首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon ? cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon.  相似文献   

3.
The protein FkpA from the periplasm of Escherichia coli exhibits both cis/trans peptidyl-prolyl isomerase (PPIase) and chaperone activities. The crystal structure of the protein has been determined in three different forms: as the full-length native molecule, as a truncated form lacking the last 21 residues, and as the same truncated form in complex with the immunosuppressant ligand, FK506. FkpA is a dimeric molecule in which the 245-residue subunit is divided into two domains. The N-terminal domain includes three helices that are interlaced with those of the other subunit to provide all inter-subunit contacts maintaining the dimeric species. The C-terminal domain, which belongs to the FK506-binding protein (FKBP) family, binds the FK506 ligand. The overall form of the dimer is V-shaped, and the different crystal structures reveal a flexibility in the relative orientation of the two C-terminal domains located at the extremities of the V. The deletion mutant FkpNL, comprising the N-terminal domain only, exists in solution as a mixture of monomeric and dimeric species, and exhibits chaperone activity. By contrast, a deletion mutant comprising the C-terminal domain only is monomeric, and although it shows PPIase activity, it is devoid of chaperone function. These results suggest that the chaperone and catalytic activities reside in the N and C-terminal domains, respectively. Accordingly, the observed mobility of the C-terminal domains of the dimeric molecule could effectively adapt these two independent folding functions of FkpA to polypeptide substrates.  相似文献   

4.
SulA is induced in Escherichia coli by the SOS response and inhibits cell division through interaction with FtsZ. To determine which region of SulA is essential for the inhibition of cell division, we constructed a series of N-terminal and C-terminal deletions of SulA and a series of alanine substitution mutants. Arginine at position 62, leucine at 67, tryptophan at 77 and lysine at 87, in the central region of SulA, were all essential for the inhibitory activity. Residues 3–27 and the C-terminal 21 residues were dispensable for the activity. The mutant protein lacking N-terminal residues 3–47 was inactive, as was that lacking the C-terminal 34 residues. C-terminal deletions of 8 and 21 residues increased the growth-inhibiting activity in lon + cells, but not in lon cells. The wild-type and mutant SulA proteins were isolated in a form fused to E. coli maltose-binding protein, and tested in vitro for sensitivity to Lon protease. Lon degraded wild-type SulA and a deletion mutant lacking the N-terminal 93 amino acids, but did not degrade the derivative lacking 21 residues at the C-terminus. Futhermore, the wild-type SulA and the N-terminal deletion mutant formed a stable complex with Lon, while the C-terminal deletion did not. MBP fused to the C-terminal 20 residues of SulA formed a stable complex with, but was not degraded by Lon. When LacZ protein was fused at its C-terminus to 8 or 20 amino acid residues from the C-terminal region of SulA the protein was stable in lon + cells. These results indicate that the C-terminal 20 residues of SulA permit recognition by, and complex formation with, Lon, and are necessary, but not sufficient, for degradation by Lon. Received: 8 October 1996 / Accepted: 27 November 1996  相似文献   

5.
The N-terminal regions, which are highly variable in small heat-shock proteins, were found to be structurally disordered in all the 24 subunits of Methanococcus jannaschii Hsp16.5 oligomer and half of the 12 subunits of wheat Hsp16.9 oligomer. The structural and functional roles of the corresponding region (potentially disordered) in Mycobacterium tuberculosis Hsp16.3, existing as nonamers, were investigated in this work. The data demonstrate that the mutant Hsp16.3 protein with 35 N-terminal residues removed (DeltaN35) existed as trimers/dimers rather than as nonamers, failing to bind the hydrophobic probe (1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid) and exhibiting no chaperone-like activity. Nevertheless, another mutant protein with the C-terminal extension (of nine residues) removed, although existing predominantly as dimers, exhibited efficient chaperone-like activity even at room temperatures, indicating that pre-existence as nonamers is not a prerequisite for its chaperone-like activity. Meanwhile, the mutant protein with both the N- and C-terminal ends removed fully exists as a dimer lacking any chaperone-like activity. Furthermore, the N-terminal region alone, either as a synthesized peptide or in fusion protein with glutathione S-transferase, was capable of interacting with denaturing proteins. These observations strongly suggest that the N-terminal region of Hsp16.3 is not only involved in self-oligomerization but also contains the critical site for substrate binding. Such a dual role for the N-terminal region would provide an effective mechanism for the small heat-shock protein to modulate its chaperone-like activity through oligomeric dissociation/reassociation. In addition, this study demonstrated that the wild-type protein was able to form heterononamers with DeltaN35 via subunit exchange at a subunit ratio of 2:1. This implies that the 35 N-terminal residues in three of the nine subunits in the wild-type nonamer are not needed for the assembly of nonamers from trimers and are thus probably structurally disordered.  相似文献   

