lipolytica harvested in the stationary phases was also resistant to cyanide when glucose was used as oxidation substrate. But the respiration on n-alkanes of these cells was inhibited significantly by 3.3 mM of cyanide except for C. albicans.  相似文献   

3.
The inhibition of the cyanide (KCN)-insensitive respiration of Klebsiella oxytoca SYSU-011 by 8-hydroxyquinoline (8-HQ) was determined. Results showed that the profile of the rate of oxygen uptake of normal-grown and 8-HQ–grown K. oxytoca SYSU-011 was biphasic and similar, suggesting that 8-HQ did not inhibit the respiration of normal-grown K. oxytoca SYSU-011. A different biphasic KCN inhibition profile of respiration was observed for KCN-grown cells treated with and without 8-HQ. No decrease in respiration rate of KCN-grown cells and a 40% decrease in respiration rate of KCN-grown cells treated with 8-HQ were observed when KCN concentration was 10–1 mM. Comparing differences of the profiles of oxygen uptake in KCN-grown cells with and without 8-HQ addition indicated that 8-HQ inhibited expression of the KCN-insensitive pathway carried out by nonheme oxidase. Greater inhibition of NADH oxidase activity by 2-n-heptyl-4-hydroxyquinoline-N-oxide from the cell membrane of the KCN-grown cells treated with 8-HQ, and more H2O2 production from these cells with than without 8-HQ, suggest that the function of the cyanide-insensitive pathway can stabilize the respiration of the cyanide-grown cells to prevent the production of H2O2.  相似文献   

4.
《BBA》1987,893(1):83-90
Excitation with short actinic flashes (2 μs) of oxygenated dark-adapted Chlamydomonas cells deposited on a bare O2 platinum electrode induces an increase of the amperometric signal after the first two flashes. Mass spectrometer experiments performed in the presence of 18O2 showed that this signal was not due to the photolysis of water (H216O). The insensitivity of this signal to 10 μM DCMU (3-(3,4-dichlorophenyl)-1,1-dimethylurea), its stimulation by acetate or high O2 concentration as well as its inhibition by cyanide indicate that these flash-induced changes in O2 concentration were related to the inhibition of a respiratory process. Because this rather fast inhibition of respiration is insensitive to antimycin A and to salicyl hydroxamic acid, inhibitors of mitochondrial respiration, and because it occurs on a single flash illumination, we conclude that the related respiratory activity takes place inside the chloroplast (chlororespiration) and not in the mitochondria. This interpretation is confirmed by the quite high Km(O2) of this process (about 23 μM) compared to those measured for the mitochondrial reactions (0.2 μM for the cytochrome oxidase pathway and 5.5 μM for the alternative pathway). In a mutant lacking Photosystem I activity, no photoinhibition of respiration was observed. We conclude from the above results that the light-induced inhibition of chlororespiration is due to the oxidation by Photosystem I activity of electron carriers common to both photosynthetic and chlororespiratory chains.  相似文献   

5.
The effect of respiration on the positive phototactic movement of swarming agar colonies of the facultative phototroph Rhodospirillum centenum was studied. When the electron flow was blocked at the bc 1 complex level by myxothiazol, the oriented movement of the colonies was totally blocked. Conversely, inhibition of respiration via the cytochrome c oxidase stimulated the phototactic response. No phototaxis was observed in a photosynthesis deficient mutant (YB707) lacking bacteriochlorophylls. Analyses of the respiratory activities as monitored by a oxygen microelectrode in single agar colonies during light/dark transitions showed a close functional correlation between the photosynthetic and respiratory apparatuses. The respiratory chain of Rsp. centenum was formed by two oxidative pathways: one branch leading to a cytochrome c oxidase inhibited by low cyanide concentrations and a second pathway formed by an oxidase less-sensitive to cyanide that also catalyzes the light-driven respiration. These results were interpreted to indicate that (1) there is a cyclic electron transport, and (2) photoinduced cyclic electron flow is required for the phototactic response of Rsp. centenum. Furthermore, under oxic conditions in the light, reducing equivalents may switch from photosynthetic to respiratory components so as to reduce both the membrane potential and the rate of locomotion. Received: 25 September 1996 / Accepted: 11 November 1996  相似文献   

