首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Agonist-regulated redistribution of human beta 2-adrenergic receptors was examined in 293 cells. A specific antiserum recognizing the carboxyl-terminal hydrophilic domain of the receptor was developed, characterized, and used for immunocytochemical localization of receptors in fixed cells by conventional fluorescence and confocal fluorescence microscopy. The beta-adrenergic agonist isoproterenol induced redistribution of receptors from the surface of cells into small (less than 1 micron diameter) punctuate accumulations which were detected in cells within 2 min of agonist addition. The time course of receptor redistribution paralleled that of receptor sequestration measured by ligand binding, and receptor redistribution was reversible in the presence of the beta-adrenergic antagonist alprenolol. Optical sections imaged through cells by confocal microscopy localized receptor accumulations within the cytoplasm. To address the question of receptor internalization further, a mutant receptor possessing an engineered antigenic epitope in the amino-terminal hydrophilic domain was constructed, transfected into cells, and localized using both a monoclonal antibody recognizing the epitope tag (receptor ectodomain) and an antiserum recognizing the carboxyl terminus (receptor endodomain). In untreated cells most receptor antigen was detected at the cell surface, as assessed by accessibility to ectodomain antibodies in unpermeabilized specimens. In isoproterenol-treated cells, however, little receptor antigen was detected at the cell surface. Punctate receptor accumulations present in isoproterenol-treated cells were labeled by antibodies only following permeabilization of cells, as expected if these receptor accumulations were intracellular. Finally, internalized beta-adrenergic receptors colocalized with transferrin receptors, which are markers of endosomal membranes. These data provide several lines of evidence establishing that beta-adrenergic receptors undergo ligand-regulated internalization, they suggest that internalized receptors may be recycled back to the cell surface, and they provide the first direct indication that these processes involve the same endosomal membrane system passaged by constitutively recycling receptors.  相似文献   

2.
Continuous incubation of cultured cells with beta-adrenergic agonists results in the desensitization of adrenergic responsiveness accompanied by the down-regulation of cell surface beta-adrenergic receptors (beta AR). Previous studies have relied on measurements of ligand binding activity for the detection of the beta AR in the cell. In the present study, we have raised a monoclonal antibody to a synthetic peptide corresponding to amino acid numbers 226-239 of the hamster beta 2AR. This antibody was used to localize the beta AR in hamster smooth-muscle DDT-1 cells by immunofluorescence, without regard for the ability of the receptor to bind ligands. The beta AR was found to be localized primarily at the plasma membrane of these cells, with a nonhomogeneous pattern of distribution. A rapid loss of beta AR-specific immunofluorescence, which paralleled receptor down-regulation as measured by ligand-binding activity, was seen with beta-adrenergic agonists, but not with antagonists. In addition, a transient increase in fluorescence was observed after short times of exposure of the cells to agonists. This fluorescence increase may reflect a ligand-induced conformational change in the receptor.  相似文献   

3.
A binding assay has been developed to characterize beta-adrenergic receptors on intact L6 muscle cells. The affinity of beta-adrenergic receptors for the radioligand iodohydroxybenzylpindolol (IHYP) was the same in membrane preparations and in intact cells when determined by either equilibrium binding or kinetic analysis. The number of specific IHYP binding sites per cell was approximately the same on intact cells as on membranes. The pharmacological properties of antagonists indicated that the receptors on intact cells were identical to those on membranes. However, the beta-adrenergic receptors on intact cells had a 100-400 fold lower affinity at equilibrium for the agonist isoproterenol than did beta-adrenergic receptors on membranes. This low affinity of the receptor for agonists as measured by inhibition of radioligand binding in intact cells has also been observed in C6 (2) and S49 (3) cells. Our results suggest that beta receptors on intact cells after a 1 minute incubation was similar to the KD value for isoproterenol measured in membranes at equilibrium in the presence of GTP. After 1-2 minutes of exposure to a low concentration of agonist, binding of IHYP was no longer inhibited. These results suggest that agonists rapidly convert the beta receptors on intact cells to a state which has a low affinity for agonists. The affinity of the receptor for antagonists did not change during the incubation.  相似文献   

