首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
V A Klenikova 《Tsitologiia》1978,20(5):586-589
By means of two-wave-length visible cytophotometry, the content of acidic and basic proteins per cell nucleus was shown to increase in CA3 hippocampal neurons only 3 hours after the learning session of conditioned reflex of passive avoidance. The protein content in the nuclei of perineuronal neuroglia cells of CA3 hippocampus increased only 6 hours after the learning session. Biochemical mechanisms dealing with the process of learning are discussed.  相似文献   

2.
The oxidative mechanisms of injury-induced damage of neurons within the spinal cord are not very well understood. We used a model of T8-T9 spinal cord injury (SCI) in the rat to induce neuronal degeneration. In this spinal cord injury model, unilateral avulsion of the spinal cord causes oxidative stress of neurons. We tested the hypothesis that apurinic/apyrimidinic endonuclease (or redox effector factor-1, APE/Ref-1) regulates this neuronal oxidation mechanism in the spinal cord region caudal to the lesion, and that DNA damage is an early upstream signal. The embryonic neural stem cell therapy significantly decreased DNA-damage levels in both study groups - acutely (followed up to 7 days after SCI), and chronically (followed up to 28 days after SCI) injured animals. Meanwhile, mRNA levels of APE/Ref-1 significantly increased after embryonic neural stem cell therapy in acutely and chronically injured animals when compared to acute and chronic sham groups. Our data has demonstrated that an increase of APE/Ref-1 mRNA levels in the caudal region of spinal cord strongly correlated with DNA damage after traumatic spinal cord injury. We suggest that DNA damage can be observed both in lesional and caudal regions of the acutely and chronically injured groups, but DNA damage is reduced with embryonic neural stem cell therapy.  相似文献   

3.
The incorporation of 14C-leucine into the post-mitochondrial supernatant and neuron, glia and myelin-enriched fractions isolated from the rabbit spinal cord was studied after ischaemia and subsequent recirculation. In the cell-free system, incorporation decreased to 55% of the control value after 40 min ischaemia, but proteosynthesis returned to the pre-ischaemic value after 3 h recirculation and remained at this level during further recirculation. The incorporation of amino acids into proteins of neurons and neuroglia differed from the cell-free system and from each other. In the enriched neuronal fraction, protein synthesis fall after ischaemia and also during the first hours of recirculation, but during further recirculation it rose to 60% above the control value. In the enriched glial fraction, specific radioactivity of proteins rose abruptly immediately after ischaemia and by the fourth day there was sixfold increase as compared with control values. The results indicate that the ischaemia-induced decrease in protein synthesis is only transient and that a significant increase occurs in the surviving cell populations, especially the neuroglia. The functional changes caused by spinal cord ischaemia are irreversible, however.  相似文献   

4.
The present communication deals with the cytochemical localization of angiotensinogen (ATG) immunoactivity in the hind-brain and spinal cord of neonatal (1-day-old) and adult (3-month-old pregnant) female rats. In the neonatal hind-brain, the immunoreactive cells were more numerous than in that of adult rats. In the adult rat hind-brain, the number of ATG-positive cells was quite limited in each nucleus. Further, in some nuclei, only neurons or neuroglia were positive, while in others the immunoactivity was observed in both the components. Spinal cords of neonatal rats showed a few undifferentiated ATG-positive cells in the grey matter. Contrary to this, the spinal cord of adult animals contained numerous immunoreactive glial cells in the grey matter, fasciculus cuneatus and fasciculus gracilis. Immunoactivity in the neurons was localized in the Nissl bodies.  相似文献   

