首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Invasion of the merozoite form of Plasmodium falciparum into human erythrocytes involves multiple receptor-ligand interactions. The EBA175 protein of P. falciparum has been shown to be the ligand that binds to a sialic acid-dependent site on glycophorin A. We have identified a novel P. falciparum ligand, termed erythrocyte-binding antigen 140 (EBA140), that shares structural features and homology with EBA175. Subcellular localization of EBA140 suggests that it is located in the micronemes, the same localization as EBA175. EBA140 binds to a sialic acid-dependent receptor on the surface of human erythrocytes. Binding of EBA140 to this erythrocyte receptor is sensitive to neuraminidase and resistant to trypsin, proteinase K and pronase. The protease-resistant properties of the erythrocyte receptor suggests that it is not glycophorin A or C. Additionally, analysis of mutant erythrocytes from humans has shown that EBA140 does not bind glycophorin B. Interestingly, we have identified a parasite line that lacks the eba140 gene, suggesting that this protein is not essential for in vitro invasion. These results suggest that EBA140 may be involved in merozoite invasion using a sialic acid-dependent receptor on human erythrocytes.  相似文献   

2.
Merozoites were isolated from Plasmodium falciparum cultures labeled with [3H]mannose and [35S]methionine and treated with a cleavable homobifunctional crosslinker, dithiobis(succinimidyl) propionate. The crosslinked complexes were immunoprecipitated with Mab.5B1 directed against the major merozoite surface glycoprotein. Pf200 (MW 190-205), and reduced with dithiothreitol. Crosslinked immunocomplexes did not contain the second major merozoite surface glycoprotein, Pf50 (MW 45-55 kDa), or other major [35S]methionine-labeled proteins, except for a weakly labeled protein of 150 kDa. Crosslinked complexes immunoprecipitated with Mab.5B1 and then reduced with DTT were immunoblotted with antibody directed against three soluble P. falciparum antigens, a serine-rich antigen known as Pf126 or SERA, the S-antigen, and GBP-130. The 150-kDa S-antigen was readily detected in crosslinked immunocomplexes with Pf200. The SERA antigen, although crosslinked under these conditions, was not detected in association with Pf200 nor was GBP-130.  相似文献   

3.
The effects of alcohols on human glycophorin were monitored by circular dichroism, solvent perturbation of absorption spectra, fluorescence of 8-anilino-1-naphthalene sulfonate, and sedimentation equilibrium in the ultracentrifuge. Both ethanol and 2-chloroethanol gradually increase the alpha helix in glycophorin and its sialic acid free counterpart. The same alcohols do not cause a cooperative transition in the structure of the polypeptide chain of glycophorin. Other alcohols also increase the alpha-helix content of glycophorin. Binding of ANS to glycophorin is abolished at relatively low alcohol concentrations. Ethanol at 60% (v/v) reduces the molecular weight ratio of glycophorin and at the same time increases the exposure of tyrosine residues to solvent. These observations indicate a complex mechanism of interaction of weakly protic solvents with this stable membrane protein.  相似文献   

4.
Pf12 in Plasmodium falciparum has been characterized as a merozoite surface protein and the Pf12 gene is actively transcribed during schizont stage. An orthologous gene, Pv12, has been identified in genome of P. vivax, but the protein product has not been characterized. The Pv12 is a 362 amino acid long polypeptide encoded by a single exon gene PVX_113775, for which orthologous genes have been identified in other Plasmodium species by bioinformatic approaches. Pv12 contains two predicted six-cysteine (6-Cys) domains, which may be constrained by predicted disulfide bonds, and a transmembrane domain and a predicted GPI anchor attachment site in C-terminal region. The recombinant Pv12 protein is recognized by serum antibodies of patients naturally exposed to P. vivax and the native Pv12 protein from parasite extract is also recognized by immune mouse serum. The Pv12 is localized in rhoptry; an apical organelle of the merozoite, and the localization pattern of Pv12 is distinct from that of Pf12 in P. falciparum. The present study suggests that Pv12 is immunogenic in humans during parasite infection and it could play an important role in erythrocyte invasion.  相似文献   