4.
Recent electrophysiological studies with cell membrane patches of cardiac myocytes and an electrically excitable cell line derived from rat pituitary tumor suggested that voltage activated calcium channels must be phosphorylated to respond to membrane depolarization (Armstrong and Eckert 1986; Trautwein and Kameyama 1986). In view of the "phosphorylation hypothesis" we investigated the adenylate-cyclase activity, the characteristics of beta-adrenergic and calcium channel agonist binding sites in control and desensitized (exposure to isoproterenol) human embryonal cells (HEC), and in fragmented membrane preparations of canine coronary smooth muscle. Our results suggest that down-regulation of the membrane-bound beta-adrenergic receptors, induced by isoproterenol in human embryonal cells and also in adult canine vascular tissue, results in physical translocation of beta-adrenergic binding sites into the light membrane fraction. This phenomenon is accompanied with an increased intracellular concentration of cAMP in and an increased binding of the calcium channel agonist (3H) BAYK 8644 to both HEC and canine smooth muscle membrane preparations. It could be concluded that phosphorylation of beta-adrenergic receptors regulates not only the beta subcellular distribution of the beta receptors but also the availability of calcium channel agonist binding sites in the cellular membrane.  相似文献   

5.
Incubation of 1321N1 human astrocytoma cells with 1 microM isoproterenol rapidly results in the conversion of a portion of the beta-adrenergic receptors to a membrane form that can be separated from markers for the plasma membrane by sucrose density gradient or differential centrifugation. This "light peak" form of the receptor reaches a maximal level within 10 min of incubation of cells with catecholamine. Two types of experiments suggest that the early phase of catecholamine-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase can be separated into at least two reactions. First, the agonist-induced loss of catecholamine-stimulated adenylate cyclase activity precedes the appearance of beta-adrenergic receptors in the light peak fraction by 1-2 min. Second, pretreatment of cells with concanavalin A prior to induction of desensitization blocks the formation of the light peak form of beta-adrenergic receptors without blocking the "uncoupling" reaction as measured by catecholamine-stimulated adenylate cyclase activity. Specificity for the reaction that converts beta-adrenergic receptors to the light peak form is indicated by the lack of a catecholamine-induced alteration in the sucrose density gradient distribution of muscarinic cholinergic receptors, adenylate cyclase or the guanine nucleotide-binding proteins, Ns and Ni. The light peak of beta-adrenergic receptors migrates at a density similar to that of at least a portion of the activity of galactosyltransferase, a marker for Golgi. Enzyme marker activities for lysosomes and endoplasmic reticulum are not associated with this population of beta-adrenergic receptors. Taken together, these and other data suggest that incubation of 1321N1 cells with isoproterenol results in a rapid uncoupling of beta-adrenergic receptors from adenylate cyclase which is followed by a change in the membrane form of the receptor. This latter step most likely represents internalization of receptors into a vesicular form which may then serve as the precursor state from which receptors are eventually lost from the cell.  相似文献   

6.
The responsiveness of a growth-regulated rat 3Y1 cell line and five clones of 3Y1 cells transformed by the highly oncogenic human adenovirus type 12 to the catecholamine hormone (-)-isoproterenol was studied. The untransformed cells contained beta-adrenergic receptors characterized by specific binding of the beta-adrenergic receptor antagonist (-)-[3H]dihydroalprenolol, a 9- to 12-fold increase in cyclic AMP production in intact cells after incubation with 10 microM (-)-isoproterenol, and significantly increased adenylate cyclase (ATP pyrophosphatelyase [cyclizing], EC 4.6.1.1) activity in the presence of the hormone. In contrast, (-)-isoproterenol (10 to 100 microM) had no apparent effect on cyclic AMP production or the basal adenylate cyclase activity in the transformed cell lines. Binding studies revealed that untransformed cells contained approximately 19,400 beta-adrenergic receptor sites per cell. Three transformed cell clones tested showed a three- to fourfold loss of beta-adrenergic receptors.  相似文献   

7.
We investigated the whole cell distribution of the platelet membrane receptor for fibrinogen in surface-activated human platelets. Fibrinogen-labeled colloidal gold was used in conjunction with platelet whole mount preparations to visualize directly the fibrinogen receptor. Unstimulated platelets fail to bind fibrinogen, and binding was minimal in the stages of activation immediately following adhesion. The amount of fibrinogen bound per platelet increased rapidly during the shape changes associated with surface activation until 7,600 +/- 500 labels were present at saturation. Maximal binding of fibrinogen was followed by receptor redistribution. During the early stages of spreading, fibrinogen labels were uniformly distributed over the entire platelet surface, including pseudopodia, but the labels become progressively centralized as the spreading process continued. In well spread platelets, labels were found over the central regions, whereas peripheral areas were cleared of receptors. Receptor redistribution during spreading was accompanied by cytoskeletal reorganization such that a direct correlation was seen between the development of specific ultrastructural zones and the distribution of surface receptor sites suggesting a link between the surface receptors and the cytoskeleton. The association of fibrinogen receptors with contractile elements of the cytoskeleton, which permits coordinated receptor centralization, is important to the understanding of the role of fibrinogen in normal platelet aggregation and clot retraction.  相似文献   

