首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large fish are often the most effective seed dispersers, but they are also the preferred target for fisheries. We recently started to comprehend the detrimental impacts of the extirpation of large frugivorous fish species on natural forest regeneration, but we lack a general understanding of how intraspecific size‐selective harvest affects fish–fruit mutualism. Our literature review demonstrated that large individuals within populations positively affect diverse aspects of seed dispersal, from consuming a higher diversity of seeds to enhancing germination. Furthermore, we filled a research gap by studying how individual size variations within two small frugivorous fish species (<16 cm) affect seed dispersal in flooded savannas. Even within small‐bodied species, large individuals swallow a higher number of intact seeds, but not necessarily a higher proportion. Overall, our results demonstrate the disproportional role of large‐bodied individuals as key seed dispersers in flooded habitats. Consequently, fishing‐down within both large‐ and small‐bodied species can negatively affect seed dispersal and natural regeneration in overfished wetlands.  相似文献   

2.
We tested the hypotheses that increased soil resource availability selects for larger seeded plants by: (1) increasing community seed density and seedling competition, (2) increasing light competition, which favours larger seeded species if their additional seed resources are allocated to shoots. We also tested the hypothesis that plants respond to increased nutrient availability by producing larger seeds. In a controlled environment experiment, we grew monocultures of five species of co-occurring annual plant species at two N addition rates and measured seed size and the number of seeds produced. In a second experiment, we sowed seed of the five species together, manipulated nitrogen (N) addition rate and community seed density and measured species performance. In the first experiment, elevated N addition increased seed size, but only in larger seeded species. In the second experiment, high N addition increased community seed production. However, contrary to our hypothesis small seeded species were selected under high seed density, possibly because they germinated and grew more rapidly thus enabling them to pre-empt limiting resources. Larger seeded species were favoured by high N addition, as hypothesised. However, our data suggest that this was due to their seed reserves boosting survival below the denser canopies of fertile conditions rather than via competitive advantages. Our results point to a largely overlooked role of recruitment in determining community response to fertilisation. Although our results may not generalise to all plant communities they suggest that seed traits play a role in community response to both the direct effect of N addition and the stimulation of seed density caused by increased productivity. These results are also consistent with the view that the advantage of large seed size is not a competitive one, but greater survival in the face of environmental hazards.  相似文献   

3.
Recruitment of new individuals, through germination and seedling survival, is a key process for short-lived plants. Here, we analyzed intraspecific variation in recruitment across the latitudinal range of Plantago coronopus, a widespread herb that produces both large basal seeds with a mucilaginous coat and small apical seeds without coat. We experimentally tested the effects of seed traits and water availability on recruitment, by using seeds from a wide environmental stress gradient from N Africa to N Europe. Our experiments were carried out in controlled environmental conditions and in dunes where the species naturally occurs. Water shortage decreased seed germination and seedling survival for all populations, showing the importance of water supply for P. coronopus. Basal seeds showed higher and faster germination rates than apical seeds. Since among-population variation in seed mass was not related to potential germination rate, it is the mucilaginous coat rather than size difference that likely drives the differential success between seed morphs. Seed mass positively affected seedling survival instead, but only in controlled conditions with regular water supply. An experiment in a dune showed indeed that the highest survival corresponded to the local population and not the one with the largest seeds. Our results demonstrate that both intrinsic and extrinsic factors drive inter-population variation in the early life stages of this short-lived plant, allowing it to adapt across the environmentally heterogeneous distribution range. Gathering information on intraspecific variation in recruitment-related traits will help us to understand and predict plant responses in a context of climatic change.  相似文献   