5.
Both the sialoglycoprotein of human erythrocyte membranes, glycophorin, and the sialic acid free protein, obtained by treatment of glycophorin with neuraminidase (EC 3.2.1.18), increase the fluorescence of 8-anilino-1-naphthalene sulfonate (ANS). Binding of ANS to glycophorin is weak compared with the binding to bovine serum albumin (BSA). equilibrium dialysis gives an apparent binding constant of about 4 X 10(3) M(-1) at neutral pH, but Ka increases 1.75 times when NaCl or CaCl2 are added and 10-fold when the pH is lowered to 3.0. Sialic acid groups do not significantly affect ANS binding, although they have some effect at low ionic strength and neutral pH. Fluorescence studies indicate only one to two binding sites for ANS, with apparent pK = 3.8 +/- 0.2, and located close to aromatic residues in glycophorin. Polarization and quantum efficiency of the fluorescence of ANS associated with glycophorin fail to indicate changes in the vicinity of the binding site when the pH is lowered.  相似文献   

6.
The human mAb 33G2 has high capacity to inhibit in vitro invasion of erythrocytes by Plasmodium falciparum merozoites and, thus, is of special interest with regard to protective immunity against the parasite. In order to obtain more information about asexual blood stage Ag of P. falciparum that are seen by this antibody, material from synchronized P. falciparum cultures was studied by immunofluorescence, immunoelectron microscopy, and immunoblotting. Reactivity was mainly confined to the membrane of infected erythrocytes. Soon after merozoite invasion the antibody stained the erythrocyte membrane. This membrane-associated staining faded during intracellular development of the parasites. Beginning about 18 h after invasion, a dotted pattern appeared which increased in strength with time and persisted to schizont rupture. Pf155/RESA was the major Ag recognized in immunoblots of parasites collected throughout the entire erythrocytic cycle, although other polypeptides also bound the antibody. Among these was a 260-kDa polypeptide found in late trophozoites and schizonts. The specificity of the antibody was analyzed with synthetic peptides corresponding to repeated sequences in the P. falciparum Ag Pf155/RESA, Pf11.1, and Ag332. Synthetic peptides related to Ag332 were the most efficient inhibitors of antibody binding in immunofluorescence studies and cell ELISA. A beta-galactosidase-Ag332 fusion protein was also efficient in reversing reinvasion inhibition caused by 33G2. These results define a family of cross-reactive P. falciparum Ag recognized by mAb 33G2 and suggest that Ag332 was its original target.  相似文献   