5.
1. Ubiquitin immunohistochemistry was used for investigation of time dependent changes of ubiquitin in the nerve cells reacting to ischemic/reperfusion damage. In the rabbit spinal cord ischemia model a period of 30 min ischemia followed by 24 and 72 h of reperfusion caused neuronal degeneration selectively in the ventral horn motor neurons as well as interneurons of the intermediate zone.2. Ubiquitin aggregates were accumulated in the neurons of lamina IX and the neurons of intermediate zone destined to die 72 h after 30 min of the spinal cord ischemia.3. The activation of ubiquitin hydrolytic system is related to a defective homeostasis and could trigger different degenerative processes. Having in mind this, we used EGb 761 to rescue the motor neurons and interneurons against ischemia/reperfusion damage. Our results show that after 30 min of ischemia and 24 or 72 h of reperfusion with EGb 761 pre-treatment for 7 days the vulnerable neurons in the intermediate zone and lamina IX exhibit marked elevation of ubiquitin–positive granules in the cytoplasm, dendrites and nuclei. Abnormal protein aggregates have not been observed in these cells.4. The rabbits were completely paraplegic after 30 min of ischemia and 24 or 72 h of reperfusion. However, after 7 days EGb 761 pre-treatment, 30 min of ischemia and 24 or 72 h of reperfusion the animals did not show paraplegia.5. Evaluated ubiquitin–positive neurons of the L5–L6 segments showed significant decrease in number and significant increase of density after 30 min of ischemia followed by 24 h and mainly 72 h of reperfusion. Ubiquitin immunohistochemistry confirmed the protective effect of EGb 761 against ischemia/reperfusion damage in the rabbit spinal cord.  相似文献   

6.
Abstract— Using a two-wavelength modification of ultraviolet and visible cytospectro-photometric methods, the content of nucleic acids per cell was determined in neuronal cytoplasm and glial satellite cell-bodies from the spinal cord anterior horns in mice and rats. Mice which had been swimming for 3 and 4 h showed an increase in the content of RNA in the spinal motoneurons with no changes in the neuroglia. Stronger stimulation of the nervous system such as electrical skin irritation (20-40 V, approx. 40 impulses/min) for 5 min resulted in an increase of RNA in the motoneurons of rat spinal cord and a decrease in the surrounding glia. Exhausting actions upon the nervous system (60 min irritation of rat paws by the electrical current, acute clonic convulsions in rats injected with cardiazol (pentamethylenetetrazol, metrazol) or initial free motor activity after 3 weeks of restraint of mice) induced a marked decrease of RNA content throughout the whole neuron-neuroglia unit. After stimulation, return to normal amounts of RNA and protein was more rapid in glia than in neurons. After 1-3 days rest the level of RNA was normal in motoneurons, but a decrease in glial RNA was shown. These trace changes in the glia are believed to reflect an adaptation mechanism in the nervous system at the cellular level. The relationship between neuronal and glial compartments within the neuron-neuroglia unit is discussed; a supporting, homeostatic, secondary role of glial metabolism with respect to adequate reconstruction of neuronal metabolism is outlined.  相似文献   

7.
Amyotrophic lateral sclerosis (ALS) is the most common adult onset motor neuron disease. The etiology and pathogenic mechanisms of the disease remain unknown, and there is no effective treatment. Here we show that intrathecal transplantation of human motor neurons derived from neural stem cells (NSCs) in spinal cord of the SOD1G93A mouse ALS model delayed disease onset and extended life span of the animals. When HB1.F3.Olig2 (F3.Olig2) cells, stable immortalized human NSCs encoding the human Olig2 gene, were treated with sonic hedgehog (Shh) protein for 5–7 days, the cells expressed motor neuron cell type-specific phenotypes Hb9, Isl-1 and choline acetyltransferase (ChAT). These F3.Olig2-Shh human motor neurons were transplanted intrathecally in L5–L6 spinal cord of SOD1G93A mice, and at 4 weeks post-transplantation, transplanted F3.Olig2-Shh motor neurons expressing the neuronal phenotype markers NF, MAP2, Hb9, and ChAT were found in the ventral horn of the spinal cord. Onset of clinical signs in ALS mice with F3.Olig2-Shh motor neuron implants was delayed for 7 days and life span of animals was significantly extended by 20 days. Our results indicate that this treatment modality of intrathecal transplantation of human motor neurons derived from NSCs might be of value in the treatment of ALS patients without significant adverse effects.  相似文献   

