首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanical load is an important factor in the differentiation of cells and tissues. To investigate the effects of increased mechanical load on development of muscle and bone, zebrafish were subjected to endurance swim training for 6 h/day for 10 wk starting at 14 days after fertilization. During the first 3 wk of training, trained fish showed transiently increased growth compared with untrained (control) fish. Increased expression of proliferating cell nuclear antigen suggests that this growth is realized in part through increased cell proliferation. Red and white axial muscle fiber diameter was not affected. Total cross-sectional area of red fibers, however, was increased. An improvement in aerobic muscle performance was supported by an increase in myoglobin expression. At the end of 10 wk of training, heart and axial muscle showed increased expression of the muscle growth factor myogenin and proliferating cell nuclear antigen, but there were major differences between cardiac and axial muscle. In axial muscle, expression of the "slow" types of myosin and troponin C was increased, together with expression of erythropoietin and myoglobin, which enhance oxygen transport, indicating a shift toward a slow aerobic phenotype. In contrast, the heart muscle shifts to a faster phenotype but does not become more aerobic. This suggests that endurance training differentially affects heart and axial muscle.  相似文献   

2.
Exercise training improves functional capacity in aged individuals. Whether such training reduces the severity of exercise-induced muscle damage is unknown. The purpose of the present study was to determine the effect of 10 wk of treadmill exercise training on skeletal muscle oxidative capacity and exercise-induced ultrastructural damage in six aged female Quarter horses (>23 yr of age). The magnitude of ultrastructural muscle damage induced by an incremental exercise test before and after training was determined by electron microscopic examination of samples of triceps, semimembranosus, and masseter (control) muscles. Maximal aerobic capacity increased 22% after 10 wk of exercise training. The percentage of type IIa myosin heavy chain increased in semimembranosus muscle, whereas the percentage of type IIx myosin heavy chain decreased in triceps muscle. After training, triceps muscle showed significant increases in activities of both citrate synthase and 3-hydroxyacyl-CoA-dehydrogenase. Attenuation of exercise-induced ultrastructural muscle damage occurred in the semimembranosus muscle at both the same absolute and the same relative workloads after the 10-wk conditioning period. We conclude that aged horses adapt readily to intense aerobic exercise training with improvements in endurance, whole body aerobic capacity, and muscle oxidative capacity, and heightened resistance to exercise-induced ultrastructural muscle cell damage. However, adaptations may be muscle-group specific.  相似文献   

3.
4.
Cardiopulmonary and skeletal muscle effects of combined aerobic and resistance training vs. aerobic training were studied in men with coronary heart disease. Sixteen men with coronary heart disease underwent a cardiopulmonary exercise testing and a quadriceps skeletal muscle fatigue assessment. Patients were divided into two groups and trained in a combined aerobic and resistance or aerobic training group during 7 weeks. Maximal voluntary contraction and isometric endurance time were measured with electromyographic signals recorded from vastus lateralis (VL), rectus femoris (RF) and vastus medialis (VM) during isometric endurance time. Exercise tolerance increased only in the combined group (p < 0.05). Maximal voluntary contraction and isometric endurance time did not change after training in either group but was performed at 5.8% higher force output for the combined group. After training, median frequency values were higher for the VL and VM (p < 0.001) in the aerobic group and also higher for the VL, RF (p < 0.001) and VM (p < 0.05) in the combined group. Combined aerobic and resistance training was more effective to improve exercise tolerance, decrease skeletal muscle fatigue and correct neuromuscular alterations in men with coronary heart disease.  相似文献   

5.
Male Wistar rats were treadmill-trained for 8 weeks using one of the two regimens: with the constant running speed or with alternating high-speed and low-speed intervals. Both training regimens led to an increase of rat aerobic capacities and to a higher citrate synthase activity in the medial head of gastrocnemius muscle. No differences between the effects of two training regimens were observed. However, in contrast to constant-speed training the interval one resulted in myocardium hypertrophy and also in less pronounced changes in diaphragm muscle, such as slow-direction shift of myosin phenotype and reduction of muscle fiber cross-sectional area. Neither of the training regimens had an effect on corticosterone and thyroid hormones levels in rat blood, whereas the interval training resulted in a higher level of testosterone. Anabolic influence of testosterone during interval aerobic training may be favorable for heart hemodynamic capacity and force characteristics of the diaphragm.  相似文献   

6.

