首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study we have characterized the bumetanide-sensitive K+/Na+/Cl- cotransport in cultured rat cardiac myocytes. 1) It carries about 10% of the total K+ influx. 2) It is sensitive to furosemide (Ki0.5 = 10(-6)M) and bumetanide (Ki0.5 = 10(-7)M). 3) It is strongly dependent on the extracellular concentrations of Na+ and Cl-. 4) It carries out influx of both ions, K+ and Na+. A therapeutic concentration of ouabain (10(-7) M) stimulated the bumetanide-sensitive K+ influx (as measured by 86Rb+), in the cultured myocytes, with no effect on the bumetanide-resistant K+ influx, which was mediated mostly by the Na+/K+ pump. Stimulation of the bumetanide-sensitive Rb+ influx by a low ouabain concentration was strongly dependent on Na+ and Cl- in the extracellular medium. A low concentration of ouabain (10(-7) M) was found to increase the steady-state level of cytosolic Na+ by 15%. This increase was abolished by the addition of bumetanide or furosemide. These findings suggest that ouabain, at a low (10(-7) M) concentration, induced its positive inotropic effect in rat cardiac myocytes by increasing Na+ influx into the cells through the bumetanide-sensitive Na+/K+/Cl- cotransporter. In order to examine this hypothesis, we measured the effect of bumetanide on the increased amplitude of systolic cell motion induced by ouabain. Bumetanide or furosemide, added to cultured cardiac myocytes, inhibited the increased amplitude of systolic cell motion induced by ouabain. Neither bumetanide nor furosemide alone has any significant effect on the basal amplitude of systolic cell motion. We propose that stimulation of bumetanide-sensitive Na+ influx plays an essential role in the positive inotropic effect in rat cardiac myocytes induced by low concentration of ouabain.  相似文献   

2.
The isolated, short-circuited opercular epithelium of Fundulus heteroclitus, secretes Cl- by a mechanism dependent on the presence of serosal Na+ and inhibited by bumetanide and furosemide. Under serosal Na+-free conditions the active Cl- secretion is abolished. However, subsequent elevations of intracellular cyclic AMP (cAMP) levels with isoproterenol or forskolin stimulated Cl- secretion markedly. This stimulation was unaffected by SITS, DIDS, methazolamide, and HCO-3-free solutions, but was blocked by furosemide and bumetanide. Determinations of relative intracellular 36Cl- levels showed a Na+ dependence of intracellular 36Cl- in epithelia not stimulated by isoproterenol and a Na+ independence of intracellular 36Cl- in isoproterenol stimulated epithelia. In both conditions, the intracellular 36Cl- was bumetanide sensitive. The results indicate that cAMP stimulation of Cl- secretion can occur by a Na+-independent, loop diuretic-inhibitable mechanism, which may be operative even in the presence of Na+. Whether this is a separate Cl- uptake mechanism or a cAMP-induced alteration in the normal Na+-dependent mechanism could not be determined. In either instance, an alternative to the Na+ gradient as a source of energy for Cl- uptake into the cell across the basolateral membrane is required.  相似文献   