8.
9.
Erythropoietin has been shown to promote tissue regeneration after ischaemic injury in various organs. Here, we investigated whether Erythropoietin could ameliorate ischaemic spinal cord injury in the mouse and sought an underlying mechanism. Spinal cord ischaemia was developed by cross-clamping the descending thoracic aorta for 7 or 9 min. in mice. Erythropoietin (5000 IU/kg) or saline was administrated 30 min. before aortic cross-clamping. Neurological function was assessed using the paralysis score for 7 days after the operation. Spinal cords were histologically evaluated 2 and 7 days after the operation. Immunohistochemistry was used to detect CD34(+) cells and the expression of brain-derived neurotrophic factor and vascular endothelial growth factor. Each mouse exhibited either mildly impaired function or complete paralysis at day 2. Erythropoietin-treated mice with complete paralysis demonstrated significant improvement of neurological function between day 2 and 7, compared to saline-treated mice with complete paralysis. Motor neurons in erythropoietin-treated mice were more preserved at day 7 than those in saline-treated mice with complete paralysis. CD34(+) cells in the lumbar spinal cord of erythropoietin-treated mice were more abundant at day 2 than those of saline-treated mice. Brain-derived neurotrophic factor and vascular endothelial growth factor were markedly expressed in lumbar spinal cords in erythropoietin-treated mice at day 7. Erythropoietin demonstrated neuroprotective effects in the ischaemic spinal cord, improving neurological function and attenuating motor neuron loss. These effects may have been mediated by recruited CD34(+) cells, and enhanced expression of brain-derived neurotrophic factor and vascular endothelial growth factor.  相似文献   

10.
Primary cultures of mesenchymal cells of axolotl limb blastemas provide a very sensitive in vitro bioassay for studying nerve dependence of newt regeneration. These cells can be stimulated by crude spinal cord extracts of non-amputated animals in a dose-dependent manner up to 60 micrograms protein/ml of culture medium; at this concentration the mitotic index is increased 4-fold. Spinal cord extracts of axolotls 14 days after forelimb amputation (i.e., late bud stage) are more efficient in stimulating blastema cell proliferation (+50%) than extracts of axolotls 7 days after forelimb amputation (i.e., early bud stage) or of axolotls without amputation. In a similar manner, spinal cord extracts of young axolotls 14 days after forelimb amputation, are more stimulatory than older axolotls 14 d after forelimb amputation which regenerate only a very small blastema during the same time. It appears that spinal cord mitogenic activity is enhanced after limb amputation, probably in correlation with blastema cell requirements for limb regeneration.  相似文献   

11.
Experimental cauda equina compression induces HSP70 synthesis in dog   总被引:4,自引:0,他引:4  
The heat shock protein 70 (HSP70) is a key component of the stress response induced by various noxious conditions such as heat, oxygen stress, trauma and infection. In present study we have assessed the consequences of the compression of lower lumbar and sacral nerve roots caused by a multiple cauda equina constrictions (MCEC) on HSP70 immunoreactivity (HSP70-IR) in the dog. Our data indicate that constriction of central processes evokes HSP70 up-regulation in the spinal cord (L7, S1-Co3) as well as in the corresponding dorsal root ganglion cells (DRGs) (L7-S1) two days following injury. A limited number of bipolar or triangular HSP-IR neurons were found in the lateral collateral pathway (LCP) as well as in the pericentral region (lamina X) of the spinal cord. In contrast, a high number of HSP70 exhibiting motoneurons with fine processes appeared in the ventral horn (laminae VIII-IX) of lumbosacral segments. Concomitantly, close to them a few lightly HSP70-positive neuronal somata or cell bodies lacking the HSP70-IR occurred. In the DRGs, HSP70 expression was mildly up-regulated in small and medium-sized neurons and in satellite cells. On the contrary, DRGs from intact or sham-operated dogs did not reveal HSP70 specific neuronal staining. In conclusion, we have demonstrated that the MCEC in dogs mimicking the cauda equina syndrome in clinical settings evokes expression of HSP70 synthesis in specific neurons of the lumbo-sacro-coccygeal spinal cord segments and in small and medium sized neurons of corresponding DRGs. This suggests that HSP70 may play an active role in neuroprotective processes partly by maintaining intracellular protein integrity and preventing the neuronal degeneration in this experimental paradigm.  相似文献   