4.
The elimination of the largest herbivores (elephants and rhinoceroses) from many forests in tropical East Asia may have severe consequences for plant species that depend on them for seed dispersal. We assessed the capacity of Malayan tapirs Tapirus indicus—the next largest nonruminant herbivore in the region—as a substitute for the lost megafauna in this role by studying their ability to disperse the seeds of nine fleshy‐fruited plants with seeds 5–97 mm in length. We combined information from feeding trials, germination tests, and field telemetry to assess the effect of tapir consumption on seed viability and to estimate how far the seeds would be dispersed. The tapirs (N=8) ingested few seeds. Seed survival through gut passage was moderately high for small‐seeded plants (e.g., 36.9% for Dillenia indica) but very low for medium‐ (e.g., 7.6% for Tamarindus indica) and large‐seeded (e.g., 2.8% for Artocarpus integer) plants. Mean seed gut passage times were long (63–236 h) and only the smallest seeds germinated afterwards. Using movement data from four wild tapirs in Peninsular Malaysia we estimated mean dispersal distances of 917–1287 m (range=22–3289 m) for small‐seeded plants. Malayan tapirs effectively dispersed small‐seeded plants but acted as seed predators for the large‐seeded plants included in our study, suggesting that they cannot replace larger herbivores in seed dispersal. With the absence of elephants and rhinos many megafaunal‐syndrome plants in tropical East Asia are expected to face severe dispersal limitation problems.  相似文献   

5.
The diversity of traits associated with plant regeneration is often shaped by functional trade‐offs where plants typically do not excel at every function because resources allocated to one function cannot be allocated to another. By analyzing correlations among seed traits, empirical studies have shown that there is a trade‐off between seedling development and the occupation of new habitats, although only a small range of taxa have been tested; whether such trade‐off exists in a biodiverse and complex landscape remains unclear. Here, we amassed seed trait data of 1,119 species from a biodiversity hotspot of the Mountains of Southwest China and analyzed the relationship between seed mass and the number of seeds and between seed mass and time to germination. Our results showed that seed mass was negatively correlated with seed number but positively correlated with time to germination. The same trend was found regardless of variation in life‐form and phylogenetic conservatism. Furthermore, the relation between seed mass and other seed traits was randomly dispersed across the phylogeny at both the order and family levels. Collectively, results suggest that there is a functional trade‐off between seedling development and new habitat occupation for seed plants in this region. Larger seeds tend to produce fewer seedlings but with greater fitness compared to those produced by smaller seeds, whereas smaller seeds tend to have a larger number of seeds that germinate faster compared to large‐seeded species. Apart from genetic constraints, species that produce large seeds will succeed in sites where resource availability is low, whereas species with high colonization ability (those that produce a high number of seeds per fruit) will succeed in new niches. This study provides a mechanistic explanation for the relatively high levels of plant diversity currently found in a heterogeneous region of the Mountains of Southwest China.  相似文献   

6.
植物挥发性有机化合物(biogenic volatile organic compounds,BVOCs)在近地表臭氧和二次有机气溶胶生成中有重要作用,而大气CO2浓度上升对植物BVOCs释放有显著影响。利用Meta-analysis方法对已发表的数据进行整合分析发现:(1)总体而言,大气CO2浓度增加会导致不同木本植物(常绿与落叶)BVOCs释放降低;(2)就不同木本植物BVOCs释放而言,大气CO2浓度增加主要导致落叶植物BVOCs释放速率降低,而常绿植物则以增加为主;(3)就植物释放BVOCs种类而言,大气CO2浓度增加显著降低异戊二烯的释放速率,对单萜烯释放速率则无显著影响。结果可为阐明陆地生态系统BVOCs释放对全球CO2浓度增加的响应提供依据。  相似文献   

7.
Microsatellite DNA/simple-sequence-repeat (SSR) loci were identified, isolated and characterized in white spruce (Picea glauca) by screening both a non-enriched partial genomic library and a partial genomic library enriched for (AG/TC)n-containing clones. Inheritance and linkage of polymorphic SSR loci were determined in F1 progeny of four controlled crosses. We also assessed the compatibility and usefulness of the P. glauca microsatellite DNA markers in five other Picea species. Twenty-four microsatellites were identified by sequencing 32 clones selected from screens of 5,400 clones from the two libraries. The (AG/TC)n microsatellites were the most abundant in the non-enriched library. Eight microsatellite DNA loci were of the single-copy type, and six of these were polymorphic. A total of 87 alleles were detected at the six polymorphic SSR loci in 32 P. glauca individuals drawn from several populations. The number of alleles found at these six SSR loci ranged from 2 to 22, with an average of 14.5 alleles per locus, and the observed heterozygosity ranged from 0.48 to 0.91, with a mean of 0.66 per locus. Parents of the controlled crosses were polymorphic for five of the six polymorphic SSR loci. Microsatellite DNA variants at each of these five SSR loci followed a single-locus, codominant, Mendelian inheritance pattern. Joint two-locus segregation tests indicated complete linkage between PGL13 and PGL14, and no linkage between any of the remaining SSR loci. Each of the 32 P. glauca individuals examined had unique single or two-locus genotypes. With the exception of non-amplification of PGL12 in P. sitchensis, P. mariana, and P. abies and the monomorphic nature of PGL7 in P. mariana, primer pairs for all six polymorphic SSR loci successfully amplified specific fragments from genomic DNA and resolved polymorphic microsatellites of comparable sizes in P. engelmanni, P. sitchensis, P. mariana, P. rubens, and P. abies. The closely related species P. mariana and P. rubens, and P. glauca and P. sitchensiss could be distinguished by the PGL12 SSR marker. The microsatellite DNA markers developed and reported here could be used for assisting various genetics, breeding, biotechnology, tree forensics, genome mapping, conservation, restoration, and sustainable forest management programs in spruce species.  相似文献   