3.
Transepithelial fluid transport was measured gravimetrically in rabbit gallbladder (and net Na+ transport was calculated from it), at 27 degrees C, in HCO(3-)-free bathing media containing 10(-4) M acetazolamide. Whereas luminal 10(-4) M bumetanide or 10(-4) M 4-acetamido-4'-iso-thiocyanostilbene-2,2'-disulfonate (SITS) did not affect fluid absorption, 25 mM SCN- abolished it; hydrochlorothiazide (HCTZ) in the luminal medium reduced fluid absorption from 28.3 +/- 1.6 (n = 21) to 8.6 +/- 1.6 microliters cm-2 hr-1 (n = 10), i.e., to about 30%. This maximum effect was already obtained at 10(-3) M concentration; the apparent IC50 was about 2 x 10(-4) M. The residual fluid absorption, again insensitive to SITS, was completely inhibited by SCN- or bumetanide. Cl- influx at the luminal border of the epithelium, measured under the same conditions and corrected for the extracellular space and paracellular influx, proved insensitive to 10(-4) M bumetanide, but was slowly inhibited by 10(-3) M HCTZ, with maximum inhibition (about 54%) reached after a 10-min treatment; it subsequently rose again, in spite of the presence of HCTZ. However, if the epithelium, treated with HCTZ, was exposed to 10(-4) M bumetanide during the measuring time (45 sec), inhibition was completed and the subsequent rise of Cl- influx eliminated. Intracellular Cl- accumulation with respect to the predicted activity value at equilibrium decreased significantly upon exposure to 10(-3) M HCTZ, reached a minimum within 15-30 min of treatment, then rose again significantly at 60 min. Simultaneous exposure to HCTZ and bumetanide decreased the accumulation to a significantly larger extent as compared to HCTZ alone, already in 15 min, and impeded the subsequent rise. Intracellular K+ activity rose significantly within 30 min treatment with HCTZ; the increase proved bumetanide dependent. The results obtained show that Na(+)-Cl- symport, previously detected under control conditions, is the HCTZ-sensitive type; its inhibition elicits bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport. Thus, the three forms of neutral Na(+)-Cl(-)-coupled transport so far evidenced in epithelia, Na+/H+, Cl-/HCO3- double exchange (in the presence of exogenous bicarbonate), HCTZ-sensitive Na(+)-Cl- symport and bumetanide-sensitive Na(+)-K(+)-2Cl- cotransport, are all present in the apical membrane of rabbit gallbladder.  相似文献   

4.
Transepithelial fluid transport (Jv) and intracellular Na+ and Cl- activities (aNai, aCli) were measured in isolated Necturus gallbladders to establish the contribution of different proposed apical membrane entry mechanisms to transepithelial salt transport. In 10 mM HCO3- Ringer's, Jv was 13.5 +/- 1.1 microliter X cm-2 X h-1, and was significantly reduced by a low bicarbonate medium and by addition of amiloride (10(-3)M) or SITS (0.5 X 10(-3)M) to the mucosal bathing solution. Bumetanide (10(-5)M) was ineffective. Bilateral Na+ removal abolished Jv. The hypothesis of NaCl cotransport was rejected on the basis of the following results, all obtained during mucosal bathing solution changes: during Na+ removal, aNai fell 4.3 times faster than aCli; during Cl- removal, aCli fell 7.5 times faster than aNai; amiloride (10(-3) M) reduced aNai at a rate of 2.4 +/- 0.3 mM/min, whereas aCli was not changed; bumetanide (10(-5) M) had no significant effects on Jv or aCli. The hypothesis of Na-K-Cl cotransport was rejected for the same reasons; in addition, K+ removal from the mucosal bathing solution (with concomitant Ba2+ addition) did not alter aNai or aCli. The average rate of NaCl entry under normal transporting conditions, estimated from Jv, assuming that the transported fluid is an isosmotic NaCl solution, was 22.5 nmol X cm-2 X min-1. Upon sudden cessation of NaCl entry, assuming no cell volume changes, aNai and aCli should fall at an average rate of 4.8 mM/min. To compare this rate with the rates of Na+ and Cl- entry by ion exchange, the Na+ or Cl- concentration in the mucosal bathing solution was reduced rapidly to levels such that electroneutral cation or anion exchange, respectively, should cease. The rate of Na+ or Cl- entry before this maneuver was estimated from the initial rate of fall of the respective intracellular ionic activity upon the mucosal solution substitution. aNai and aCli decreased at initial rates of 3.7 +/- 0.4 and 5.9 +/- 0.8 mM/min, respectively. The rate of fall of aNai upon reduction of external [Na] was not affected by amiloride (10(-3) M), and the rate of fall of aCli upon reduction of external [Cl] was unchanged by SITS (0.5 X 10(-3) M), which indicates that net cation or anion exchange was, in fact, abolished by the changes in Na+ and Cl- gradients, respectively. I conclude that double exchange (Na+/H+ and Cl-/HCO-3) is the predominant or sole mechanism of apical membrane NaCl entry in this epithelium.  相似文献   