12.
Spinal cord ischemia belongs to serious and relatively frequent diseases of CNS. The aim of the present study was to find out the vulnerability of nitrergic neurons to 15 min transient spinal cord ischemia followed by 1 and 2 weeks of reperfusion. We studied neuronal nitric oxide synthase (nNOS) and nicotinamide adenine dinucleotide phosphate diaphorase (NADPH-d) in structural elements of lumbosacral spinal cord along its rostrocaudal axis. In addition, a neurological deficit of experimental animals was evaluated. Spinal cord ischemia, performed on the rabbit, was induced by abdominal aorta occlusion using Fogarty catheter introduced into the right femoral artery for a period of 15 min. After surgical intervention the animals survived for 7 and 14 days. nNOS-immunoreactivity (nNOS-IR) was measured by immunohistochemical and NADPHd-positivity by histochemical method, and both immunohistochemical and histochemical stainings were quantified by densitometric analyses. Neurological deficit was evaluated according Zivin′s criteria. The number of nNOS-IR and/or NADPH-d positive neurons and the density of neuropil were markedly increased in superficial dorsal horn (laminae I–III) after 15 min ischemia and 7 days of reperfusion. However, ischemia followed by longer time of survival (14 days) returned the number of nNOS-IR and NADPH-d positive neurons to control. In the pericentral region (lamina X) containing interneurons and crossing fibers of spinal tracts, than in lamina VII and in dorsomedial part of the ventral horn (lamina VIII) we recorded a decreased number of nNOS-IR and NADPH-d positive neurons after both ischemia/reperfusion periods. In the medial portion of lamina VII and dorsomedial part of the ventral horn (lamina VIII) we observed many necrotic loci. This area was the most sensitive to ischemia/reperfusion injury. Fifteen minute ischemia caused a marked deterioration of neurological function of hind limbs, often developing into paraplegia. A quantitative immunohistochemical and histochemical study have shown a strong vulnerability of nitrergic neurons in intermediate zone to transient spinal cord ischemia.  相似文献   

13.
Secondary neurodegeneration takes place in the surrounding tissue of spinal cord trauma and modifies substantially the prognosis, considering the small diameter of its transversal axis. We analyzed neuronal and glial responses in rat spinal cord after different degree of contusion promoted by the NYU Impactor. Rats were submitted to vertebrae laminectomy and received moderate or severe contusions. Control animals were sham operated. After 7 and 30 days post surgery, stereological analysis of Nissl staining cellular profiles showed a time progression of the lesion volume after moderate injury, but not after severe injury. The number of neurons was not altered cranial to injury. However, same degree of diminution was seen in the caudal cord 30 days after both severe and moderate injuries. Microdensitometric image analysis demonstrated a microglial reaction in the white matter 30 days after a moderate contusion and showed a widespread astroglial reaction in the white and gray matters 7 days after both severities. Astroglial activation lasted close to lesion and in areas related to Wallerian degeneration. Data showed a more protracted secondary degeneration in rat spinal cord after mild contusion, which offered an opportunity for neuroprotective approaches. Temporal and regional glial responses corroborated to diverse glial cell function in lesioned spinal cord.  相似文献   