8.
Animals that feed on forest tree seeds, such as Apodemus mice, increase in number after a mast year. At high latitudes, there is a similar delayed response by Myodes voles to high seed crops of bilberry (Vaccinium myrtillus), but here the mechanism is hypothesised to be increased forage quality, caused by a trade-off between reproduction and defence in the plants. Both Apodemus mice and Myodes voles eat berries, but only the latter feed on bilberry plants. Hence, only Myodes voles are predicted to respond to bilberry peak years. A second prediction is that the effect should last longer than any possible direct impacts of bilberries, because the plants would not be able to rebuild their defence until the succeeding summer. During a 21-year snap-trapping study of small rodents in Southern Norway, the spring population of bank vole (Myodes glareolus) was positively related to a bilberry seed index of the previous year, indicating increased winter survival, whereas the wood mouse (Apodemus sylvaticus) was not affected. Also the succeeding autumn population index of the bank vole was positively related to the bilberry index of the previous year, even when controlling for spring population levels. The wood mouse population responded to mast years of sessile oak (Quercus petraea), whereas seeds of Norway spruce (Picea abies) seemed to have some impact on both species. It is concluded that these rodents are mainly limited from below, but by different mechanisms for the granivorous and the herbivorous species.  相似文献   

9.
For herbaceous species, elevated CO2 often increases seed production but usually leads to decreased seed quality. However, the effects of increased atmospheric CO2 on tree fecundity remain uncertain, despite the importance of reproduction to the composition of future forests. We determined how seed quantity and quality differed for pine trees grown for 12 years in ambient and elevated (ambient+200 μL L?1) CO2, at the Duke Forest free‐air CO2 enrichment (FACE) site. We also compared annual reproductive effort with yearly measurements of aboveground net primary productivity (ANPP), precipitation (P), potential evapotranspiration (PET) and water availability [precipitation minus potential evapotranspiration (P?PET)] to investigate factors that may drive interannual variation in seed production. The number of mature, viable seeds doubled per unit basal area in high‐CO2 plots from 1997 to 2008 (P<0.001), but there was no CO2 effect on mean seed mass, viability, or nutrient content. Interannual variation in seed production was positively related to ANPP, with a similar percentage of ANPP diverted to reproduction across years. Seed production was negatively related to PET (P<0.005) and positively correlated with water availability (P<0.05), but showed no relationship with precipitation (P=0.88). This study adds to the few findings that, unlike herbaceous crops, woody plants may benefit from future atmospheric CO2 by producing larger numbers of seeds without suffering degraded seed quality. Differential reproductive responses between functional groups and species could facilitate woody invasions or lead to changes in forest community composition as CO2 rises.  相似文献   