7.
A Tavakkol  A T Burness 《Biochemistry》1990,29(47):10684-10690
Sialic acid residues are required in cellular receptors for many different mammalian viruses. Sialic acid could have a direct role, being an integral part of the virus binding site on the receptor. Alternatively, negatively charged sialic acid could have an indirect role, being responsible for holding the receptor in the required configuration for virus recognition, for instance, by interacting with positively charged amino acid residues found in the polypeptide chain of receptors. We have investigated the role of sialic acid in virus attachment by studying the interaction of the small RNA virus encephalomyocarditis (EMC) with glycophorin A, its receptor on human erythrocytes. In several experiments, influenza virus A was used for control purposes. Blocking positive charges on glycophorin either in lysine residues by acetylation or in arginine residues with butanedione did not affect its interaction with EMC virus. In contrast, blocking negatively charged carboxyl groups in sialic acid residues by amidation destroyed the ability of glycophorin to inhibit EMC virus attachment suggesting an important role for this part of sialic acid in EMC virus attachment. Removal of the polyhydroxy side chain in sialic acid residues of glycophorin by mild oxidation with periodate followed by reduction with borohydride had little effect on its interaction with EMC virus. Further, sialic acid species with either an acetyl or glycolyl group attached to the amino group on position 5 interacted equally well with EMC virus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Plasmodium falciparum malaria parasites invade human erythrocytes by means of a parasite receptor for erythrocytes, the 175-kD erythrocyte binding antigen (EBA-175). Similar to invasion efficiency, binding requires N-acetylneuraminic acid (Neu5Ac) on human erythrocytes, specifically the glycophorins. EBA-175 bound to erythrocytes with receptor-like specificity and was saturable. The specificity of EBA-175 binding was studied to determine if its binding is influenced either by simple electrostatic interaction with the negatively charged Neu5Ac (on the erythrocyte surface); or if Neu5Ac indirectly affected the conformation of an unknown ligand, or if Neu5Ac itself in specific linkage and carbohydrate composition was the primary ligand for EBA-175 as demonstrated for hemagglutinins of influenza viruses. Most Neu5Ac on human erythrocytes is linked to galactose by alpha 2-3 and alpha 2-6 linkages on glycophorin A. Soluble Neu5Ac by itself in solution did not competitively inhibit the binding of EBA-175 to erythrocytes, suggesting that linkage to an underlying sugar is required for binding in contrast to charge alone. Binding was competitively inhibited only by Neu5Ac(alpha 2-3)Gal-containing oligosaccharides. Similar oligosaccharides containing Neu5Ac(alpha 2-6)Gal-linkages had only slight inhibitory effects. Binding inhibition assays with modified sialic acids and other saccharides confirmed that oligosaccharide composition and linkage were primary factors for efficient binding. EBA-175 bound tightly enough to glycophorin A that the complex could be precipitated with an anti-glycophorin A monoclonal antibody. Selective cleavage of O-linked tetrasaccharides clustered at the NH2 terminus of glycophorin A markedly reduced binding in inhibition studies. We conclude that the Neu5Ac(a2,3)-Gal- determinant on O-linked tetrasaccharides of glycophorin A appear to be the preferential erythrocyte ligand for EBA-175.  相似文献   

9.
J Kochan  M Perkins  J V Ravetch 《Cell》1986,44(5):689-696
Erythrocyte invasion by the malarial merozoite is a receptor-mediated process, an obligatory step in the development of the parasite. The Plasmodium falciparum protein GBP-130, which binds to the erythrocyte receptor glycophorin, is shown here to encode the binding site in a domain composed of a tandemly repeated 50 amino acid sequence. The amino acid sequence of GBP-130, deduced from the cloned and sequenced gene, reveals that the protein contains 11 highly conserved 50 amino acid repeats and a charged N-terminal region of 225 amino acids. Binding studies on recombinant proteins expressing different numbers of repeats suggest that a correlation exists between glycophorin binding and repeat number. Thus, a repeat domain, a common feature of plasmodial antigens, has been shown to have a function independent of the immune system. This conclusion is further supported by the ability of antibodies directed against the repeat sequence to inhibit the in vitro invasion of erythrocytes by merozoites.  相似文献   

10.
A novel gene encoding a protein of 147 amino acids (Pf16) has been cloned from Plasmodium falciparum and expressed in E. coli. The protein contains 19 methionines, all of which are localized in the NH2-terminal 35 amino acid residues, and it is also rich in lysine. Pf16 is highly basic, contains a polyacidic domain consisting of aspartic acid and is related to the non-histone high mobility group proteins of higher eukaryotes. The gene is conserved among eight different species of Plasmodium so far examined, suggesting an important function for this gene product in the parasite's life cycle.  相似文献   