6.
Anti-Müllerian hormone (AMH), a TGF-beta family member, determines whether an individual develops a uterus and Fallopian tubes. Mutations in the AMH gene lead to persistent Müllerian duct syndrome in males. The wild-type human AMH protein is synthesized as a disulfide-linked dimer of two identical 70-kDa polypeptides, which undergoes proteolytic processing to generate a 110-kDa N-terminal dimer and a bioactive 25-kDa TGF-beta-like C-terminal dimer. We have studied the biosynthesis and secretion of wild-type AMH and of seven persistent Müllerian duct syndrome proteins, containing mutations in either the N- or C-terminal domain. Mutant proteins lacking the C-terminal domain are secreted more rapidly than full-length AMH, whereas single amino acid changes in both domains can have profound effects on protein stability and folding. The addition of a cysteine in an N-terminal domain mutant, R194C, prevents proper folding, whereas the elimination of the cysteine involved in forming the interchain disulfide bond, in a C-terminal domain mutant, C525Y, leads to a truncation at the C terminus. A molecular model of the AMH C-terminal domain provides insights into how some mutations could affect biosynthesis and function.  相似文献   

7.
The processing of Escherichia coli penicillin-binding protein 3 (PBP 3) was investigated by gene manipulation for producing hybrid and truncated PBP 3 molecules. The hybrid PBP 3 was processed when the N-terminal 40 residues of PBP 3 were replaced by the murein lipoprotein signal peptide which lacked the cysteine residue for processing and followed by seven extra linker residues. In contrast, the PBP 3 molecules truncated at Thr-560 (28-residue deletion) or at Thr-497 (91-residue deletion) were not processed, and those truncated at Phe-576 (12-residue deletion) were processed at a greatly reduced rate. The results indicate that the C-terminal part, rather than the N-terminal part, is involved in the processing. This was supported by the result that the purified mature PBP 3 retained the complete N-terminal sequence with Met for translation initiation. The cleavage at the C-terminal region was shown by the loss of [35S]cysteine label when the cysteine-free hybrid PBP 3 joined to a cysteine-rich extra peptide tail was processed into the mature form. Confirmative assays for processing of PBP 3 were aided by a newly found prc mutant, defective in the processing involving the C-terminal region. A plasmid that directs PBP 3 truncated at Thr-560 complemented a thermosensitive PBP 3 mutation, but the truncated product was unstable in vivo. This suggests the importance of C-terminal hydrophobic regions that terminate at Leu-558 to PBP 3 functioning and the requirement of further-distal peptides for the stability of PBP 3.  相似文献   

8.
Surfactant protein D (SP-D) plays diverse and important roles in innate immunity and pulmonary homeostasis. Neutrophils and myeloperoxidase (MPO) colocalized with SP-D in a murine bacterial pneumonia model of acute inflammation, suggesting that MPO-derived reactive species might alter the function of SP-D. Exposure of SP-D to the complete MPO-H2O2-halide system caused loss of SP-D-dependent aggregating activity. Hypochlorous acid (HOCl), the major oxidant generated by MPO, caused a similar loss of aggregating activity, which was accompanied by the generation of abnormal disulfide-cross-linked oligomers. A full-length SP-D mutant lacking N-terminal cysteine residues and truncation mutants lacking the N-terminal domains were resistant to the oxidant-induced alterations in disulfide bonding. Mass spectroscopy of HOCl-treated human SP-D demonstrated several modifications, but none involved key ligand binding residues. There was detectable oxidation of cysteine 15, but no HOCl-induced cysteine modifications were observed in the C-terminal lectin domain. Together, the findings localize abnormal disulfide cross-links to the N-terminal domain. MPO-deficient mice showed decreased cross-linking of SP-D and increased SP-D-dependent aggregating activity in the pneumonia model. Thus, MPO-derived oxidants can lead to modifications of SP-D structure with associated alterations in its characteristic aggregating activity.  相似文献   