8.
The existence of beta-adrenergic receptors was demonstrated on whole A431 cells as well as A431 membrane preparations by means of binding assays using the hydrophobic 1-[3H]dihydroalprenolol and the hydrophilic antagonist [3H]CGP-12,177 as beta-adrenergic ligands. Binding was stereospecific. The receptors, as shown by competition studies, proved to be of the beta 2-subtype and appeared functional in the stimulation of adenylate cyclase. The number of receptors per cell and the yield of receptor sites/mg membrane protein render the A431 cell a useful tool for the study of human beta-adrenergic receptors.  相似文献   

9.
Reovirus type 3 interfered with the binding of beta-adrenergic antagonist ligands to receptors on Y1 adrenal, C6 glioma, and mouse L cells. This inhibition of beta-adrenergic binding was dose related. Reovirus did not interfere with dopaminergic binding or isoproterenol-induced activation of adenylate cyclase. In addition, reovirus infected Y1 cells, which bind beta-adrenergic antagonist ligands but lack agonist-induced activity. These results suggest that reovirus infection is initiated by binding to antagonist (nonfunctional) domains of the adrenergic receptor complex.  相似文献   

10.
We have examined several features of the regulation of cyclic AMP accumulation in lymphoid cells isolated from peripheral blood of human subjects and in the murine T-lymphoma cell line, S49, S49 cells are unique because of the availability of variant clones with lesions in the pathway of cyclic AMP generation and response. We found that human lymphoid cells prepared at 4 degrees C showed substantially greater cyclic AMP accumulation in response to histamine and the beta-adrenergic agonist isoproterenol than did cells prepared at ambient temperature. The muscarinic cholinergic agonist carbamylcholine and peptide hormone somatostatin failed to inhibit cyclic AMP accumulation in human lymphoid cells and treatment with pertussis toxin (which blocks function of Gi, the guanine nucleotide binding protein that mediates inhibition of adenylate cyclase) only minimally increased cyclic AMP levels in these cells. Thus the Gi component of adenylate cyclase appears to play only a small role in modulating cyclic AMP levels in this mixed population of lymphoid cells. Incubation of whole blood with isoproterenol desensitized human lymphocytes to subsequent stimulation with beta agonist. This desensitization was associated with a redistribution of beta-adrenergic receptors such that a substantial portion of the receptors in intact cells could no longer bind a hydrophilic antagonist. Wild-type S49 lymphoma cells showed a similar redistribution of beta-adrenergic receptors after a few minutes' incubation with agonist. Based on studies in S49 variants, this redistribution is independent of components distal to receptors in the adenylate cyclase/cyclic AMP pathway. By contrast, a more slowly developing, agonist-mediated down-regulation of beta-adrenergic receptors was blunted in variants with defective interaction between receptors and Gs, the guanine nucleotide binding protein that mediates stimulation of adenylate cyclase. Unlike results in human lymphoid cells, S49 cells show a prominent inhibition of cyclic AMP accumulation mediated by Gi; this inhibition is promoted by somatostatin and blocked by pertussis toxin. Inhibition by Gi is unable to account for the marked decrease in ability of the diterpene forskolin to maximally stimulate adenylate cyclase in S49 variants having defective Gs. These results emphasize that both Gs and Gi component are important in modulating cyclic AMP accumulation and receptors linked to adenylate cyclase in S49 lymphoma cells.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
Monolayer cultures of human embryonal smooth muscle cells (HEC) were used to study the heterologous regulation of membrane beta-adrenergic receptors and Ca2+ channels. The relationships between the activation of membrane bound alpha-1 and beta-adrenergic receptors, the cyclic nucleotide response and Ca2+ channel binding were studied in a cellular model of latent virus infection (Herpes simplex, Type-2) in a human embryonal cell line. In the early stage of infection (72 h), there was a significant increase in the cell cAMP content, followed by a decrease in the binding capacity of the beta-adrenergic ligand with an increased total number of the 1,4-dihydropyridine Ca2+ channel agonist (-)-S-(3H)BAYK 8644 binding sites on the cell membrane of infected cells. The increased numbers of Ca2+ agonist binding sites were accompanied by an increased cAMP content in the cells and an increased membrane ATP-ase activity. Down-regulation of (3H)DHA binding, and an increased capacity of Ca2+ agonist binding were found after prolonged exposure of HEC to isoprenaline (10(-5) mol.l-1). Stimulation of alpha-1 adrenergic receptors with phenylephrine (10(-6) mol.l-1) was accompanied with only slight but significant increase in (3H)DHA binding and with a significant reduction in the total number of Ca2+ channel agonist binding sites.  相似文献   

