首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell suspensions prepared from rat hearts were separated by replating into F1, F2 and M cultures, and cultured for 3--11 days. Lipoprotein lipase activity was highest in the F1 cultures which consisted mainly of non-beating, mesenchymal cells. The enzyme activity was released into the medium only after addition of heparin. The release occurred by an initial rapid phase and a continuous slow phase. Both the rapid and the slow release of enzyme activity by heparin were inhibited by about 70% after a 4 h pretreatment with colchicine. Thus, it seems that the vesicular transport is responsible for the translocation of lipoprotein lipase to the cell surface also during the slow process of release. The residual activity in the colchicine treated cultures was higher than in the controls indicating that no inhibition of enzyme synthesis occurred. The slow phase of enzyme release continued also after removal of heparin from the medium but was reduced markedly when protein synthesis was inhibited by cycloheximide. Thus the increase in total enzyme activity encountered after exposure to heparin resulted from stimulation of new enzyme synthesis. The half-time of lipoprotein lipase in the F1 cultures was 35 min and full restoration of enzyme activity was found 60 min after complete removal of cycloheximide from the system. These data indicate that the culture system can be used to study regulation of new enzyme synthesis and its turnover.  相似文献   

2.
Rat hearts were perfused with heparin for 2 min at 4 degrees C. The lipoprotein lipase activity in the perfusate was inhibited by antiserum to rat adipose tissue lipoprotein lipase. By immunoblotting, the lipoprotein lipase derived from the functional pool of the heart was found to be a protein with an apparent Mr of 69 000. After incubation of the perfusate at 37 degrees C for 24 h an immunologically reactive protein with an apparent Mr of 28 000 was found. This protein is not a physiological derivative of the enzyme but a degradation product.  相似文献   

3.
Lipoprotein lipase activity was studied in rat heart cell cultures grown in the presence of 20% fetal calf and horse serum and a medium concentration of triacylglycerol of 0.03 mg/ml. After 6--8 days, when the enzyme activity had reached high levels, the cells were incubated for 24 h in a medium containing 20% serum derived from fasted or fed rats. No change in enzyme activity occurred in the presence of fasted rat serum, but a 50% fall was observed with fed rat serium. When the complete culture medium was supplemented with rat plasma VLDL (0.075--0.75 mg triacylglycerol) a pronounced decrease in lipoprotein lipase activity occurred after 3--5 h of incubation. Similar extent of enzyme fall was observed also in the presence of triacylglycerol-rich lipoproteins isolated from rat plasma after feeding of safflower oil or lard, even though the fatty acid composition of the triacylgylcerol varied markedly. As the addition of VLDL to the culture medium resulted in a lesser fall of heparin releasable than residual activity it seems that there was no direct inhibition of surface bound enzyme activity and that the transport of the enzyme to the cell surface was not affected. These data indicate that addition of VLDL to the culture medium resulted in a fall in enzyme synthesis, while total protein synthesis as determined by incorporation of [3H]leucine, remained unchanged. This inhibition could be reproduced by increasing free fatty acid concentration of the medium, however addition of excess albumin to VLDL-containing medium did not prevent the fall in enzyme activity. The present results obtained with cultured rat hearts cells suggest that in vivo plasma levels of triacylglycerol-rich lipoproteins could modulate the lipoproteins could modulate the lipoprotein lipase activity of the heart.  相似文献   

4.
The site of cartilage matrix degradation.   总被引:2,自引:0,他引:2       下载免费PDF全文
1. The metabolism of VLD lipoproteins (very-low-density lipoproteins) was studied in intact isolated beating-heart cells and isolated perfused rat heart from starved animals by using [14C]triacylglycerol fatty acid-labelled VLD lipoprotein prepared from rats previously injected with [1-14C]palmitate. 2. 14C-labelled VLD lipoprotein was metabolized by the isolated perfused heart, but was only minimally metabolized by the heart cells unless an exogenous source of lipoprotein lipase was added. 3. Measurements of lipoprotein lipase at pH 7.4 with the natural substrate 14C-labelled VLD lipoprotein indicated that during collagenase perfusion of the heart the enzyme was released into the perfusate, the activity released being proportional to the concentration of collagenase used. Lipoprotein lipase activity in homogenates of hearts that had been perfused with collagenase showed a corresponding loss of activity. 4. At high perfusate concentrations of collagenase, inactivation of the released lipoprotein lipase occurred. 5. Lipoprotein lipase activity was largely undetectable in the homogenate of the isolated heart cells. 6. It is concluded that the lipoprotein lipase responsible for the hydrolysis of VLD lipoprotein triacylglycerol is predominantly located externally to the heart muscle cells and that its release can be facilitated by perfusion of the heart with bacterial collagenase.  相似文献   