9.
Sarcotoxin IA is a cecropin-type antibacterial peptide of flesh fly. Using a mutant sarcotoxin IA lacking two N-terminal residues, we demonstrated that these residues are indispensable for its antibacterial activity against Escherichia coli and LPS-binding. Contrary to the native sarcotoxin IA, the mutant sarcotoxin IA could not neutralize various biological activities of LPS. It was suggested that sarcotoxin IA firmly binds to the lipid A core of LPS via these two N-terminal residues and forms a stable binding complex that exhibits no appreciable biological activity like native LPS.  相似文献   

10.
11.
Bovine heart troponin T was hydrolyzed at the single cysteine residue. This procedure resulted in two peptides--a short N-terminal peptide (40-50 amino acid residues) and a long C-terminal peptide (240 amino acid residues). The C-terminal peptide was purified to homogeneity by ion-exchange chromatography; its properties were compared to those of intact troponin T. Data from circular dichroism spectroscopy suggest that the short N-terminal peptide cleavage was unaccompanied by any conspicuous changes in the secondary structure of the large C-terminal peptide of troponin T. Unlike intact troponin T, its C-terminal peptide can interact with troponin C in the presence of Ca2+. Data from affinity chromatography demonstrated that troponin I and tropomyosin more strongly interacted with native troponin T than with its C-terminal peptide. It is concluded that the short N-terminal peptide (40-50 residues) plays an essential role in cardiac troponin T interaction with troponin and tropomyosin components.  相似文献   

12.
13.
Mathys S  Evans TC  Chute IC  Wu H  Chong S  Benner J  Liu XQ  Xu MQ 《Gene》1999,231(1-2):1-13
The determinants governing the self-catalyzed splicing and cleavage events by a mini-intein of 154 amino acids, derived from the dnaB gene of Synechocystis sp. were investigated. The residues at the splice junctions have a profound effect on splicing and peptide bond cleavage at either the N- or C-terminus of the intein. Mutation of the native Gly residue preceding the intein blocked splicing and cleavage at the N-terminal splice junction, while substitution of the intein C-terminal Asn154 resulted in the modulation of N-terminal cleavage activity. Controlled cleavage at the C-terminal splice junction involving cyclization of Asn154 was achieved by substitution of the intein N-terminal cysteine residue with alanine and mutation of the native C-extein residues. The C-terminal cleavage reaction was found to be pH-dependent, with an optimum between pH6.0 and 7.5. These findings allowed the development of single junction cleavage vectors for the facile production of proteins as well as protein building blocks with complementary reactive groups. A protein sequence was fused to either the N-terminus or C-terminus of the intein, which was fused to a chitin binding domain. The N-terminal cleavage reaction was induced by 2-mercaptoethanesulfonic acid and released the 43kDa maltose binding protein with an active C-terminal thioester. The 58kDa T4 DNA ligase possessing an N-terminal cysteine was generated by a C-terminal cleavage reaction induced by pH and temperature shifts. The intein-generated proteins were joined together through a native peptide bond. This intein-mediated protein ligation approach opens up novel routes in protein engineering.  相似文献   

14.
Reticulon (RTN) proteins are localized to the endoplasmic reticulum (ER), and are related to intracellular membrane trafficking, apoptosis, inhibiting axonal regeneration, and Alzheimer's disease. The RTN proteins are produced without an N-terminal signal peptide. Their C-terminal domain contains two long hydrophobic segments. We analyzed the ER localization signal of human RTN1-A. Mutant proteins lacking the first (39 residues) or second (36 residues) hydrophobic segment showed ER localization. On the other hand, the mutant lacking both hydrophobic segments was cytosolic. Enhanced green fluorescent protein (EGFP) tagged with the first or second hydrophobic segment of RTN1-A was localized to the ER. These results suggest that each hydrophobic segment determines the ER localization. In addition, EGFP tagged with the truncated form of the first hydrophobic segment exhibited the localization to the Golgi rather than the ER. This suggests that the length of the hydrophobic segment contributes to the ER retention of RTN1-A.  相似文献   