12.
In frog erythrocytes, desensitization of beta-adrenergic receptors is characterized by a decrease in the beta-receptor recognition sites in the plasma membrane and a concomitant increase in the number of this receptor's binding sites in the cytosol. We have documented that this redistribution of the receptor recognition sites reflects the internalization of the surface-bound beta-adrenergic receptors. The present study was addressed to examine whether transglutaminase plays a role in the agonist-mediated internalization of beta-adrenergic receptor recognition sites. Pretreatment of cells with methylamine was found to decrease the internalization and the loss of membrane-bound beta-adrenergic receptors induced by isoproterenol. Methylamine appears to be equally potent in inhibiting transglutaminase activity and in preventing internalization and the receptor loss. The effect of methylamine on soluble and on membrane-bound beta-adrenergic receptors is due to a change in Bmax rather than Kd of these binding sites. Among eight inhibitors of transglutaminase tested, the rank order potency for blocking the enzyme can be correlated with that for preventing the receptor loss and receptor internalization. Moreover, these drug effects on beta-adrenergic receptors are unrelated to the inhibition of isoproterenol-sensitive adenylate cyclase or the binding of [3H]dihydroalprenolol to beta-receptors. These result may lend credence to the view that transglutaminase participates in the internalization and the decrease of membrane-bound receptors during desensitization of beta-adrenergic receptors.  相似文献   

13.
We recently demonstrated that heterologous desensitization of adenylate cyclase in turkey erythrocytes is highly correlated with phosphorylation of the beta-adrenergic receptor. In contrast, little is known of the biochemical mechanisms underlying the homologous form of beta-adrenergic receptor desensitization, which is agonist-specific and not cAMP-mediated. Accordingly, the present studies were undertaken to examine if phosphorylation of the beta-adrenergic receptor is also associated with this form of desensitization in a well studied model system, the frog erythrocyte. Preincubation of these cells with the beta-adrenergic agonist isoproterenol leads to a 45% decline in isoproterenol-stimulated adenylate cyclase activity without significant changes in basal, prostaglandin E1-, NaF-, guanyl-5'-yl-imidodiphosphate-, forskolin-, or MnCl2-stimulated enzyme activities. There is also a 48% decline in [125I]iodocyanopindolol membrane binding sites. Conversely, preincubation of the cells with prostaglandin E1 attenuates only the prostaglandin E1-stimulated enzyme activity and does not affect [125I]iodocyanopindolol binding. Phosphorylation of the beta-adrenergic receptor was assessed by preincubating the cells with 32Pi and desensitizing them, and subsequently purifying the receptors by affinity chromatography. Under basal conditions there is about 0.62 mol of phosphate/mol of receptor whereas after desensitization with isoproterenol this increases to 1.9 mol/mol. This isoproterenol-induced receptor phosphorylation exhibits stereospecificity and is blocked by the beta-adrenergic antagonist propranolol. In addition, preincubation with prostaglandin E1 does not promote beta-adrenergic receptor phosphorylation. These data suggest that receptor phosphorylation is involved in homologous as well as heterologous forms of desensitization and may provide a unifying mechanism for desensitization of adenylate cyclase-coupled hormone receptors.  相似文献   

14.
Abstract: We have characterized the internalization of muscarinic acetylcholine receptors induced by the nitric oxide (NO)-generating compound sodium nitroprusside. When Chinese hamster ovary cells, stably transfected with the human m4 muscarinic receptor subtype, were incubated for 1 h in the presence of 700 µ M sodium nitroprusside, the number of receptors measured in intact cells with the hydrophilic ligand N -[3H]methylscopolamine was reduced by 30%. The effect was dose dependent, beginning with a concentration of sodium nitroprusside as low as 45 µ M . Removal of sodium nitroprusside from the incubation medium did not result in a recovery of the binding sites. The phenomenon was temperature dependent and was blocked by the muscarinic antagonist atropine. No receptor diminution was detected when the number of binding sites was evaluated with the lipophilic antagonist [3H]quinuclidinyl benzilate. This indicates that sodium nitroprusside induces a redistribution of the muscarinic receptors between the plasma membrane and an internal compartment of the cell. Receptor loss was readily reversed by treatment with the sulfhydryl reducing agent diethyldithiocarbamate. Our data provide evidence that muscarinic receptors are internalized by sodium nitroprusside through the oxidation of sulfhydryl groups; they also suggest that NO could play a role in muscarinic receptor desensitization.  相似文献   