5.
An indirect labelled-second-antibody cellular immunoassay for adipocyte surface lipoprotein lipase was used to assess the changes that occurred during the incubation of cells in the presence and absence of effectors. In the absence of any specific effectors, the amount of immunodetectable lipoprotein lipase present at the surface of adipocytes remained constant throughout the 4 h incubation period at 37 degrees C. Under such conditions total cellular enzyme activity also remained constant, with no activity appearing in the medium. In the presence of heparin, cell-surface immunodetectable lipoprotein lipase increased by up to 20%, whereas in the presence of cycloheximide they decreased by up to 60%. Thus the obvious turnover of enzyme from this cell-surface site was found to be relatively rapid and dependent for its replenishment, at least in part, on protein synthesis. In the presence of insulin alone, a substantial increase in cell-surface lipoprotein lipase protein occurred, only part of which was dependent on protein synthesis. The total cellular activity of lipoprotein lipase was unaffected by the presence of insulin. The insulin-dependent increase in cell-surface enzyme was potentiated somewhat in the presence of dexamethasone, which was not shown to exert any independent effect. Glucagon, adrenaline and theophylline all produced a significant decline in the cell-surface immunodetectable lipoprotein lipase, which in the case examined (adrenaline) was partially additive with regard to the independent effect of cycloheximide. Cell-surface immunodetectable lipoprotein lipase amounts were decreased significantly when cells were incubated in the presence of either colchicine or tunicamycin. The concerted way in which cell-surface lipoprotein lipase altered during the incubations of adipocytes in the presence of effectors suggested that the translocation of enzyme to and from this cellular site was dependent on hormonal action and the integrity of intracellular protein-transport mechanisms.  相似文献   

6.
Heparin decreases the degradation rate of lipoprotein lipase in adipocytes   总被引:3,自引:0,他引:3  
The mechanism responsible for the stimulation of secretion of lipoprotein lipase by heparin in cultured cells was studied with avian adipocytes in culture. Immunoprecipitation followed by electrophoresis and fluorography were used to isolate and quantitate the radiolabeled enzyme, whereas total lipoprotein lipase was quantitated by radioimmunoassay. Rates of synthesis of lipoprotein lipase were not different for control or heparin treatments as judged by incorporation of L-[35S]methionine counts into lipoprotein lipase during a 20-min pulse. This observation was corroborated in pulse-chase experiments where the calculation of total lipoprotein lipase synthesis, based on the rate of change in enzyme-specific activity during the chase, showed no difference between control (8.13 +/- 3.1) and heparin treatments (9.1 +/- 5.3 ng/h/60-mm dish). Secretion rates of enzyme were calculated from measurements of the radioactivity of the secreted enzyme and the cellular enzyme-specific activity. Degradation rates were calculated by difference between synthesis and secretion rates of enzyme. In control cells 76% of the synthesized enzyme was degraded. Addition of heparin to the culture medium reduced the degradation rate to 21% of the synthetic rate. The presence of heparin in cell media resulted in a decrease in apparent intracellular retention half-time for secreted enzyme from 160 +/- 44 min to 25 +/- 1 min. The above data demonstrate that the increase in lipoprotein lipase protein secretion, observed upon addition of heparin to cultured adipocytes, is due to a decreased degradation rate with no change in synthetic rate. Finally, newly synthesized lipoprotein lipase in cultured adipocytes is secreted constitutively and there is no evidence that it is stored in an intracellular pool.  相似文献   

7.
An exogenous [3H]triolein emulsion was hydrolyzed by intact cardiac myocytes with functional LPL located on the cell surface. This surface-bound LPL could be released into the medium when cardiac myocytes were incubated with heparin. Incubation of cardiac myocytes with VLDL, or the products of TG breakdown, oleic acid or 2-monoolein, did not increase LPL activity in the medium. However, incubation of cardiac myocytes with either VLDL or oleic acid for > 60 min did reduce heparin-releasable LPL activity. In the heart, this inhibitory effect of FFA could regulate the translocation of LPL from its site of synthesis in the cardiac myocyte to its functional site at the capillary endothelium.Abbreviations LPL lipoprotein lipase - TG triacylglycerol - FFA free fatty acids - VLDL very-low density lipoprotein  相似文献   