11.
Severe anemia is a lethal complication of Plasmodium falciparum malaria, particularly in children. Recent studies in children with severe P. falciparum anemia have demonstrated elevated levels of E-bound Abs, reduced E-associated complement receptor 1 (CR1) and decay-accelerating factor (DAF), and pronounced splenic enlargement, suggesting a mechanism for E loss involving Abs, complement, and phagocytosis. Motivated by these reports, we have developed an in vitro model in which human E with Abs and complement bound to CR1, DAF, or glycophorin A are incubated with model human macrophages (the THP-1 cell line). Previous work has demonstrated that immune complex (IC) substrates bound to E CR1, either by an Ab or via C3b, are transferred to macrophages with loss of CR1. In this study, we report that IC bound to DAF or glycophorin A by an Ab linkage are also transferred to macrophages. DAF is lost from the E during the transfer of DAF-bound IC, but the transfer of CR1-bound IC does not lead to a significant loss of DAF. Using glycophorin A-bound IC, we observe competition between transfer of IC and phagocytosis of the E: a fraction (相似文献   

12.
The epitopes of seven mouse monoclonal antibodies which are related to the Gerbich blood group system were investigated. BRIC4, BRIC10, GERO and MR4-130 have been published earlier. The three others (APO1, APO2, APO3) were prepared by immunization with normal human erythrocytes and detected by screening with red blood cells that lack glycophorins C and D. Using immunoblotting and hemagglutination inhibition assays, the epitopes for all antibodies were found to be located on glycophorin C. Hemagglutination inhibition experiments with peptides and chemically modified glycophorins revealed that MR4-130, GERO, BRIC10 and APO2 are all directed against identical or rather similar epitopes comprising the N-terminal three or four residues of glycophorin C. Modification of the N-terminal methionine residue or release of sialic acid attached to oligosaccharide(s) at the third and/or fourth position(s) destroyed all these antigens. The epitope of APO3 was found to comprise glutamic acid17 and/or aspartic acid19 as well as the oligosaccharide attached to serine15. The antigens of BRIC4 and APO1 were found to be located within the residues 2-21 and to comprise sialic acid attached to O-glycosidically linked oligosaccharide(s). However, these epitopes could not be elucidated further. Radio-iodinated MR4-130 bound to 39,000 receptor sites per normal red blood cell. Binding of the labelled antibody was completely inhibited by unlabelled MR4-130, BRIC10, APO2 and GERO. APO1 caused partial inhibition suggesting that it is directed against an adjacent site. BRIC4, APO3 and anti-Ge3 did not inhibit the binding of labelled MR4-130 to any significant extent.  相似文献   

13.
The malarial GBP 130 protein binds weakly to intact human erythrocytes; the binding sites seem to be located in the repeat region and this region's antibodies block the merozoite invasion. A peptide from this region (residues from 701 to 720) which binds to human erythrocytes was identified. This peptide named 2220 did not bind to sialic acid; the binding site on human erythrocyte was affected by treatment with trypsin but not by chymotrypsin. The peptide was able to inhibit Plasmodium falciparum merozoite invasion of erythrocytes. The residues F701, K703, L705, T706, E713 (FYKILTNTDPNDEVERDNAD) were found to be critical for peptide binding to erythrocytes.  相似文献   

14.
Immunization with extracellular sexual stages of the malaria parasites can induce the production of antibodies which block the development of the parasites in the midgut of a mosquito after a blood meal. We have generated a number of monoclonal antibodies against gametes and zygotes of the human malaria Plasmodium falciparum. Two monoclonal antibodies (mAb) reacting with a 230-kDa gamete surface protein (mAb 1B3 and 2B4 both isotype IgG2a) were found to block transmission of P. falciparum to mosquitoes. Blocking was complement dependent and this was verified in vitro by the rapid lysis of newly formed gametes and zygotes in the presence of the mAb and active complement. Both mAb reacted by immunofluorescence with the surface of gametes and zygotes from isolates of P. falciparum from various geographical areas. Each mAb immunoprecipitated a 230-kDa protein from 125I-labeled surface proteins of newly formed gametes and zygotes and immunoblotted a protein doublet of about molecular mass 260 and 230 kDa from gametocytes and gametes of P. falciparum. Only the 230-kDa protein is expressed on the surface of newly formed macrogametes and zygotes. The 230-kDa gamete surface protein forms a molecular complex with two proteins of 48 and 45 kDa. The 48- and 45-kDa gamete surface proteins have previously been shown to be targets of mAb which block infectivity of P. falciparum to mosquitoes. The present study now demonstrates that antibodies against the 230-kDa gamete surface protein block transmission of P. falciparum to mosquitoes. The 230-kDa gamete protein is thus a potential candidate for a gamete vaccine.  相似文献   