5.
Studies of unidirectional Cl-, Na+, and K+ effluxes were performed on isolated, internally dialyzed squid giant axons. The studies were designed to determine whether the coupled Na/K/Cl co-transporter previously identified as mediating influxes (Russell. 1983. Journal of General Physiology. 81:909-925) could also mediate the reverse fluxes (effluxes). We found that 10 microM bumetanide blocked 7-8 pmol/cm2 X s of Cl- efflux from axons containing ATP, Na+, and K+. However, if any one of these solutes was removed from the internal dialysis fluid, Cl- efflux was reduced by 7-8 pmol/cm2 X s and the remainder was insensitive to bumetanide. About 5 pmol/cm2 X s of Na+ efflux was inhibited by 10 microM bumetanide in the continuous presence of 10(-5) M ouabain and 10(-7) M tetrodotoxin if Cl-, K+, and ATP were all present in the internal dialysis fluid. However, the omission of Cl- or K+ or ATP reduced the Na+ efflux, leaving it bumetanide insensitive. K+ efflux had to be studied under voltage-clamp conditions with the membrane potential held at -90 mV because the dominant pathway for K+ efflux (the delayed rectifier) has a high degree of voltage sensitivity. Under this voltage-clamped condition, 1.8 pmol/cm2 X s of K+ efflux could be inhibited by 10 microM bumetanide. All of these results are consistent with a tightly coupled Na/K/Cl co-transporting efflux mechanism. Furthermore, the requirements for cis-side co-ions and intracellular ATP are exactly like those previously described for the coupled Na/K/Cl influx process. We propose that the same transporter mediates both influx and efflux, hence demonstrating "reversibility," a necessary property for an ion-gradient-driven transport process.  相似文献   

6.
The effects on transepithelial ion transports of chloropyramine, dimetindene and diphenhydramine, which are three antagonists of H1-receptors of histamine, were examined in bovine tracheal epithelium and in frog skin. The short-circuit current I0 across bovine tracheal epithelium is the sum of active secretion of Cl- and absorption of Na+. In this tissue, all three drugs induced a reversible, dose-related inhibition of I0, up to 100%. The concentrations giving 50% of maximal effect were 1.4 X 10(-4) M for chloropyramine, 2.0 X 10(-4) M for dimetindene and 2.5 X 10(-4) M for diphenhydramine. The effect was unrelated to the agonist binding site of H1-receptors of histamine, since it was not altered in the presence of 10(-3) M histamine. Experiments in which Na+ transport was selectively reduced by 5 X 10(-5) M amiloride, or in which Cl- transport was selectively abolished by 10(-3) M furosemide, 10(-4) M bumetanide or Cl- removal, indicated that Na+ and Cl- transports were equally affected by the drugs. The action of chloropyramine was composed of an early inhibition of Na+ and Cl- movements, followed by a slow recovery of Cl- secretion. In frog skin, each one of the three H1-antagonists modified the I0, following two main patterns of response, a stimulation at the lower concentrations tested, or an inhibition at higher concentrations. Dose-response relationships were obscured by a large variability in response of individual skins. These observations in bovine tracheal epithelium and frog skin suggest that H1-antagonists might alter the functioning of other epithelia as well.  相似文献   