8.
The effect of acute fat feeding on the response of two fractions of lipoprotein lipase in heart was explored. In rats, previously fasted, lipoprotein lipase activity released into the perfusate by heparin increased approximately 50% 4 h after fat feeding. The lipase activity remaining in the heart tissue after heparin perfusion showed no significant difference. When rats maintained ad libitum were intubated with glucose 2 h before the fat dose, a relatively larger increase (5-10-fold) in the heparin-releasable lipase activity was observed. The capacity of these hearts to hydrolyze 14C-labeled chylomicrons was also increased 4-5-fold over the controls. Fat ingestion has been reported to elevated plasma corticosteroid levels in rats. When adrenalectomized rats were fed fat, no significant changes in the heparin-releasable lipase activity were observed Hydrocortisone and corticotropin treatment increased the heparin-releasable lipase activity to the same degree as observed with fat feeding. These data suggest that the increase in heart lipoprotein lipase activity following fat feeding is mediated via corticosteroids.  相似文献   

9.
The mechanism of heparin stimulation of rat adipocyte lipoprotein lipase   总被引:2,自引:0,他引:2  
Free fat cells and stromal-vascular cells were prepared from rat adipose tissue by incubation with collagenase. NH(4)OH-NH(4)Cl extracts of acetone-ether powders prepared from fat cells contained lipoprotein lipase activity but extracts of stromal-vascular cells did not. Intact fat cells released lipoprotein lipase activity into incubation medium, but intact stromal-vascular cells did not. The lipoprotein lipase activity of the medium was increased when fat cells were incubated with heparin, and this was accompanied by a corresponding decrease in the activity of subsequently prepared fat cell extracts. Heparin did not release lipoprotein lipase activity from stromal-vascular cells. The lipoprotein lipase activity of NH(4)OH-NH(4)Cl extracts of fat cell acetone powders is increased by the presence of heparin during the assay. This increase is not due to preservation of enzyme activity, but to increased binding of lipoprotein lipase to chylomicrons. Protamine sulfate and sodium chloride have little effect on the binding of lipoprotein lipase to chylomicrons, but they inhibit enzyme activity after binding to substrate has occurred. These inhibitors do, however, inhibit the stimulatory effect of heparin on enzyme-substrate binding.  相似文献   

10.
In response to food deprivation, total myocardial lipoprotein lipase activity increased gradually over a period of 9 h. Although lipoprotein lipase exists in a functional and non-functional form in the myocardium, most of the increas in activity occurred in the functional (heparin-releasable) lipoprotein lipase fraction. The administration of colchicine, while having no effect on the increase seen in total lipoprotein lipase activity, did inhibit the increase in the functional fraction, while at the same time, caused a marked rise in the activity of the non-functional (non-releasable) fraction. In rats injected with colchicine after a 24-h fast, total lipoprotein lipase activity was not affected, but activity levels in the functional fraction declined while that in the non-functional fraction increased. These results suggest that the functional lipoprotein lipase is constantly being formed in sites not readily accessible to heparin (presumably the myocardial cells) and transported to its site of action, the surface of the endothelial cells of the capillaries. Cycloheximide administration to rats starved for 24 h caused a decline in activity in both the functional (half-life of about 2 h) and the non-functional (half-life of about 4 h) lipoprotein lipase fractions. These results suggest that the functional and non-functional lipoprotein lipase fractions may correspond to two distinct enzyme species.  相似文献   