15.
Apical membrane antigen 1 of the malarial parasite Plasmodium falciparum (Pf AMA1) is a merozoite antigen that is considered a strong candidate for inclusion in a malaria vaccine. Antibodies reacting with disulphide bond-dependent epitopes in AMA1 block invasion of host erythrocytes by P.falciparum merozoites, and we show here that epitopes involving sites of mutations in domain III are targets of inhibitory human antibodies. The solution structure of AMA1 domain III, a 14kDa protein, has been determined using NMR spectroscopy on uniformly 15N and 13C/15N-labelled samples. The structure has a well-defined disulphide-stabilised core region separated by a disordered loop, and both the N and C-terminal regions of the molecule are unstructured. Within the disulphide-stabilised core, residues 443-447 form a turn of helix and residues 495-498 and 503-506 an anti-parallel beta-sheet with a distorted type I beta-turn centred on residues 500-501, producing a beta-hairpin-type structure. The structured region of the molecule includes all three disulphide bonds. The previously unassigned connectivities for two of these bonds could not be established with certainty from the NMR data and structure calculations, but were determined to be C490-C507 and C492-C509 from an antigenic analysis of mutated forms of this domain expressed using phage display. Naturally occurring mutations in domain III that are located far apart in the primary sequence tend to cluster in the region of the disulphide core in the three-dimensional structure of the molecule. The structure shows that nearly all the polymorphic sites have a high level of solvent accessibility, consistent with their location in epitopes recognised by protective antibodies. Even though domain III in solution contains significant regions of disorder in the structure, the disulphide-stabilised core that is structured is clearly an important element of the antigenic surface of AMA1 recognised by protective antibodies.  相似文献   

16.
The Apicomplexan parasite responsible for the most virulent form of malaria, Plasmodium falciparum, invades human erythrocytes through multiple ligand-receptor interactions. Some strains of P. falciparum are sensitive to neuraminidase treatment of the host erythrocyte and these parasites have been termed sialic acid-dependent as they utilize receptors containing sialic acid. In contrast, other strains can efficiently invade neuraminidase-treated erythrocytes and hence are sialic acid-independent. The molecular interactions that allow P. falciparum to differentially utilize receptors for merozoite invasion are not understood. The P. falciparum reticulocyte-binding protein homologue (PfRh or PfRBL) family have been implicated in the invasion process but their exact role is unknown. PfRh1, a member of this protein family, appears to be expressed in all parasite lines analysed but there are marked differences in the level of expression between different strains. We have used targeted gene disruption of the PfRh1 gene in P. falciparum to show that the encoded protein is required for sialic acid-dependent invasion of human erythrocytes. The DeltaPfRh1 parasites are able to invade normally; however, they utilize a pattern of ligand-receptor interactions that are more neuraminidase-resistant. Current data suggest a strategy based on the differential function of specific PfRh proteins has evolved to allow P. falciparum parasites to utilize alternative receptors on the erythrocyte surface for evasion of receptor polymorphisms and the host immune system.  相似文献   