7.
These experiments evaluated salt transport processes in isolated cortical thick limbs of Henle (cTALH) obtained from mouse kidney. When the external solutions consisted of Krebs-Ringer bicarbonate (KRB), pH 7.4, and a 95% O2-5% CO2 gas phase, the spontaneous transepithelial voltage (Ve, mV, lumen-to-bath) was approximately mV; the net rate of Cl- absorption (JnetCl) was approximately 3,600 pmols s-1 cm-2; the net rate of osmotic solute absorption Jnetosm was twice JnetCl; and the net rate of total CO2 transport (JnetCO2) was indistinguishable from zero. Thus, net Cl- absorption was accompanied by the net absorption of a monovalent cation, presumably Na+, and net HCO3- absorption was negligible. This salt transport process was stimulated by (CO2 + HCO3- ): omission of CO2 from the gas phase and HCO3- from external solutions reduced JnetCl, Jnetosm, and Ve by 50%. Furthermore, 10(-4) M luminal furosemide abolished JnetCl and Ve entirely. The lipophilic carbonic anhydrase inhibitor ethoxzolamide (10(-4) M, either luminal or peritubular) inhibited (CO2 + HCO3-)-stimulated JnetCl, Jnetosm, and Ve by approximately 50%; however, when the combination (CO2 + HCO3-) was absent, ethoxzolamide had no detectable effect on salt transport. Ve was reduced or abolished entirely by omission of either Na+ or Cl- from external solutions, by peritubular K+ removal, by 10(-3) M peritubular ouabain, and by 10(-4) M luminal SITS. However, Ve was unaffected by 10(-3) M peritubular SITS, or by the hydrophilic carbonic anhydrase inhibitor acetazolamide (2.2 x 10(-4) M, lumen plus bath). We interpret these data to indicate that (CO2 + HCO3-)-stimulated NaCl absorption in the cTALH involved two synchronous apical membrane antiport processes: one exchanging luminal Na+ for cellular H+; and the other exchanging luminal Cl- for cellular HCO3- or OH-, operating in parallel with a (CO2+ HCO3-)-independent apical membrane NaCl cotransport mechanism.  相似文献   

8.
Na+-independent Mg2+ efflux from Mg2+-loaded human erythrocytes   总被引:1,自引:0,他引:1  
T Günther  J Vormann 《FEBS letters》1989,247(2):181-184
Net Mg2+ efflux from Mg2+-loaded human erythrocytes was maximal after reincubation in sucrose. Net Mg2+ efflux was not inhibited by furosemide or bumetanide and, therefore, was not performed by the (Na,K,Cl)- or (K,Cl)-cotransport system. A component of net Mg2+ efflux was inhibited by extracellular NaC1, KCl, LiCl, choline Cl and SITS, in analogy to the inhibition of net Cl- and SITS. Therefore, it was concluded that net Mg2+ efflux is dependent on net Cl- efflux for charge compensation. Cl- -dependent net Mg2+ efflux was inhibited by amiloride. Only 10% of the maximal net Mg2+ efflux may depend on extracellular Na+.  相似文献   

9.
The ion transport system responsible for intracellular pH (pHi) regulation in squid giant axons was examined in experiments with pH- sensitive microelectrodes and isotopic fluxes of Na+ and Cl-. In one study, axons were acid-loaded and the rate of the subsequent pHi recovery was used to calculate the acid extrusion rate. There was an absolute dependence of acid extrusion on external Na+, external HCO-3 (at constant pH), and internal Cl-. Furthermore, the dependence of the acid extrusion rate on each of these three parameters was described by Michaelis-Menten kinetics. Acid extrusion was stimulated by an acid pHi, required internal ATP, and was blocked by external 4-acetamido-4'- isothiocyanostilbene-2,2'-disulfonate (SITS). Under a standard set of conditions (i.e., [HCO-3]o = 12 mM, pHo = 8.00, [Na+]o = 425 mM, [Cl-]i = 150 mM, [ATP]i = 4 mM, pHi = 6.5, and 16 degrees C), the mean acid extrusion rate was 7.5 pmol X cm-2 X s-1. In a second study under the above standard conditions, the unidirectional Na+ efflux (measured with 22Na) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean influx was about 3.4 pmol X cm-2 X s- 1. This net influx required external HCO-3, internal Cl-, and acid pHi, internal ATP, and was blocked by SITS. In the final series of experiments under the above standard conditions, the unidirectional Cl- influx (measured with 36Cl) mediated by the pHi-regulating system was found to be approximately 0, whereas the mean efflux was approximately 3.9 pmol X cm-2 X s-1. This net efflux required external HCO-3, external Na+, an acid pHi, internal ATP, and was blocked by SITS. We conclude that the pHi-regulating system mediates the obligate net influx of HCO-3 (or equivalent species) and Na+ and the net efflux of Cl- in the stoichiometry of 2:1:1. The transport system is stimulated by intracellular acid loads, requires ATP, and is blocked by SITS.  相似文献   