15.
The extrinsic 12 kDa protein in red algal photosystem II (PSII) functions to minimize the chloride and calcium requirement of oxygen-evolving activity [Enami et al. (1998) Biochemistry 37: 2787]. In order to identify functional domains of the 12 kDa protein, we prepared the 12 kDa protein lacking N-terminal peptides or C-terminal peptides or both by limited proteolysis and directed mutagenesis. The resulting 12 kDa protein fragments were examined for their binding and functional properties by reconstitution experiments. (1) A peptide fragment from Gly-6 to C-terminus of the 12 kDa protein was prepared by V8 protease. This fragment rebound to PSII completely, and it reactivated oxygen evolution partially in the absence of Cl(-) and Ca(2+) ions but significantly in the presence of Cl(-) ion. (2) A peptide from Leu-10 to Phe-83 was obtained by chymotrypsin treatment. This peptide rebound to PSII effectively, but the rebinding did not restore oxygen evolution in both the absence and presence of Cl(-) and Ca(2+) ions. (3) Two mutant proteins, one lacking five residues and the other lacking nine residues of the N-terminus, were able to bind to PSII effectively. Recovery of oxygen evolution by their binding was almost the same as that reconstituted with the V8 protease-treated peptide. (4) Three mutant proteins lacking ten, seven or three residues of the C-terminus effectively rebound to PSII, but their binding did not result in recovery of the oxygen evolution. In contrast, reconstitution with a mutant protein lacking one residue of the C-terminus showed the same high restoration of oxygen evolution as reconstitution with the full-length 12 kDa protein. (5) These results indicate that two residues from lysine of the C-terminus of the 12 kDa protein constitute an important domain for minimizing the chloride and calcium requirement of oxygen evolution. In addition, the N-terminus of the protein, at least five residues, has a secondary function for the chloride requirement.  相似文献   

16.
The human immunodeficiency virus (HIV) integrase protein (IN) catalyzes two reactions required to integrate HIV DNA into the human genome: 3' processing of the viral DNA ends and integration. IN has three domains, the N-terminal zinc-binding domain, the catalytic core, and the C-terminal SH3 domain. Previously, it was shown that IN proteins mutated in different domains could complement each other. We now report that this does not require any overlap between the two complementing proteins; an N-terminal domain, provided in trans, can restore IN activity of a mutant lacking this domain. Only the zinc-coordinating form of the N-terminal domain can efficiently restore IN activity of an N-terminal deletion mutant. This suggests that interaction between different domains of IN is needed for functional multimerization. We find that the N-terminal domain of feline immunodeficiency virus IN can support IN activity of an N-terminal deletion mutant of HIV type 2 IN. These cross-complementation experiments indicate that the N-terminal domain contributes to the recognition of specific viral DNA ends.  相似文献   

17.
The product of the porcine HSD17B4 gene is a peroxisomal 80 kDa polypeptide containing three functionally distinct domains. The N-terminal part reveals activities of 17beta-estradiol dehydrogenase type IV and D-specific 3-hydroxyacyl CoA dehydrogenase, the central part shows D-specific hydratase activity with straight and 2-methyl-branched 2-enoyl-CoAs. The C-terminal part is similar to sterol carrier protein 2. The 80 kDa polypeptide chain ends with the tripeptide AKI, which resembles the motif SKL, the first identified peroxisome targeting signal PTS1. So far AKI, although being similar to the consensus sequence PTS1, has neither been reported to be present in mammalian peroxisomal proteins, nor has it been shown to be functional. We investigated whether the HSD17B4 gene product is targeted to peroxisomes by this C-terminal motif. Recombinant human PTS1 binding protein Pex5p interacted with the bacterially expressed C-terminal domain of the HSD17B4 gene product. Binding was competitively blocked by a SKL-containing peptide. Recombinant deletion mutants of the C-terminal domain lacking 3, 6, and 14 amino acids and presenting KDY, MIL, and IML, respectively, at their C-termini did not interact with Pex5p. The wild-type protein and mutants were also transiently expressed in the HEK 293 cells. Immunofluorescence analysis with polyclonal antibodies against the C-terminal domain showed a typical punctate peroxisomal staining pattern upon wild-type transfection, whereas all mutant proteins localized in the cytoplasm. Therefore, AKI is a functional PTS1 signal in mammals and the peroxisome targeting of the HSD17B4 gene product is mediated by Pex5p.  相似文献   