10.
Tropical forests are seriously threatened by fragmentation and habitat loss. The impact of fragment size and forest configuration on the composition of seed rain is insufficiently studied. For the present study, seed rain composition of small and large forest fragments (8–388 ha) was assessed in order to identify variations in seed abundance, species richness, seed size and dispersal mode. Seed rain was documented during a 1‐year period in three large and four small Atlantic Forest fragments that are isolated by a sugarcane matrix. Total seed rain included 20,518 seeds of 149 species of trees, shrubs, palms, lianas and herbs. Most species and seeds were animal‐dispersed. A significant difference in the proportion of seeds and species within different categories of seed size was found between small and large fragments. Small fragments received significantly more very small‐sized seeds (<0.3 cm) and less large‐seeded species (>1.5 cm) that were generally very rare, with only one species in small and eight in large fragments. We found a negative correlation between the inflow of small‐sized seeds and the percentage of forest cover. Species richness was lower in small than in large fragments, but the difference was not very pronounced. Given our results, we propose changing plant species pools through logging, tree mortality and a high inflow of pioneer species and lianas, especially in small forest fragments and areas with low forest cover. Connecting forest fragments through corridors and reforestation with local large‐seeded tree species may facilitate the maintenance of species diversity.  相似文献   

11.
Myrmecochory (seed dispersal by ants) is a common seed dispersal strategy of plants in fire‐prone sclerophyll vegetation of Australia, yet there is little understanding of how fire history may influence this seed dispersal mutualism. We investigated the initial fate of seeds of two myrmecochorous plant species, the small‐seeded Pultenaea daphnoides J.C. Wendl. and the large‐seeded Acacia pycnantha Benth., in replicated burnt (3.25 years since fire) and unburnt (53 years since fire) forest plots in the Mount Lofty Ranges, South Australia. Specifically we measured (i) seed removal rates; (ii) the frequency of three ant–seed interactions (seed removal, elaiosome robbery and seed ignoring); (iii) the relative contribution of different ant species to ant–seed interactions; and (iv) the abundance of common interacting ant species. Rates of seed removal from depots and the proportion of seeds removed were higher in recently burnt vegetation and the magnitude of these effects was greater for the smaller‐seeded P. daphnoides. The overall proportion of elaiosomes robbed was higher in unburnt vegetation; however, the decrease in elaiosome robbery in burnt vegetation was greater for P. daphnoides than for A. pycnantha. Ants ignored seeds more frequently in burnt vegetation and at similar rates for both seed species. In total, 20 ant species were observed interacting with seeds; however, three common ant species accounted for 66.3% of ant–seed interactions. Monomorium sydneyense almost exclusively robbed elaiosomes, Rhytidoponera metallica typically removed seeds and Anonychomyrma nr. nitidiceps showed a mix of the three behaviours towards seeds. Differences in the proportions of seeds removed, elaiosomes robbed and seeds ignored appeared to be largely driven by an increase in abundance of A. nr. nitidiceps and a decrease in abundance of M. sydneyense in burnt vegetation. Understanding how these fire‐driven changes in the initial fate of myrmecochorous seeds affect plant fitness requires further investigation.  相似文献   

12.
李华东  潘存德  王兵  张国林 《生态学报》2013,33(14):4266-4277
通过定点采样,采用萌发法对天山中部天山云杉(Picea schrenkiana Fisch.et Mey.)近熟林(101-120a)和成熟林(121-160a) 2004-2011年(8a)土壤种子库物种组成、种子密度的年际变化和不同间隔年限土壤种子库物种组成的相似性进行了分析.结果表明:(1)土壤种子库中共萌发鉴定出种子植物87种,隶属29科70属,其中乔木种子植物2种,灌木种子植物2种,草本种子植物83种,土壤种子库中草本植物种子密度远远大于木本植物种子密度;8个采样年份土壤种子库恒有种仅有6种;(2)土壤种子库种子密度及其中天山云杉种子密度存在巨大的年际变动,且不具有同步性;土壤种子库种子密度最大(2009年)值为(953.75±66.12)粒/m2,最小(2008年)值为(186.50±20.37)粒/m2,其中天山云杉种子密度最高(2006年)达到(584.50±53.58)粒/m2,最低(2005年)仅有(0.25±0.26)粒/m2;(3)天山云杉林土壤种子库年际间物种组成的相似性不高,Czekanowski相似系数均值仅为0.344,并随间隔年限的增加呈现减小—增大—减小的变化趋势.天山云杉林土壤种子库物种组成和种子密度稳定性差,年际间相差悬殊,物种组成的相似性不高,种子库中天山云杉种子密度主要受其种子库采样前一年天山云杉结实丰歉的影响,属间断型.土壤种子库年际变化特征可为天山森林的更新恢复和可持续经营提供科学依据.  相似文献   