6.
Extracellular measurement of oxygen consumption and acid production is a simple and powerful way to monitor rates of respiration and glycolysis1. Both mitochondrial (respiration) and non-mitochondrial (other redox) reactions consume oxygen, but these reactions can be easily distinguished by chemical inhibition of mitochondrial respiration. However, while mitochondrial oxygen consumption is an unambiguous and direct measurement of respiration rate2, the same is not true for extracellular acid production and its relationship to glycolytic rate 3-6. Extracellular acid produced by cells is derived from both lactate, produced by anaerobic glycolysis, and CO2, produced in the citric acid cycle during respiration. For glycolysis, the conversion of glucose to lactate- + H+ and the export of products into the assay medium is the source of glycolytic acidification. For respiration, the export of CO2, hydration to H2CO3 and dissociation to HCO3- + H+ is the source of respiratory acidification. The proportions of glycolytic and respiratory acidification depend on the experimental conditions, including cell type and substrate(s) provided, and can range from nearly 100% glycolytic acidification to nearly 100% respiratory acidification 6. Here, we demonstrate the data collection and calculation methods needed to determine respiratory and glycolytic contributions to total extracellular acidification by whole cells in culture using C2C12 myoblast cells as a model.  相似文献   

7.
Respiration of blue-green algae in the light   总被引:1,自引:0,他引:1  
The CO2 evolution in the light of Anabaena as well as several other blue-green algae is below 10% of the dark control. Addition of DCMU restores CO2 evolution in the light almost to the dark level. Furthermore, by adding unlabeled NaHCO3, a 14CO2 release is observed with prelabeled algal cells attaining 15 to 100% of dark control. Analysis by double-reciprocal plots exhibits a competitive relationship between added and endogenously released carbon dioxide. We conclude that CO2 evolved by respiration is immediately refixed in the light without being liberated.The degree of 14CO2 release induced by unlabeled bicarbonate in the light allows to determine true photoinhibition of respiration. Anabaena variabilis Kütz. exhibits almost no inhibition while in eight other species respiration is light-inhibited between 50 and 85% of the dark control.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - TCA trichloroacetic acid  相似文献   

8.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

9.
Studies with whole cells and mitochondrial fractions revealed increased respiratory activity inAspergillus repens grown under salt stress conditions. The state 3 and state 4 respiration rates, PO ratios, and Mg2+-dependent ATPase were higher in mitochondria of stressed cells than in control cells.A. repens respires via an antimycin A-and cyanide-sensitive pathway. Oligomycin, dicyclohexylcarbodiimide (DCCD) and rotenone inhibited respiration rates less in mitochondria of stressed cells than in controls. Though 2,4-dinitrophenol (DNP), carbonyl cyanide-m-chlorophenylhydrazone (m-Cl-CCP), and carbonyl cyanide-p-trifluoromethylhydrazone (p-F3-CCP) did not stimulate Mg2+-ATPase activity, DNP enhanced the respiration rates, whereasm-Cl-CCP andp-F3-CCP decreased the respiration rates in either condition; mitochondria of stressed cells exhibited a lower degree of inhibition than controls. Addition of DNP, oligomycin, and DCCD inhibited the basal Mg2+-ATPase (ATPase activity without Mg2+ addition). Oligomycin inhibited the Mg2+-ATPase. DCCD showed less inhibition in mitochondria under stress than did the controls. Levels of some respiratory enzymes were higher in the culture grown under stress than in the controls.  相似文献   

10.
The addition of antimycin A during the logarithmic phase of growth of heterotrophic Euglena gracilis cultures (in lactate or glucose medium) was immediately followed by decreased respiration and a cessation of grwoth. Induced cyanideresistent respiration appeared 5 h after the addition of the inhibitor then the cells started to grow again and could be cultured in the presence of antimycin A. Thus the cells exhibited a cyanide-and antimycin-resistant respiration which was, in addition, sensitive to salicylhydroxamic acid and propylgallate. Antimycin-adapted Euglena and control cells were compared for their biomass production and protein synthesis. The difference in growth yield between control and antimycin-adapted cells was not as high as would be expected if only the first phosphorylation site of the normal respiratory chain was active in the presence of antimycin A. Furthermore, the ability to incorporate labelled valine into proteins, under resting-cell conditions, was not changed. Strong correlations were established between the effects of respiratory effectors on O2 consumption and valine incorporation. These results suggest that sufficient energy for protein synthesis and growth is provided by the operation of the cyanide-resistant respiratory pathway in antimycin-adapted Euglena.Abbreviations DNP dinitrophenol - PG propylgallate - SHAM salicylhydroxamic acid  相似文献   