18.
The testis-specific isozyme of angiotensin-converting enzyme (ACE) is identical, from residue 68 to the C terminus, to the second half or C-terminal domain of somatic ACE. However, the first 67 residues, comprising the signal peptide and a Ser-/Thr-rich 36-residue sequence that constitutes the N terminus of mature testis ACE, are unique. We have expressed a mutant human testis ACE lacking this 36-residue N-terminal sequence and find that compared to the wild-type protein the mutant is 15 kDa smaller due to the loss of greater than 90% of all O-linked sugars, but that it retains full enzymatic activity and is stable in culture. Heavy O-glycosylation is a property of testis ACE that is not shared by the somatic enzyme and is attributable to this unique sequence.  相似文献   

19.
How the ATPase activity of Heat shock protein 90 (Hsp90) is coupled to client protein activation remains obscure. Using truncation and missense mutants of Hsp90, we analysed the structural implications of its ATPase cycle. C-terminal truncation mutants lacking inherent dimerization displayed reduced ATPase activity, but dimerized in the presence of 5'-adenylamido-diphosphate (AMP-PNP), and AMP-PNP- promoted association of N-termini in intact Hsp90 dimers was demonstrated. Recruitment of p23/Sba1 to C-terminal truncation mutants also required AMP-PNP-dependent dimerization. The temperature- sensitive (ts) mutant T101I had normal ATP affinity but reduced ATPase activity and AMP-PNP-dependent N-terminal association, whereas the ts mutant T22I displayed enhanced ATPase activity and AMP-PNP-dependent N-terminal dimerization, indicating a close correlation between these properties. The locations of these residues suggest that the conformation of the 'lid' segment (residues 100-121) couples ATP binding to N-terminal association. Consistent with this, a mutation designed to favour 'lid' closure (A107N) substantially enhanced ATPase activity and N-terminal dimerization. These data show that Hsp90 has a molecular 'clamp' mechanism, similar to DNA gyrase and MutL, whose opening and closing by transient N-terminal dimerization are directly coupled to the ATPase cycle.  相似文献   

20.
Sulfurtransferases/rhodaneses are a group of enzymes widely distributed in plants, animals, and bacteria that catalyze the transfer of sulfur from a donor molecule to a thiophilic acceptor substrate. Sulfurtransferases (STs) consist of two globular domains of nearly identical size and conformation connected by a short linker sequence. In plant STs this linker sequence is exceptionally longer than in sequences from other species. The Arabidopsis ST1 protein (AJ131404) contains five cysteine residues: one residue is universally conserved in all STs and considered to be catalytically essential; a second one, closely located in the primary sequence, is conserved only in sequences from eukaryotic species. Of the remaining three cysteine residues two are conserved in the so far known plant STs and one is unique to the Arabidopsis ST1. The aim of our study was to investigate the role of the two-domain structure, of the unique plant linker sequence and of each cysteine residue. The N- and C-terminal domains of the Arabidopsis ST1, the full-length protein with a shortened linker sequence and several point-mutated proteins were overexpressed in E. coli, purified and used for enzyme activity measurements. The C-terminal domain itself displayed ST activity which could be increased by adding the separately prepared N-terminal domain. The activity of an ST1 derivative with a shortened linker sequence was reduced by more than 60% of the wild-type activity, probably because of a drastically reduced protein stability. The replacement of each cysteine residue resulted in mutant forms which differed significantly in their stability, in the specific ST activities, and in their kinetic parameters which were determined for 3-mercaptopyruvate as well as thiosulfate as sulfur substrates: mutation of the putative active site cysteine (C332) essentially abolished activity; for C339 a crucial role at least for the turnover of thiosulfate could be identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号