11.
While attempting to optimize conditions for synthesis of lipoprotein lipase by cultured heart cells, we encountered an unexpected rise in enzyme activity when media were supplemented inadvertently with 100 mM Hepes buffer (4-(2-hydroxyethyl)-1-piperazineethanesulphonic acid). This finding was further investigated and optimal results were obtained at pH 7.0-7.2. The increase in lipoprotein lipase activity was time dependent; after 3-6 h there was a rise in medium activity but cellular activity increased only after 24 h. The increased enzyme activity was defined as lipoprotein lipase by inhibition with antiserum to rat adipose tissue lipoprotein lipase. A 72-h exposure to Hepes resulted in a 30% increase in the incorporation of [35S]methionine into cellular proteins and a 2-fold increase into heparin-releasable proteins. Using heparin Sepharose chromatography and stepwise elution, a lipoprotein lipase enriched fraction was recovered with 2 M NaCl. The amount of [35S]methionine and [3H]galactose incorporated into protein of this fraction derived from Hepes-treated cells was 2-6-fold that of controls. A 4-fold increase in cellular lipoprotein lipase mass in Hepes-treated cells was shown by immunoblotting. Results obtained with Hepes-conditioned medium suggest the presence of cell-derived compounds that enhance release and subsequent synthesis of lipoprotein lipase. The effect of Hepes-conditioned medium on lipoprotein lipase resembled to some extent that of the addition of heparin. Therefore, it appears that when Hepes is first added to the culture medium, it might promote a release of heparan sulfate or related compounds, possibly by virtue of its negatively charged sulfonic acid residue. The accumulated heparan sulfate could then promote a sustained release of lipoprotein lipase into the culture medium which in turn leads to increased enzyme synthesis.  相似文献   

12.
Regulation of the secretion of lipoprotein lipase by mouse macrophages   总被引:4,自引:0,他引:4  
The regulation of the secretion of lipoprotein lipase was studied in primary cultures of mouse peritoneal macrophages and in the murine macrophage cell line J774. As previously reported, both cell types secrete a lipase with the characteristics of lipoprotein lipase. Incubation of macrophages with insulin, insulin-like growth factor, and L-thyroxine had no effect on lipoprotein lipase secretion. Incubation with dexamethasone and with several agents which increase intracellular cyclic AMP led to a decrease in lipoprotein lipase secretion by mouse peritoneal macrophages. These results suggest that the hormonal regulation of lipoprotein lipase in macrophages is different from that in adipose tissue and heart muscle. Incubation of the macrophages with heparin caused a marked increase in the secretion of lipoprotein lipase. Short incubations with heparin (5 min) caused a release of the enzyme into the media, while longer incubations caused a 2-8-fold increase in net lipoprotein lipase secretion which was maximal after 2-16 h depending on cell type, and persisted for 24 h. The effect of heparin was dose-dependent and specific (it was not duplicated by other glycosaminoglycans). The mechanism of heparin-induced increase in lipoprotein lipase secretion was explored. The increase was not caused by the release of a presynthesized intracellular pool of lipoprotein lipase or by the stabilization of lipoprotein lipase by heparin after secretion. The heparin-induced increase in lipoprotein lipase secretion was dependent on protein synthesis. The secretion of lipoprotein lipase by macrophages in response to low levels of heparin may be a significant factor in the formation of atherosclerotic lesions.  相似文献   

13.
Isolated rat livers were perfused with whole rat blood containing postheparin lipoprotein lipase (LPL) activity. LPL activity disappeared rapidly from the perfusate; the extraction ratio (portal vein-hepatic vein difference) was 0.70 for all time periods studied. Control experiments established that the disappearance of LPL was not due to non-specific inactivation in the apparatus or to the release of an inhibitory by the liver. The addition of heparin to the perfusate in suitable concentration (4 units/ml) almost completely blocked the disappearance of LPL activity from the perfusate. In addition to the perfusion experiments, we studied the effect of heparin on LPL activity when added to the LPL assay system. When heparin was added to the assay system containing fresh postheparin serum from rats, it stimulated LPL activity by about 70%. When heparin was added to postheparin serum which had been perfused through the liver, it stimulated LPL activity over 200%, but it did not restore LPL to its preperfusion value. These observations are compatible with a two-step inactivation system for LPL by the liver. The first step may involve a dissociation of a heparin-apoenzyme complex followed by destruction of the heparin. The second step may involve the removal of the apoenzyme of LPL.  相似文献   

14.
When isolated rat livers were perfused with medium containing lipoprotein lipase, 40-60% was taken up during a single passage. This value was similar for lipoprotein lipase derived from culture medium of rat preadipocytes, and for lipoprotein lipase purified from bovine milk. It was also, similar, irrespective of the lipoprotein lipase concentration, at least up to 1 microgram/ml. Immediately following its uptake by the liver, a large fraction of the lipoprotein lipase could be released by heparin, but the magnitude of this fraction decreased with time. The enzyme lost its catalytic activity rather rapidly, but its degradation to acid-soluble products, or to larger fragments, was much slower. On heparin-agarose chromatography, the enzyme taken up by the liver eluted at a lower salt concentration than the original lipoprotein lipase preparation. This change in affinity for heparin suggests that the originally dimeric lipoprotein lipase had dissociated into monomers, in analogy to the findings in model experiments. It is suggested that the initial uptake of lipoprotein lipase occurs by binding to a polyanion at the liver cell surface. This is followed by endocytosis and dissociation of the enzyme from its heparan sulfate-like binding site. Acidification of the endosome may cause a conformational change in the lipase molecule with dissociation to inactive monomers, preceding ultimate proteolytic degradation.  相似文献   