10.
Hyposmolarity-induced taurine release was dependent on the decrease in medium osmolarity (5-50%) in the satellite glial cells of the bullfrog sympathetic ganglia. Release of GABA induced by hyposmolarity was much less than that of taurine. Omission of external Cl- replaced with gluconate totally suppressed taurine release, but only slightly suppressed GABA release. Bumetanide and furosemide, blockers of the Na+/K+/2Cl- cotransport system, inhibited taurine release by about 40%. Removal of external Na+ by replacement with choline, or omission of K+, suppressed taurine release by 40%. Antagonists of the Cl-/HCO3 exchange system, SITS, DIDS and niflumic acid, significantly reduced taurine release. The carbonic anhydrase inhibitor, acetazolamide, reduced the taurine release by 34%. Omission of external HCO3 by replacement with HEPES caused a 40% increase in the hyposmolarity-induced taurine release. Hyposmolarity-induced GABA release was not affected by bumetanide or SITS. Chloride channel blockers, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB) and N-phenylanthranilic acid (DPC), practically abolished taurine release. Blockers of K+ channels, clofilium and quinidine, had no effect on the taurine release. The hyposmolarity-induced taurine release was considerably enhanced by a simultaneous increase in external K+. GABA was not mediated by the same transport pathway as that of taurine. These results indicate that Cl- channels may be responsible for the hyposmolarity-induced taurine release, and that Na+/K+/2Cl- cotransporter and Cl-/HCO3 exchanger may contribute to maintain the intracellular Cl- levels higher than those predicted for a passive thermodynamic distribution in the hyposmolarity-induced taurine release.  相似文献   

11.
Ion transport in the intestine of Gobius niger, a euryhaline teleost, was studied in both isotonic and hypotonic conditions. Isolated tissues, mounted in Ussing chambers and bilaterally perfused with isotonic Ringer solution, developed a serosa negative transepithelial voltage and a short circuit current indicating a net negative current in absorptive direction. Bilateral removal of Cl- and Na+ from the bathing solutions as well as the luminal removal of K+in the presence of Ba2+(10(-3) M) almost abolished both Vt and Isc. Similar results were obtained by adding bumetanide (10(-5)M) to the luminal bath while other inhibitors of Cl- transport mechanisms were ineffective. These observations suggest that salt absorption begins with a coupled entry of Na+, Cl-, and K+ across the apical membrane; a Ba2+inhibitable K+ conductance, demonstrated also by micropuncture experiments, recycles the ion into the lumen. Salt entry into the cell is driven by the operation of the basolateral Na+/K(+)-ATPase since serosal ouabain (10(-4)M) completely abolished both Vt and Isc; this pump also completes the Na(+) absorption. The inhibitory effect of both serosal bumetanide (10(-4)M) and SITS (5 x 10(-4)M) suggests that Cl- would leave the cell via the KCl cotransport, the Cl/HCO3- antiport and/or conductive pathways. Bilateral exposure of tissues to hypotonic media produced a reduction of both the transepithelial voltage and the short circuit current probably due to the activation of homeostatic ionic fluxes involved in cell volume regulation. The results of experiments with both isolated enterocytes and intestine exposed to hypotonic solution suggested that the recovery of cell volume, after the initial cell swelling, involves a parallel opening of K+ and Cl- channels to facilitate net solute and water effluxes from the cell. J. Exp. Zool. 301A:49-62, 2004.  相似文献   