13.
Few studies regarding the effects of elevated atmospheric CO(2) concentrations on plant lipid metabolism have been carried out. Here, the effects of elevated CO(2) concentration on lipid composition in mature seeds and in leaves during the diurnal cycle of Arabidopsis thaliana were investigated. Plants were grown in controlled climate chambers at elevated (800 ppm) and ambient CO(2) concentrations. Lipids were extracted and characterized using thin layer chromatography (TLC) and gas liquid chromatography. The fatty acid profile of total leaf lipids showed large diurnal variations. However, the elevated CO(2) concentration did not induce any significant differences in the diurnal pattern compared with the ambient concentration. The major chloroplast lipids monogalactosyldiacylglycerol (MGDG) and phosphatidylglycerol (PG) were decreased at elevated CO(2) in favour of phosphatidylcholine (PC) and phosphatidylethanolamine (PE). Elevated CO(2) produced a 25% lower ratio of 16:1trans to 16:0 in PG compared with the ambient concentration. With good nutrient supply, growth at elevated CO(2) did not significantly affect single seed weight, total seed mass, oil yield per seed, or the fatty acid profile of the seeds. This study has shown that elevated CO(2) induced changes in leaf lipid composition in A. thaliana, whereas seed lipids were unaffected.  相似文献   

14.
The response of seed production to CO(2) concentration ([CO(2)]) is known to vary considerably among C(3) annual species. Here we analyse the interspecific variation in CO(2) responses of seed production per plant with particular attention to nitrogen use. Provided that seed production is limited by nitrogen availability, an increase in seed mass per plant results from increase in seed nitrogen per plant and/or from decrease in seed nitrogen concentration ([N]). Meta-analysis reveals that the increase in seed mass per plant under elevated [CO(2)] is mainly due to increase in seed nitrogen per plant rather than seed [N] dilution. Nitrogen-fixing legumes enhanced nitrogen acquisition more than non-nitrogen-fixers, resulting in a large increase in seed mass per plant. In Poaceae, an increase in seed mass per plant was also caused by a decrease in seed [N]. Greater carbon allocation to albumen (endosperm and/or perisperm) than the embryo may account for [N] reduction in grass seeds. These differences in CO(2) response of seed production among functional groups may affect their fitness, leading to changes in species composition in the future high-[CO(2)] ecosystem.  相似文献   

15.
Bacterial endophytes from seeds of Norway spruce (Picea abies L. Karst)   总被引:1,自引:0,他引:1  
Endophytic bacteria from wooden plants and especially seed-associated endophytes are not well studied. Fresh seeds collected from four Norway spruce trees (Picea abies) from different locations in the Slovene subalpine region were surface-sterilised and dissected into a seed coat, embryo and endosperm. The presence of endophytes was detected by culturing methods and by direct amplification of the eubacterial 16S rDNA gene. Both approaches identified bacteria from genera Pseudomonas and Rahnella in the Norway spruce seeds. Both are known plant-associated bacteria with growth-promoting properties and biological control potential. We suggest that plant seeds could serve as a vector for transmission of beneficial bacteria.  相似文献   

16.
17.
Several plant species defend themselves indirectly from herbivores by producing herbivore-induced volatile compounds that attract the natural enemies of herbivores. Here we tested the effects of elevated atmospheric CO(2) (720 micromol mol(-1)) concentration on this indirect defense, physiological properties, and constitutive and induced emissions of white cabbage (Brassica oleracea ssp. capitata, cvs Lennox and Rinda). We monitored the orientation behavior of the generalist predator Podisus maculiventris (Heteroptera: Pentatomidae) and the specialist parasitoid Cotesia plutellae (Hymenoptera: Braconidae) to plants damaged by Plutella xylostella (Lepidoptera: Plutellidae) in the Y-tube olfactometer. Elevated CO(2) levels did not affect stomatal densities but reduced specific leaf area and increased leaf thickness in cv Lennox. In addition to enhanced constitutive monoterpene emission, P. xylostella-damaged cabbages emitted homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene, sesquiterpene (E,E)-alpha-farnesene, and (Z)-3-hexenyl acetate. Growth at elevated CO(2) had no significant effect on the emissions expressed per leaf area, while minor reduction in the emission of homoterpene (E)-4,8-dimethyl-1,3,7-nonatriene and (E,E)-alpha-farnesene was observed at elevated CO(2) in one of two experiments. The generalist predator P. maculiventris discriminated only between the odors of intact and P. xylostella-damaged cv Rinda plants grown at ambient CO(2) concentration, preferring the odor of the damaged plants. The specialist parasitoid C. plutellae preferred the odor of damaged plants of both cultivars grown at ambient CO(2) but did not detect damaged cv Lennox plants grown at elevated CO(2). The results suggest that elevated atmospheric CO(2) concentration could weaken the plant response induced by insect herbivore feeding and thereby lead to a disturbance of signaling to the third trophic level.  相似文献   