11.
Chlamydomonas in the resting phase of growth has an equal capacity of about 15 micromole O2 uptake per hour per milligram of chlorophyll for both the cytochrome c, CN-sensitive respiration, and for the alternative, salicylhydroxamic acid-sensitive respiration. Alternative respiration capacity was measured as salicylhydroxamic acid inhibited O2 uptake in the presence of CN, and cytochrome c respiration capacity as CN inhibition of O2 uptake in the presence of salicylhydroxamic acid. Measured total respiration was considerably less than the combined capacities for respiration. During the log phase of growth on high (2-5%) CO2, the alternative respiration capacity decreased about 90% but returned as the culture entered the lag phase. When the alternative oxidase capacity was low, addition of salicylic acid or cyanide induced its reappearance. When cells were grown on low (air-level) CO2, which induced a CO2 concentrating mechanism, the alternative oxidase capacity did not decrease during the growth phase. Attempts to measure in vivo distribution of respiration between the two pathways with either CN or salicylhydroxamic acid alone were inconclusive.  相似文献   

12.
Addition of ethanol and some other primary alcohols, except methanol, to cells and protoplasts (but not membrane particles) considerably stimulated the rate of oxygen consumption. This additional respiration was strongly inhibited by 0.1 mM KCN. The cyanide inhibition curve of endogenous substrate oxidation was slightly biphasic while in the presence of ethanol it became clearly biphasic having K i values of approx. 0.1 and 0.5 mM. Based on the steady-state cytochrome spectra in the presence of 0.1 mM KCN, we attributed the lower K i to cytochrome a 602. Proteolysis of protoplasts external membrane proteins did not change the rate of endogeneous substrate oxidation but prevented the inhibition of this respiration by low concentrations of KCN and stimulation of oxygen consumption by ethanol. The activity of NAD+-dependent ethanol dehydrogenase in the cytoplasm was found to be 520 nmol NADH-x min–1 x mg–1 protein. Proteolysis of external membrane proteins apparently inhibits the operation of the cytochrome a 602-containing electron transport branch inducing the suppression of electron flow from NADH to oxygen.  相似文献   

13.
A vigorous and transient increase of O2 uptake associated with a simultaneous release of CO2 was elicited in Egeria densa and in Potamogeton crispus leaves by treatment with N-ethylmaleimide (NEM) and by other -SH group reagents (iodoacetate, p-(chloromercuri)benzenesulfonate (p-CMBS), Ag+, Hg2+, Cu2+). The NEM-induced respiratory burst was apparent even in the absence of photosynthesis (darkness, or presence of DCMU) as well as in the presence of the respiration inhibitors cyanide and propyl gallate or SHAM, separate or in combination. In contrast, a complete suppression of the respiratory burst was induced by diphenylene iodonium and by quinacrine, inhibitors of the plasma membrane NADPH oxidase activated in the pathogen-elicited oxidative burst in granulocytes and in plants. The respiratory burst induced by NEM and by the uncoupler CCCP were additive. The intensity of the respiratory burst was markedly decreased by increasing the pH of the medium from 5 to 8, and partially decreased by the presence of K+ in the medium. Azide inhibited the burst (as well as basal respiration) at pH 6.5 but not at pH 5. The stimulation of QO2 by SH reagents was associated with an early, pronounced membrane depolarization together with a rapid increase of the release into the medium of K+ and other electrolytes, and with a rapid decrease of the intracellular ATP, ADP and G6 P contents. The possible relationships between this SH reagent-induced respiratory burst and the associated effects on Em and electrolyte leakage are discussed.  相似文献   

14.
Cytochromes ofAureobasidium pullulans have been identified and partially characterized using low-temperature and carbon-monoxide-difference spectroscopy. The presence ofa-,b-, andc-type cytochromes is demonstrated, as are other unidentified redox components. During exponential growth in batch culture, cytochrome levels showed complex changes. Changes in respiration rates and in the levels of cytochromea+a 3 closely paralleled cellular growth: both increased exponentially until stationary phase, when no further increase occurred. Theb- andc-type cytochromes showed biphasic increases, initially doubling every, generation time and then increasing more slowly during the stationary phase. Sensitivity of respiration to 100M potassium cyanide gradually decreased during exponential growth, falling from virtually 100% inhibition after about 20 h growth to 30% inhibition in the stationary phase. The results suggest that in stationary-phase cultures, an alternative cyanide-insensitive but salicylhydroxamic-acid-sensitive terminal oxidase also operates.  相似文献   

15.
Respiration and glycolysis in the human diploid cell strain WI-38   总被引:6,自引:0,他引:6  
Assessment of the respiratory and glycolytic capacity of non-growing WI-38 cells shows that, in the absence and presence of added glucose, the mean rates of oxygen consumption were 247 (QO2 = 5.61) and 208 (QO2 = 4.73) mμmoles/mg dry wt/hr., respectively. Mean glucose consumption was 225 mμmoles/mg dry wt/ hr. With uniformly labeled 14C glucose as substrate, 36 mμg atoms of carbon dioxide were produced, corresponding to 15–20% of the total cellular respiration. Mean values for lactate production in the presence and absence of glucose were 345 (QLO2 = 7.85) and 196 (QLO2 = 4.45) mμmoles/mg dry wt/hr., respectively. Human diploid cells in culture age, in the sense that their ability to proliferate decreases with time during serial subcultivation. Studies of their respiratory and glycolytic capacity as a function of the aging process showed that total respiration, glucose respiration and glycolytic capacity were relatively constant for cells in the middle and late passages and indicate that aging in this sense is not directly related to the respiratory and glycolytic capacity of the cell.  相似文献   