12.
Tracer uptake studies identified the major routes for K+ transport in hagfish red cells, resolving them into ouabain-sensitive, loop diuretic-sensitive, and residual components. The K1/2 values for ouabain, bumetanide, and furosemide were 10(-5), 6 x 10(-7), and 5 x 10(-6) M, respectively. The properties of the Na-K-Cl co-transporter were investigated further by varying K+, Na+, and Cl- concentrations. The measured K1/2 values were similar to those for human red cells. Finally, the stoichiometry of Na:K:Cl uptake was determined, giving 1:1 for K+:Cl-; in contrast, no significant Na+ flux could be measured, although Na+ content must be present for measurable bumetanide-dependent K+ or Cl- flux to occur. The Na-K-Cl transport therefore shows Na(+)-dependent KCl co-transport or partial flux of the system.  相似文献   

13.
The disulfonic stilbene (4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene) is found to be more potent than acetazolamide as an anion transport inhibitor in the turtle bladder, but less potent than acetazolamide as a carbonic anhydrase inhibitor. The anion-dependent (HCO-3,Cl-) moiety of the short-circuiting current is eliminated by 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene, but only after its addition to the serosal bathing fluid. Whereas 4-acetamido-4'-isothiocyano-2,2'-disulfonic stilbene has no effect on Na+ transport across the bladder, it is more potent than ouabain as an inhibitor of microsomal (Na+ + K+)-ATPase of both turtle bladder and eel electric organ.  相似文献   

14.
Bioelectric properties and ion transport of excised human segmental/subsegmental bronchi were measured in specimens from 40 patients. Transepithelial electric potential difference (PD), short-circuit current (Isc), and conductance (G), averaged 5.8 mV (lumen negative), 51 microA X cm-2, and 9 mS X cm-2, respectively. Na+ was absorbed from lumen to interstitium under open- and short-circuit conditions. Cl- flows were symmetrical under short-circuit conditions. Isc was abolished by 10(-4) M ouabain. Amiloride inhibited Isc (the concentration necessary to achieve 50% of the maximal effect = 7 X 10(-7) M) and abolished net Na+ transport. PD and Isc were not reduced to zero by amiloride because a net Cl- secretion was induced that reflected a reduction in Cl- flow in the absorptive direction (Jm----sCl-). Acetylcholine (10(-4) M) induced an electrically silent, matched flow of Na+ (1.7 mueq X cm-1 X h-1) and Cl- (1.9 mueq X cm-12 X h-1) toward the lumen. This response was blocked by atropine. Phenylephrine (10(-5) M) did not affect bioelectric properties or unidirectional ion flows, whereas isoproterenol (10(-5) M) induced a small increase in Isc (10%) without changing net ion flows significantly. We conclude that 1) Na+ absorption is the major active ion transport across excised human bronchi, 2) Na+ absorption is both amiloride and ouabain sensitive, 3) Cl- secretion can be induced by inhibition of the entry of luminal Na+ into the epithelia, and 4) cholinergic more than adrenergic agents modulate basal ion flow, probably by affecting gland output.  相似文献   