17.
GMP-140 is a rapidly inducible receptor for neutrophils and monocytes expressed on activated platelets and endothelial cells. It is a member of the selectin family of lectin-like cell surface molecules that mediate leukocyte adhesion. We used a radioligand binding assay to characterize the interaction of purified GMP-140 with human neutrophils. Unstimulated neutrophils rapidly bound [125I]GMP-140 at 4 degrees C, reaching equilibrium in 10-15 min. Binding was Ca2+ dependent, reversible, and saturable at 3-6 nM free GMP-140 with half-maximal binding at approximately 1.5 nM. Receptor density and apparent affinity were not altered when neutrophils were stimulated with 4 beta-phorbol 12-myristate 13-acetate. Treatment of neutrophils with proteases abolished specific binding of [125I]GMP-140. Binding was also diminished when neutrophils were treated with neuraminidase from Vibrio cholerae, which cleaves alpha 2-3-, alpha 2-6-, and alpha 2-8-linked sialic acids, or from Newcastle disease virus, which cleaves only alpha 2-3- and alpha 2-8-linked sialic acids. Binding was not inhibited by an mAb to the abundant myeloid oligosaccharide, Lex (CD15), or by the neoglycoproteins Lex-BSA and sialyl-Lex-BSA. We conclude that neutrophils constitutively express a glycoprotein receptor for GMP-140, which contains sialic acid residues that are essential for function. These findings support the concept that GMP-140 interacts with leukocytes by a lectin-like mechanism.  相似文献   

18.
19.
Virulence of Plasmodium falciparum , the most lethal parasitic disease in humans, results in part from adhesiveness and increased rigidity of infected erythrocytes. Pf332 is trafficked to the parasite-infected erythrocyte via Maurer's clefts, structures for protein sorting and export in the host erythrocyte. This protein has a domain similar to the Duffy-binding-like (DBL) domain, which functions by binding to receptors for adherence and invasion. To address structure of the Pf332 DBL domain, we expressed this region, and validated its fold on the basis of the disulphide bond pattern, which conformed to the generic pattern for DBL domains. The modelled structure for Pf332 DBL had differences compared with the erythrocyte-binding region of the αDBL domain of Plasmodium knowlesi Duffy-binding protein (Pkα-DBL). We addressed the function of Pf332 by constructing parasites that either lack expression of the protein or express an altered form. We found no evidence that Pf332 is involved in cytoadhesion or merozoite invasion. Truncation of Pf332 had a significant effect on deformability of the P. falciparum -infected erythrocyte, while loss of the full protein deletion did not. Our data suggest that Pf332 may contribute to the overall deformability of the P. falciparum -infected erythrocyte by anchoring and scaffolding.  相似文献   

20.
测定恶性疟原虫红内期Pf332抗原 (Ag332 )基因的未知序列 ,并进行序列分析 .根据非洲恶性疟原虫Palo alto株Pf332基因的G1片段序列 ,设计 1对引物 ,从中国恶性疟原虫海南株 (FCC1 HN)基因组DNA中扩增出P332 1片段 .Pf332基因中经常出现SVTEEI短肽的编码序列 ,据此分别设计非特异的正、反义寡核苷酸引物 (NSP1、NSP2 ) ,应用低严谨PCR(LSPCR)分别扩增出P332 1邻近的未知序列片段P332 up1和P332 dow1.根据恶性疟原虫Palo alto株Pf332基因G1片段上、下游的G9和C1片段序列以及测定的P332 up1和P332 dow1序列 ,分别设计 2对特异引物继续扩增邻近的未知序列片段P332 up2和P332 dow2 .根据P332 dow2片段的 3'端序列 ,设计 2条特异引物分别与非特异引物NSP2行LSPCR和巢式PCR ,扩增出P332 dow2邻近的未知序列片段P332 dow3.对获得的Pf332基因片段进行序列测定 ,并用分子生物学软件辅助进行序列分析 .序列测定和拼接结果显示 ,共获得了连续 6 14 4bp的恶性疟原虫FCC1 HN株Pf332基因序列 .序列分析表明 ,所获得的 614 4bp序列位于Pf332基因的编码区内 ,不含内含子 ,编码 2 0 4 8个氨基酸残基 ,包含 5个氨基酸残基重复区 .对恶性疟原虫FCC1 HN株Pf332基因 6 14 4bp序列的测定和分析 ,为获得Pf332全基因  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号