18.
We investigated responses of growth, leaf gas exchange, carbon-isotope discrimination, and whole-plant water-use efficiency (W(P)) to elevated CO(2) concentration ([CO(2)]) in seedlings of five leguminous and five nonleguminous tropical tree species. Plants were grown at CO(2) partial pressures of 40 and 70 Pa. As a group, legumes did not differ from nonlegumes in growth response to elevated [CO(2)]. The mean ratio of final plant dry mass at elevated to ambient [CO(2)] (M(E)/M(A)) was 1.32 and 1.24 for legumes and nonlegumes, respectively. However, there was large variation in M(E)/M(A) among legume species (0.92-2.35), whereas nonlegumes varied much less (1.21-1.29). Variation among legume species in M(E)/M(A) was closely correlated with their capacity for nodule formation, as expressed by nodule mass ratio, the dry mass of nodules for a given plant dry mass. W(P) increased markedly in response to elevated [CO(2)] in all species. The ratio of intercellular to ambient CO(2) partial pressures during photosynthesis remained approximately constant at ambient and elevated [CO(2)], as did carbon isotope discrimination, suggesting that W(P) should increase proportionally for a given increase in atmospheric [CO(2)]. These results suggest that tree legumes with a strong capacity for nodule formation could have a competitive advantage in tropical forests as atmospheric [CO(2)] rises and that the water-use efficiency of tropical tree species will increase under elevated [CO(2)].  相似文献   

19.
Questions: 1. Do harvester ants (Messor barbarus) promote seed mortality in Mediterranean grassland?; 2. Is this effect greater in large‐seeded species? Location: Central Spain. Methods: We established an ant‐exclusion experiment of five circular (1.5 m diameter) plots from where ants were excluded during one year, along with ten control plots. We recorded the seed bank of all species in the plots both before and after the treatment. The effect of seed length and weight was analysed after transforming data into phylogenetically independent contrasts, and alternatively by dividing the species data set into morphological groups. Results: Longer and heavier seeded species significantly increased in the seed banks under the exclusion treatment, although ants did not significantly modify overall seed densities. Conclusions Although the ants do not collect large numbers of seeds, they differentially affect the composition of the seed banks by selecting the longest or heaviest seeds, or both. The persistence of this short‐term effect in the seed bank may result, over a number of years, in the system evolving towards a predominance of small‐seeded annuals, congruent with the species composition actually observed in Mediterranean grasslands.  相似文献   

20.
Recent studies demonstrate that by focusing on traits linked to fundamental plant life‐history trade‐offs, ecologists can begin to predict plant community structure at global scales. Yet, consumers can strongly affect plant communities, and means for linking consumer effects to key plant traits and community assembly processes are lacking. We conducted a global literature review and meta‐analysis to evaluate whether seed size, a trait representing fundamental life‐history trade‐offs in plant offspring investment, could predict post‐dispersal seed predator effects on seed removal and plant recruitment. Seed size predicted small mammal seed removal rates and their impacts on plant recruitment consistent with optimal foraging theory, with intermediate seed sizes most strongly impacted globally – for both native and exotic plants. However, differences in seed size distributions among ecosystems conditioned seed predation patterns, with relatively large‐seeded species most strongly affected in grasslands (smallest seeds), and relatively small‐seeded species most strongly affected in tropical forests (largest seeds). Such size‐dependent seed predation has profound implications for coexistence among plants because it may enhance or weaken opposing life‐history trade‐offs in an ecosystem‐specific manner. Our results suggest that seed size may serve as a key life‐history trait that can integrate consumer effects to improve understandings of plant coexistence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号