15.
Ouabain binding in rectal gland ofSqualus acanthias   总被引:1,自引:0,他引:1  
In an attempt to examine the mechanisms of activation of (Na, K)-ATPase when epithelial transport is stimulated, the binding of ouabain to rectal gland tissue was measured before and after stimulation with dibutyryl cAMP and theophylline. Stimulation significantly altered the characteristics of ouabain binding to slices of Squalus acanthias rectal gland and to isolated rectal gland cells, accelerating the rate of binding and increasing the amount of ouabain bound at equilibrium when low concentrations of ouabain (10(-9) to 10(-7) M) were present in the medium. Scatchard plots of ouabain binding were nonlinear, suggesting at least two classes of binding sites, one of higher and one of lower affinity. Stimulation with cAMP and theophylline appeared to increase the affinity of the high-affinity site. Ouabain binding was increased by cAMP and theophylline even in the presence of furosemide (10(-4) M) or bumetanide (10(-5) M), and when Li+ was substituted for Na+, or NO3- for Cl- -maneuvers known to inhibit rectal gland secretion. The changes in ouabain binding induced by cAMP and theophylline do not appear, therefore, to be secondary to secretory activity but may reflect a change in the configuration, environment or location of existing enzyme so as to enhance its activity. Stimulation of ouabain binding cannot be demonstrated in whole homogenates of rectal gland, indicating that intact cells are necessary for the cyclic AMP-induced increase in ouabain binding to become manifest.  相似文献   

16.
We have investigated Cl- transport mechanism(s) located in the basolateral membranes of the frog skin epithelium and in particular activation of Cl-/HCO3- exchange following an alkaline load. We found that 87% of the total 36Cl uptake by the epithelial cells occurs across the basolateral membranes (JbCl-) and submitting the epithelium to an alkaline load (HCO3(-)-Ringer solution, pH 8.1) increased JbCl-. Intracellular Cl- activity (aiCl-), measured with ion-sensitive microelectrodes, increased when the Ringer solution bathing the basolateral membranes was changed from a Ringer solution equilibrated in air (pH 7.4) to one containing CO2/HCO3- (pH 7.4). pHi recovery following an alkaline load was dependent on Cl- since it did not occur in serosal Cl(-)-free media, indicating the presence of a Cl(-)-dependent regulatory mechanism. Acid loading of the epithelial cells (5% CO2, HCO3(-)-free Ringer) produced no change in JbCl- but stimulated an amiloride-sensitive 22Na uptake across the basolateral membranes of the epithelium, compatible with an activation of a Na+/H+ exchanger, previously described in this tissue. JbCl- was partially blocked by SITS (5 x 10(-4) mmol/I), niflumic acid (5 x 10(-5) mmol/I), furosemide or bumetanide. Simultaneous addition of furosemide and niflumic acid produced an inhibition of JbCl- which was not different with furosemide alone. Substitution of Na+ by choline had no effect on JbCl- and furosemide did not block the 22Na+ uptake, suggesting that JbCl- is not a Na(+)-dependent process (cotransport). We conclude that a significant Cl- permeability at the basolateral membranes of the epithelial cells is due to the presence of a Cl-/HCO3- exchanger which is essential for the recovery of pHi following an alkaline load.  相似文献   

17.
Three different methods have been used to improve a model for fluid secretion in Upper Malpighian Tubules (UMT) of the blood sucking insect Rhodnius prolixus. (I) In the first, UMT double perfusions in 5th instar Rhodnius were used to measure their fluid secretion rate. They were stimulated to secrete with 5-HT. Double perfusions allowed access separately to the basolateral and the apical cell membranes with pharmacological agents known to block different ion transport functions, namely ATPases, cotransporters and/or countertransporters and ion and water channels: ouabain, bafilomycin A1, furosemide, bumetanide, SITS, acetazolamide, amiloride, DPC, BaCl(2), pCMBS and DTT. The basic assumption is that changes in water movement reflect changes in ion transport mechanisms. (II) Intracellular Na(+) concentrations were measured with a fluorometric method in dissected R. prolixus UMT, under several experimental conditions. (III) ATPase activities were measured in R. prolixus UMT. A tentative model for the function of the UMT cell is presented. We find that (a) at the basolateral cell membrane, fundamental is a Na(+)-K(+)-2Cl(-) cotransporter; of intermediate importance are the Na(+)-K(+)-ATPase and a ouabain-insensitive Na(+)-ATPase, ion channels and Rp-MIP water channels. (b) At the apical cell membrane, most important are a V-H(+)-ATPase; and a K(+) and/or Na(+)-H(+) exchanger.  相似文献   