16.
Summary Rates of oxygen uptake and the oxygen demand during growth of Candida tropicalis on hexadecane and glucose were determined in batch experiments. Oxygen demand was 2.5 fold higher for the synthesis of one unit of cell mass from hydrocarbon than from glucose. On the other hand specific respiration is of the same order of magnitude for both substrates, e.g. 12 mmoles O2xh-1xg-1 (dry weight) and seems to be a constant of this organism. Higher rates of oxygen supply into the medium had no effect on the specific rates of respiration. Specific growth rates on hexadecane were 2.4 times lower than on glucose. It is concluded, that rates of synthesis of cell components are controlled by the overall capacity of the respiratory pathways.  相似文献   

17.
Increasing the glucose concentration from 0.1 to 10% in exponentially growing cultures of Kluyveromyces lactis CBS 2359 does not repress the antimycin-sensitive respiration (QO 2 of 80 l O2·h-1·mg-1 dry weight) but raises the antimycin-insensitive respiration from 3 to 12 l O2·h-1·mg-1 dry weight. Antimycin A inhibits the growth of K. lactis on a variety of substrates with the exception of glucose at concentrations equal to or higher than 1% where substantial antimycin-insensitive respiratory rates are induced. It can be concluded that a minimal antimycin-insensitive QO 2 is necessary for cellular growth when the normal respiratory pathway is not functional.The antimycin-insensitive respiration elicited by growth in high glucose concentrations is poorly inhibited by hydroxamate and is inhibited by 50% by 90 m azide or 1mm cyanide. These concentrations are much higher than those necessary to inhibit cytochrome c oxidase which is not involved in the antimycin-insensitive respiration as was demonstrated by spectral measurements. A pigment absorbing at 555 nm is specifically reduced after addition of glucose to antimycin-inhibited cells. The same pigment is reoxidized by further addition of high concentrations of sodium azide indicating its participation in the antimycin-insensitive, azide-sensitive respiration.  相似文献   

18.
Investigators have proposed for some time that bacterial luciferase forms a shunt around the pathway of respiratory electron transport. Certain physiologic evidence for coupling between luminescence and respiration has supported such a view. In this study, Vibrio harveyi cells were monitored for luminescent responses to artificial manipulation of respiratory electron flow. The effects of cyanide under aerobic and anaerobic conditions confirmed that luminescence and respiration compete for oxygen. The effects of an uncoupler of oxidative phosphorylation indicated that luminescence and respiration compete for a common reductant. Treatment with uncoupler also induced aldehyde deficiency in vivo.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - Tris tris(hydroxymethyl) aminomethane  相似文献   

19.
Low concentrations of sodium fluoride severely inhibit anaerobic CO2 evolution in Acer pseadoplatanus L. cells but have relatively little effect on aerobic respiration. The insensitivity of respiratory O2 uptake to fluoride is due in part to the fact that fluoride reduces the intracellular pyruvate concentration to only a relatively minor extent under aerobic conditions, although it prevents the several fold increase in endogenous private which is normally brought about by anoxia. The respiratory insensitivity is also ascribable to the existence of a respiratory component which is unaffected by the decrease in endogenous private resulting from fluoride treatment. The extremely severe respiratory inhibition brought about by fluoride plus dinitrophenol is not appreciably relieved by exogenous private, indicating that this inhibition is the result of interference with the aerobic oxidation process per se and is not solely a consequence of glycolytic inhibition.  相似文献   

20.
Analysis of the cytochrome spectra of a mitochondrial mutant ofCandida utilis showed complete absence of apocytochromeb; this suggests a certain degree of damage, probably a small deletion in themit genes of mitochondrial DNA. Oxygen uptake measurements with and without cyanide of the respiratory-competentCandida utilis parent strain and its derivative mitochondrial mutant P1,2 indicated the absence of the cyanide-sensitive or normal respiratory chain and a lowered rate of cyanide-insensitive or alternate respiration. Mitochondrial profiles and distribution of parental and mutant cells account for an altered mitochondrial DNA which affects mitochondria in the latter cell shape and function. The mutant cells ofCandida utilis were considered asmit mutants from the observations reported here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号