15.
After fractionation of rabbit bone marrow into dividing (early) and non-dividing (late) erythroid cells, the adenylate cyclase activity of membrane ghosts was assayed in the presence of guanine nucleotides ((GTP and its analogue p[NH]ppG (guanosine 5'-[beta, gamma-imido]triphosphate))), the beta-adrenergic agonist L-isoprenaline (L-isoproterenol) and the antagonist L-propranolol. Both GTP and p[NH]ppG increased the adenylate cyclase activity of early and late erythroblasts, whereas the stimulating effect of the beta-adrenergic drug L-isoprenaline was limited to the immature dividing bone-marrow cells. The effect of L-isoprenaline was completely inhibited by the antagonist L-propranolol, confirming that the response was due to stimulation of beta-adrenergic receptors on the plasma membrane. The lack of response of non-dividing erythroblasts to beta-adrenergic stimuli is not due to loss of beta-receptors, since both dividing and non-dividing cells bind the selective ligand [125I]iodohydroxybenzylpindolol with almost equal affinities, the apparent dissociation constants, Kd, being 0.91 X 10(-8)M and 1.0 X 10(-8) M respectively. The number of beta-adrenergic receptors per cell was 2-fold higher in the dividing cells. No significant change in binding affinity for GTP and p[NH]ppG during erythroblast development was observed: the dissociation constants of both guanine nucleotides were almost identical with early and late erythroblast membrane preparations [2-3 (X 10(-7) M]. With dividing cells, however, in the presence of L-isoprenaline the dissociation constants of GTP and p[NH]ppG were lower (6 X 10(-8) M). The dose-response curves for isoprenaline competition in binding of [125I]iodohydroxybenzylpindolol by dividing cells showed that the EC50 (effective concentration for half maximum activity) value for isoprenaline was higher in the presence of p[NH]ppG. With non-dividing cells the EC50 value for isoprenaline was equal in the presence and in the absence of p[NH]ppG and similar to that observed with dividing-cell membranes in the presence of the nucleotide. Thus differentiation of rabbit bone-marrow erythroid cells seems to be accompanied by uncoupling of the beta-adrenergic receptors from the adenylate cyclase catalytic protein as well as by a decrease in the number of receptors per cell, but not by changes in the catecholamine and guanine-nucleotide-binding affinities.  相似文献   

16.
Insulin stimulates the accumulation of iron by isolated fat cells by increasing the uptake of diferric transferrin. Analysis of the cell-surface binding of diferric 125I-transferrin indicated that insulin caused a 3-fold increase in the cell surface number of transferrin receptors. This result was confirmed by the demonstration that insulin increases the binding of an anti-rat transferrin receptor monoclonal antibody (OX-26) to the surface of fat cells. The basis of this effect of insulin was examined by investigating the number of transferrin receptors in membrane fractions isolated from disrupted fat cells. Two methods were employed. First the binding isotherm of diferric 125I-transferrin to the isolated membranes was studied. Second, the membranes were solubilized with detergent, and the number of transferrin receptors was measured by immunoblotting using the monoclonal antibody OX-26. It was observed that insulin treatment of intact fat cells resulted in an increase in the number of transferrin receptors located in the isolated plasma membrane fraction of the disrupted fat cells. Furthermore, the increase in the number of plasma membrane transferrin receptors was associated with a concomitant decrease in the transferrin receptor number in a low density microsome fraction previously shown to consist of intracellular membranes. This redistribution of transferrin receptors between cellular membrane fractions in response to insulin is remarkably similar to the regulation by insulin of glucose transporters and type II insulin-like growth factor receptors. We conclude that insulin stimulates fat cell iron uptake by a mechanism that may involve the redistribution of transferrin receptors from an internal membrane compartment (low density microsomes) to the cell surface (plasma membrane).  相似文献   