14.
R A Bessen  W P Lynch    J L Portis 《Journal of virology》1995,69(11):7300-7303
The neurovirulent chimeric mouse ecotropic retrovirus FrCasE causes a rapid neurodegenerative disease of the central nervous system (CNS) characterized by the appearance of spongiform lesions in motor areas 10 days after neonatal inoculation. To study the details of the pathogenic process, we examined the ability of an ex vivo spinal cord model to recapitulate disease. Organotypic spinal cord slice cultures were established from IRW mice 7 days after neonatal inoculation. This corresponds to a time when virus expression in the CNS is first detectable but spongiform changes have yet to evolve. Infectivity associated with these cultures peaked at 7 days in vitro and persisted at this level for 6 weeks. FrCasE infection of the spinal cord slices was primarily found associated with microglial cells. Infection of neurons, astrocytes, oligodendroglia, and endothelial cells was not observed; however, significant astrogliosis was found. Despite the presence of extensive microglial infection in close association with spinal motor neurons in organotypic cultures, no virus-specific spongiform degenerative changes were observed. These results suggest that removal of motor neurons from the developing CNS, despite maintaining the local cytoarchitectural relationships, prevents the virus from eliciting its pathological effects. Possible reasons for the interruption of lesion development are discussed.  相似文献   

15.
Embryonic chick spinal cord neurons grown in dissociated cell culture have a high affinity uptake mechanism for choline. We find that, in addition to acetylcholine synthesis, the accumulated choline is used for the synthesis of metabolites such as lipids that are retained in part by conventional fixation techniques. As a result autoradiographic methods can be used to identify the cells that have the uptake mechanism in spinal cord cultures. About 60% of the neurons are labeled by [3H]choline uptake in cultures prepared with spinal cord cells from 4-day-old embryos, and about 40% are labeled in cultures prepared with cord cells from 7-day-old embryos. Neurons that innervate skeletal myotubes in spinal cord-myotube cultures are consistently labeled by [3H]choline uptake. Neurons unlabeled by the procedure are viable: they exclude the dye trypan blue and accumulate 14C-amino acids for protein synthesis. Most of the neurons unlabeled by [3H]choline uptake can instead be labeled by uptake of γ-[3H]aminobutyric acid, and vice versa. These results suggest that high affinity choline uptake can be used to label cholinergic neurons in cell culture, and that at least some populations of noncholinergic neurons are not labeled by the procedure. It cannot yet be concluded, however, that all labeled neurons are cholinergic since more labeled neurons are obtained per cord than would be expected from the number of neurons making up identified cholinergic populations in vivo. A three- to fourfold increase in the amount of high affinity choline uptake is observed between Days 3 and 15 in culture for spinal cord cells obtained from 4-day-old embryos. The number of [3H]choline-labeled neurons in such cultures decreases slightly during the same period, suggesting that the increase in uptake reflects neuronal growth or development rather than an increase in population size. Both the magnitude of the uptake and the number of [3H]choline-labeled neurons are the same for spinal cord cells grown with and without skeletal myotubes.  相似文献   

16.
目的 研究生长休止蛋白7(Gas7)在成年大鼠脊髓和脊神经节的表达.方法 成年SD大鼠12只,采用逆转录聚合酶链反应(RT-PCR)方法、焦油紫染色以及免疫组织化学方法来观察Gas7基因核酸和蛋白在成年SD大鼠脊髓和脊神经节的表达.结果 RT-PCR结果显示,脊髓和脊神经节有较丰富的Gas7 mRNA表达.免疫组化结果显示:与焦油紫染色相对照,脊髓灰质各板层神经元均表达Gas7蛋白,与其它版层相比较,后角Ⅱ版层胶状质的小细胞和前角Ⅸ版层的运动神经元显色较深且数量较多.脊髓白质Gas7免疫阳性反应较弱且分布均匀.脊神经节内大型感觉神经元呈Gas7免疫强阳性反应,中、小型感觉神经元为弱阳性反应.结论 本文首次描述了Gas7在成年大鼠脊髓和脊神经节的表达,为进一步研究Gas7在成年神经系统再生和修复过程中的功能提供形态学基础.  相似文献   