15.
1. Lipoprotein lipase activity was measured in heart homogenates and in heparin-releasable and non-releasable fractions of isolated perfused rat hearts, after the intravenous injection of Triton WR-1339. 2. In homogenates of hearts from starved, rats, lipoprotein lipase activity was significantly inhibited (P less than 0.001) 2h after the injection of Triton. This inhibition was restricted exclusively to the heparin-releasable fraction. Maximum inhibition occurred 30 min after the injection and corresponded to about 60% of the lipoprotein lipase activity that could be released from the heart during 30 s perfusion with heparin. 3. Hearts of Triton-treated starved rats were unable to take up and utilize 14C-labelled chylomicron triacylglycerol fatty acids, even though about 40% of heparin-releasable activity remained in the hearts. 4. It is concluded that Triton selectively inhibits the functional lipoprotein lipase, i.e. the enzyme directly involved in the hydrolysis of circulating plasma triacylglycerols. 5. Lipoprotein lipase activities measured in homogenates of soleus muscle of starved rats and adipose tissue of fed rats were decreased by 25 and 39% respectively after Triton injection. It is concluded that, by analogy with the heart, these Triton-inhibitable activities correspond to the functional lipoprotein lipase.  相似文献   

16.
Neutral triacylglycerol lipase, which is not released by perfusion of rat hearts with heparin, is identical with lipoprotein lipase. The main criteria are 1) stimulation of neutral lipase by apolipoprotein C-II, 2) involvement of phospholipids in the hydrolysis of long-chain triacylglycerols, 3) alkaline shift of the pH activity curve by apolipoprotein C-II, 4) inhibition by protaminesulfate, 5) inhibition by an antibody against heparin-releasable lipoprotein lipase from heart and 6) binding of neutral lipase activity to Sepharose-bound heparin.The bulk of the non-releasable neutral lipase is not localized in the myocardiocytes, but in an extracellular compartment that is opened during Ca++-free perfusion. The enzyme is probably involved in the uptake and not in the mobilization of lipid in the heart cells.  相似文献   

17.
Three macrophage cell lines, J7742, CT2 and J7H1 were compared with respect to synthesis and secretion of lipoprotein lipase. The enzyme activity measured was characterized as lipoprotein lipase on the basis of serum dependence and inhibition by 1 M NaCl. Enzyme activity in all three lines increased with time in culture and the highest activity was found in the medium of the CT2 line which is adenylate cyclase deficient while that in the J7H1 line, cyclic AMP-dependent protein kinase deficient, was intermediate. The half life of the enzyme activity in conditioned medium from all three lines was 30–40 min, suggesting that the different levels of activity observed do represent different levels of enzyme production by the cells. About 80% of the lipoprotein lipase activity from all three lines was present in the medium and 50–70% of cellular activity could be released into the medium by a 3-min exposure to heparin. In addition, 24 h incubation with heparin enhanced enzyme secretion in all three lines. To determine the role of cyclic AMP in the regulation of lipoprotein lipase activity use was made of dibutyryl cAMP, methyl isobutylxanthine (IBMX) and cholera toxin. These agents strikingly depressed lipoprotein lipase activity in the J7742 line but only dibutyryl cAMP was active in the CT2 line (adenylate cyclase deficient). In the J7H1 (protein kinase deficient) line there was no response to dibutyryl cAMP or IBMX over the first 4 h of incubation. Addition of these agents did not affect total cell protein synthesis. The present findings indicate that in the intact cells changes in cyclic AMP levels are associated with a change in the activity of lipoprotein lipase.  相似文献   