17.
The regulation of receptors for gonadotropin-releasing hormone (GnRH) by the homologous decapeptide ligand was analyzed in cultured rat anterior pituitary cells. Assay of GnRH receptors in both intact and disrupted cells showed that GnRH binding to gonadotrophs was rapidly followed by dose-dependent loss of sites that was maximal within 1 h. This early loss of GnRH receptors was not dependent on protein synthesis, and was attributable to ligand-induced processing of the peptide binding sites. No loss of GnRH sites was observed after receptor occupancy by a GnRH antagonist, or after target cell activation by exposure to a depolarizing concentration of KCl to stimulate luteinizing hormone release. After their initial down-regulation, GnRH receptors returned to normal and subsequently increased in concentration after 6 h of incubation. The delayed phase of receptor up-regulation was prevented by treatment with cycloheximide or actinomycin D and was calcium-dependent, being induced by 50 mM KCl and by low concentrations of the calcium ionophore, A23187. Conversely, calcium antagonists such as verapamil and MgCl2 impaired the agonist-induced increase of GnRH receptor sites. These findings have demonstrated that pituitary GnRH receptors undergo two distinct phases of regulation after interaction with the homologous ligand. The initial phase of agonist-dependent receptor loss is followed by a postsecretory phase of receptor recruitment that is dependent on protein synthesis. The expression of GnRH receptors can be completely dissociated from gonadotropin secretion, indicating that fusion of luteinizing hormone secretory granules with the plasma membrane is not a major pathway for transport of GnRH receptors to the cell surface in cultured gonadotrophs. Such changes in cell surface GnRH receptors during activation by the peptide agonist are relevant to the alterations in gonadotroph sensitivity that occur in vivo during physiological regulation of the pituitary gland by GnRH.  相似文献   

18.
The number of cardiac beta-adrenergic receptors identified by [3H]dihydroalprenolol binding decreases in a concentration-dependent manner during prolonged administration of isoproterenol. Loss of membrane beta-receptors is paralleled by the appearance of [3H]dihydroalprenolol binding activity in the cytosol. This redistribution of receptors is prevented by colchicine and vinblastine but not lumicolchicine. Cardiac receptor desensitization is, therefore, dependent on microtubules and may be influenced by agents interfering with tubulin polymerization.  相似文献   

19.
Polyclonal antibodies reactive against the guanine nucleotide binding stimulatory protein, Gs, were affinity-purified from two rabbits immunized with a synthetic peptide corresponding to amino acids 28-42 in the alpha-subunit, alpha s. On immunoblots, these antibodies recognized alpha s, but not alpha-subunits from two other guanine nucleotide binding regulatory proteins, Gi and Go. A competitive enzyme-linked immunosorbent assay was developed in which inhibition of antibody binding to peptide-coated microtiter plates was used to quantitate purified Gs or Gs in cholate extracts of cell membranes. Plasma membranes derived from wild type S49 lymphoma cells contained 18.9 +/- 2.3 pmol/mg of membrane protein of alpha s. The same membranes bound 169 +/- 12 fmol/mg of protein of [125I]iodocyanopindolol to beta-adrenergic receptors, indicating that the amount of Gs is far in excess of the amount of beta-adrenergic receptors. Thus, even if every beta-adrenergic receptor molecule were to activate 10 Gs molecules, in order for Gs to be limiting for the receptors to reach their high affinity state, it is likely that compartmentation exists for target cell membrane receptors and Gs. Moreover, a comparison of beta-adrenergic receptor number and Gs levels in several different S49 lymphoma cell mutants having lesions in receptors or Gs argues against a coordinate regulation of beta-adrenergic receptors and Gs.  相似文献   

20.
In vitro incubation of frog erythrocytes with (minus)-isoproterenol, 0.1 mM, at 23 degrees for 10 to 24 hours caused a 63% decline (rho less than 0.001) in the maximum (minus)-isoproterenol-stimulated adenylate cyclase activity in the erythrocyte membranes. Affinity for (minus)-isoproterenol as judged by the concentration which half-maximally stimulated the enzyme was not markedly altered. Basal enzyme activity and stimulation by fluoride or prostaglandin E1 remained unaltered. The number of beta-adrenergic receptor binding sites, assessed by binding studies with the beta-adrenergic antagonist (minus)-[3-H] alprenolol, declined by 50% (rho less than 0.005) in the (minus)-isoproterenol-treated cells. The binding affinity of the sites was not changed. Regulation of the concentration of functionally active beta-adrenergic receptors in membranes may be one of the mechanisms by which chronic exposure to catecholamines desensitizes tissues to beta-adrenergic stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号