17.
It was shown spectrophotometrically that in Krushinsky-Molodkina and Wistar rats the ratio of the activity of the aerobic H-forms of lactic dehydrogenase (LDH) to the activity of the anaerobic M-forms was higher in the neurons of the cerebral cortex and the Purkinje's cells of the cerebellum and in their glial cells-satellites than in the motor neurons of the anterior horns of the spinal cord and their perineuronal glia. In Krushinsky-Molodkina rats (with genetically-determined high sensitivity to audiogenic convulsions) epileptiform attacks under the effect of sound were accompanied by a marked activation of both the H- and the M-forms of LDH in the cortical neurons in the absence of any shifts in the perineuronal glia. On the contrary, the activity of all the forms of LDH was unchanged in the spinal motor neurons, whereas in the neuroglia cells surrounding these neurons there was a distinct increase in the activity of the H-forms of LDH. In the Purkinje's cells of the cerebellum an increase and in the glial cells- satellites -- a reduction of the activity of the M-forms of LDH in case of convulsions was seen.  相似文献   

18.
Elevation of intracellular heat shock protein (Hsp)70 increases resistance of cells to many physical and metabolic insults. We tested the hypothesis that treatment with Hsc70 can also produce that effect, using the model of axotomy-induced neuronal death in the neonatal mouse. The sciatic nerve was sectioned and in some animals purified bovine brain Hsc70 was applied to the proximal end of the nerve immediately thereafter and again 3 days later. Seven days postaxotomy, the surviving sensory neurons of the lumbar dorsal root ganglion (DRG) and motoneurons of the lumbar ventral spinal cord were counted to assess cell death. Axotomy induced the death of approximately 33% of DRG neurons and 50% of motoneurons, when examined 7 days postinjury. Application of exogenous Hsc70 prevented axotomy-induced death of virtually all sensory neurons, but did not singificantly alter motoneuron death. Thus, Hsc70 may prove to be useful in the repair of peripheral sensory nerve damage.  相似文献   

19.
These studies examined Fos protein expression in spinal cord neurons synaptically activated by stimulation of bladder afferent pathways after cyclophosphamide (CYP)-induced bladder inflammation. In urethan-anesthetized Wistar rats with cystitis, intravesical saline distension significantly (P 相似文献   

20.
骨髓间充质干细胞(Bone marrow mesenchymal stem cells,BMSCs)已被广泛应用于治疗脊髓损伤,但目前对其治疗机制了解甚少。BMSCs被移植至脊髓钳夹损伤模型大鼠,以研究其保护作用。通过LFB(Luxol fast blue)染色、锇酸染色、TUNEL(Td T-mediated d UTP nick-end labeling)染色和透射电镜对白质有髓神经纤维进行观察。免疫印迹检测BMSCs移植对脑源性神经营养因子(Brain derived neurotrophic factor,BDNF)和caspase 3蛋白表达的影响。通过脊髓损伤后1、7、14 d三个时间点移植BMSCs并进行后肢运动评分(Basso,beattie and bresnahan;BBB评分)和CNPase(2′,3′-cyclic-nucleotide 3′-phosphodiesterase)、髓鞘碱性蛋白(Myelin basic protein,MBP)、caspase 3蛋白水平的检测。免疫荧光观察BMSCs移植到受损脊髓后分化情况及CNPase-caspase 3~+共表达情况。骨髓间充质干细胞移植7 d后,部分移植的BMSCs可表达神经元和少突胶质细胞标记物,大鼠后肢运动能力和髓鞘超微结构特征均明显改善。骨髓间充质干细胞移植后BDNF蛋白表达水平增加,caspase 3蛋白表达水平则降低。相对于脊髓损伤后1 d和14 d,7 d移植BMSCs后MBP和CNPase蛋白表达水平最高;caspase 3蛋白表达水平则最低。骨髓间充质干细胞移植后CNPase-caspase 3~+细胞散在分布于脊髓白质。结果表明,急性脊髓损伤后,BMSCs移植到受损脊髓有分化为神经元和少突胶质细胞的倾向,并促进BDNF的分泌介导抗少突胶质细胞凋亡而对神经脱髓鞘病变有保护作用,且最佳移植时间为脊髓损伤后7 d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号