Aim

Female cardiac transplant recipients' aerobic capacity is 60% lower than sex and age-predicted values. The effect of exercise training on restoring the impaired aerobic endurance and muscle strength in female cardiac transplant recipients is not known. This study examined the effect that aerobic and strength training have on improving aerobic endurance and muscle strength in female cardiac transplant recipients.

Methods

20 female cardiac transplant recipients (51 ± 11 years) participated in this investigation. The subjects performed a baseline six-minute walk test and a leg-press strength test when they were discharged following cardiac transplantation. The subjects then participated in a 12-week exercise program consisting of aerobic and lower extremity strength training. Baseline assessments were repeated following completion of the exercise intervention.

Results

At baseline, the cardiac transplant recipients' aerobic endurance was 50% lower than age-matched predicted values. The training program resulted in a significant increase in aerobic endurance (pre-training: 322 ± 104 m vs. post-training: 501 ± 99 m, p < 0.05) and leg-press strength (pre-training: 48 ± 16 kg. vs. post-training: 78 ± 27 kg, p < 0.05).

Conclusion

Aerobic and strength training are effective interventions that can partially restore the impaired aerobic endurance and strength found in female cardiac transplant recipients.  相似文献   

7.
The aim of study was to investigate the effect of oral creatine supplementation upon muscle performance and aerobic capacity of the organism. Knee extensor muscles of two groups with 9 subjects in each were subjected to strength training with and without creatine supplementation (Cre and Pla) for 10 weeks, three times a week with an effort of up to 85% of maximal voluntary contraction (MVC). The Cre group received 5 g of creatine monohydrate a day. After 10 weeks strength training, an increase of MVC by 29 and 40% in training (isotonic) regimen was recorded for the Pla and Cre groups respectively. The muscle isokinetic torque increments of 10-11% were obtained in the Pla group at angular velocities corresponding to training velocities, and in the Cre group increments of 11-17% were recorded at all angular velocities tested. No changes were found in the fatigue test by the Pla group, whereas Cre group showed a tendency for an increase. The aerobic and anaerobic capacities of the organism did not decrease in both groups. Thus the creatine supplementation during strength training potentates an increase of force-velocity characteristics of trained muscle group without impeding aerobic capacity of the organism.  相似文献   

8.
The purpose of this study was to determine if the type and intensity of aerobic training affects performance in a subsequent strength-training session after varying periods of recovery. Sixteen male subjects participated in the study and were divided into 2 groups based on aerobic training, high-intensity intervals (MAX n = 8) and continuous submaximal (SUB n = 8). Each subject performed 4 sets of both bench press and leg press at approximately 75% 1 repetition maximum (1RM) following aerobic training with recovery periods of 4, 8, and 24 hours, as well as once in a control condition. Both the 4- and 8-hour conditions resulted in fewer total leg press repetitions than the control and 24-hour conditions. There was no difference between both the control and 24-hour conditions. No main effect was shown with respect to the type of aerobic training. It was concluded that when aerobic training precedes strength training, the volume of work that can be performed is diminished for up to 8 hours. This impairment appears to be localized to the muscle groups involved in the aerobic training.  相似文献   

9.
The adaptation of muscle structure, power output, and mass-specific rate of maximal O2 consumption (VO2max/Mb) with endurance training on bicycle ergometers was studied for five male and five female subjects. Biopsies of vastus lateralis muscle and VO2max determinations were made at the start and end of 6 wk of training. The power output maintained on the ergometer daily for 30 min was adjusted to achieve a heart rate exceeding 85% of the maximum for two-thirds of the training session. It is proposed that the observed preferential proliferation of subsarcolemmal vs. interfibrillar mitochondria and the increase in intracellular lipid deposits are two possible mechanisms by which muscle cells adapt to an increased use of fat as a fuel. The relative increase of VO2max/Mb (14%) with training was found to be smaller by more than twofold than the relative increase in maximal maintained power (33%) and the relative change in the volume density of total mitochondria (+40%). However, the calculated VO2 required at an efficiency of 0.25 to produce the observed mass-specific increase in maximal maintained power matched the actual increase in VO2max/Mb (8.0 and 6.5 ml O2 X min-1 X kg-1, respectively). These results indicate that despite disparate relative changes the absolute change in aerobic capacity at the local level (maintained power) can account for the increase in aerobic capacity observed at the general level (VO2max).  相似文献   