18.
Cells isolated from newborn rat hearts were cultured for 10-14 days, and lipoprotein lipase activity was present in an intracellular and heparin-releasable pool. Treatment of the cultures with 10(-7) M isoproterenol for 3 min resulted in a 3-fold increase in heparin-releasable lipoprotein lipase and a concomitant decrease in residual cellular enzyme activity. Similar results were obtained by treatment with dibutyryl cAMP. Treatment with isoproterenol or dibutyryl cAMP for 2 h affected glycosylation of immunoadsorbable lipoprotein lipase, so that the ratio of [3H]galactose to [14C]mannose in the heparin-releasable enzyme increased from 3.8 (control) to 13.0 (isoproterenol-treated). The change in the ratio of the sugars in the cellular fraction of the enzyme was from 3.1 to 9.9. 2 h treatment with isoproterenol did not enhance new enzyme synthesis, as determined by incorporation of [3H]leucine into immunoadsorbable lipoprotein lipase. 24 h after addition of either isoproterenol or dibutyryl cAMP to the culture medium, stimulation of enzyme synthesis was demonstrated. The present results permit three effects of isoproterenol on lipoprotein lipase to be distinguished: stimulation of translocation from a cellular to heparin-releasable pool; enhanced processing of mannose residues and terminal glycosylation; stimulation of synthesis of enzyme protein.  相似文献   

19.
We have compared the effects of cellular cyclic AMP modulation on the regulation of lipoprotein lipase in cultures of rat epididymal pad preadipocytes and mesenchymal heart cells. Addition of dibutyryl cyclic AMP (dibutyryl cAMP) or 3-isobutyl-1-methylxanthine (IBMX) to preadipocytes grown in serum-containing culture medium resulted in a progressive decrease in lipoprotein lipase activity released into the culture medium so that at 6-8 h enzyme activity ranged between 20 and 30% of that recovered in the control dishes. Similar short-term (6-8 h) studies of the heart cell cultures showed a variable and much less pronounced depression of lipoprotein lipase activity. Thus, following dibutyryl cAMP and IBMX treatment, lipoprotein lipase activity ranged between 70 and 95% of control values. Incubation for 6 h with cholera toxin was followed by a 4-fold rise in the concentration of cellular cyclic AMP in both types of culture, but while in heart cell cultures enzyme activity was unchanged, lipoprotein lipase activity in preadipocytes decreased to 30% of control value. After 24 h incubation with all three effectors, an increase in lipoprotein lipase activity was seen. In the preadipocytes the increase ranged between 50 and 150% above control value, in the heart cell cultures it was 100-250%. 24-h incubation of heart cell cultures with dibutyryl cAMP resulted in a 6-fold increase of heparin-releasable lipoprotein lipase activity while residual activity was doubled. The rise in surface-bound lipoprotein lipase was evidenced also by an increase in the lipolysis of chylomicron triacylglycerol. In the presence of cycloheximide, the dibutyryl cAMP-induced heparin-releasable and residual lipoprotein lipase activity declined at the same rate as the basal activity. The reason for the difference in response of cultured preadipocytes and heart cells to the effectors during the first 8 h of incubation has not been elucidated, but could be related to a possible absence of hormone-sensitive lipase in the heart cells, and hence in a difference in intracellular metabolism of triacylglycerol. On the other hand, a common mechanism can be postulated for the long-term effect of cyclic AMP on the induction of lipoprotein lipase activity in both types of cultures. It probably involves mRNA and protein synthesis, which culminates in an increase in enzyme activity.  相似文献   

20.
Summary Heparin (5 U/ml) induced the release of LPL into the incubation medium of cardiac myocytes isolated from adult rat hearts. The secretion of LPL occurred in two phases: a rapid release (5–10 min of incubation with heparin) that was independent of protein synthesis followed by a slower rate of release that was inhibited by cycloheximide. The rapid release of LPL induced by heparin likely occurs from sites that are at or near the cell surface. LPL secretion could also be stimulated by heparan sulfate and dermatan sulfate, but not by hyaluronic acid, chondroitin sulfate or keratan sulfate. Heparin-releasable LPL activity measured in short-term incubations represented a large fraction (40–50%) of the initial LPL activity associated with myocytes, but the fall in cellular LPL activity following heparin was less than the amount of LPL activity secreted into the incubation medium. This discrepancy was not due to latency of LPL in the pre-heparin cell homogenates, but in part could be due to a three-fold greater affinity of the heparin-released enzyme for substrate as compared to LPL in post-heparin myocyte homogenates.Abbreviations LPL lipoprotein lipase  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号