18.
Salivary glands form their secretions by first elaborating an isotonic plasma-like primary fluid in the endpieces and then modifying the composition of this secretion during its passage along the gland duct system. We have studied the role of extracellular anions in both primary secretion and ductal modification with a recently developed technique for isolation and perfusion of the rabbit mandibular gland. Neither of the major extracellular anions (Cl- or HCO-3) is essential for primary fluid secretion. HCO-3 can be removed altogether and replaced with Cl- without diminution in secretory rate, provided that extracellular pH is maintained at 7.4, and its replacement with acetate actually enhances secretion. Complete replacement of Cl- with Br- also enhances secretion and replacement with I-, NO-3, CH3SO-4 or isethionate supports secretion but at progressively diminishing rates. Our data do not yet allow us to distinguish between an electroneutral Na+-Cl- cotransport model or a double countertransport (Na+-H+ plus Cl--HCO-3) model as the basis of primary salivary secretion, or to propose any more suitable alternative model. With respect to ductal modification of the primary saliva, HCO-3 omission inhibits ductal Na+ absorption (i.e. salivary Na+ concentration rises). This inhibition is probably related to an effect of pH on the postulated Na+-H+ exchanges mechanism in the luminal duct membrane since it can also be induced by lowering perfusate pH, and reversed by substitution of perfusate HCO-3 with acetate (which enters saliva) but not HEPES (which does not enter the saliva). Substitution of perfusate Cl- with other anions seems not to inhibit ductal Na+ and K+ transport markedly.  相似文献   

19.
Lungs from fetal guinea pigs of 61 +/- 3 days of gestation were supported in vitro for 3 h, and lung liquid secretion rates were measured by a dye dilution technique based on Blue Dextran 2000. Ten preparations that had received no treatment showed an average secretion rate of 1.12 +/- 0.28 mL.kg-1 body weight.h-1 during the first hour, and there were no significant changes over the following 2 h. In studies of 54 fetal lungs, furosemide, bumetanide, control ethanol carrier, or saline alone were placed in the supporting medium during the middle hour of the 3-h incubations (ABA design). Furosemide at 10(-3) M reduced secretion 83.4 +/- 16.8%; at 10(-4) and 10(-5) M it produced smaller reductions. Bumetanide at 10(-3) M usually produced reabsorption (129.9 +/- 23.0% reduction), at 10(-4) M it reduced secretion 30.9 +/- 11.8%, but at 10(-5) M it was ineffective. Control carrier and saline were without effect. The ability of the loop diuretics to produce reabsorption of fluid in some preparations suggests the unmasking of an active reabsorptive process. The results also suggest that lung liquid secretion in the fetal guinea pig, as in the sheep, is dependent on a Na+ and Cl- cotransport system.  相似文献   

20.
Cultured chick cardiac cells possess a Na+K+Cl-co-transport system that is inhibited by the "loop diuretics" benzmetanide (IC50 = 0.3 microM), bumetanide (IC50 = 0.6 microM), piretanide (IC50 = 1.5 microM) and furosemide (IC50 = 5 microM). The K0.5 values for Cl- and Na+ activation of the bumetanide-sensitive 86Rb+ uptake are 59 mM and 40mM respectively. Bumetanide also inhibits a 22Na+ uptake component that is suppressed when external Cl- or K+ are substituted by impermeant ions. The ratio of bumetanide-sensitive 86Rb+ to 22Na+ uptake is close to 1. The cardiac Na+/K+/Cl- cotransport is a major uptake pathway for Na+ and K+. It accounts for 50% of the initial rate of 86Rb+ uptake and 17% of the initial rate of 22Na+ uptake by chick cardiac cells. It is activated two-fold by an hyperosmotic shock produced with 200 mM mannitol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号