10.
The morphology and the effect of an endurance training programme on tonic muscle fibres were studied in chub Leuciscus cephalus , by means of histochemistry and immunohistochemistry, electronmicroscopy and morphometry/stereology. Location and distribution, SDH- and mATPase-activity, reaction to an anti-tonic myosin antibody and ultrastructural features of the fibre type were investigated. With regard to training conditions, fibre size was not significantly affected. However, an increase in the volume densities of mitochondria, lipid and myofibrils can be observed, suggesting a training influence on the aerobic capacity of the so-called tonic muscle fibres. Based on the quantitative findings, the fine structure and the response to training, similarities with intermediate muscle fibres and the functional role of these so-called tonic muscle fibres are discussed.  相似文献   

11.

Aim

Female cardiac transplant recipients'' aerobic capacity is 60% lower than sex and age-predicted values. The effect of exercise training on restoring the impaired aerobic endurance and muscle strength in female cardiac transplant recipients is not known. This study examined the effect that aerobic and strength training have on improving aerobic endurance and muscle strength in female cardiac transplant recipients.

Methods

20 female cardiac transplant recipients (51 ± 11 years) participated in this investigation. The subjects performed a baseline six-minute walk test and a leg-press strength test when they were discharged following cardiac transplantation. The subjects then participated in a 12-week exercise program consisting of aerobic and lower extremity strength training. Baseline assessments were repeated following completion of the exercise intervention.

Results

At baseline, the cardiac transplant recipients'' aerobic endurance was 50% lower than age-matched predicted values. The training program resulted in a significant increase in aerobic endurance (pre-training: 322 ± 104 m vs. post-training: 501 ± 99 m, p < 0.05) and leg-press strength (pre-training: 48 ± 16 kg. vs. post-training: 78 ± 27 kg, p < 0.05).

Conclusion

Aerobic and strength training are effective interventions that can partially restore the impaired aerobic endurance and strength found in female cardiac transplant recipients.Exercise training is an effective intervention that can partially restore the impaired aerobic capacity and musculoskeletal fitness (i.e. muscle strength) found in cardiac transplant recipients [1,2]. However, previous reports have focused exclusively on the effects of exercise training in men. Therefore, the effect of exercise training on these outcomes in female cardiac transplant recipients is not known [2-7]. Importantly, a majority of female cardiac transplant recipients do not engage in regular physical activity leading to increased levels of fatigue, poor functional status and reduced exercise capacity [8-10]. Based on this rationale, the aim of this study is to examine the effect that exercise training has on improving aerobic endurance (i.e. distance walked in six-minutes) and lower extremity muscle strength in female cardiac transplant recipients. We hypothesized that exercise training would be a feasible and effective intervention to improve aerobic endurance and lower extremity strength in female cardiac transplant recipients.  相似文献   

12.
Regular aerobic exercise reduces risk of cardiovascular disease far more effectively than any pharmaceutical agent. The precise mechanisms contributing to these health benefits are unknown. Currently, much of our knowledge regarding the molecular regulators of skeletal muscle phenotype remodeling in response to muscle activity is derived from rodent models. Over the past five years large scale gene analysis has emerged as a promising research strategy for studying complex processes in human tissue. This review will principally discuss the application of large scale gene expression profiling to study the molecular responses to longitudinal aerobic exercise training studies in humans. The focus is largely on the Affymetrix technology platform, as this can be most easily compared, in a quantitative manner, across laboratories. Indeed, there are compelling reasons to adopt a common standard to obtain maximum synergy across complex, expensive and invasive human studies. Direct comparisons between array data sets can be made, and these should be considered novel 'experiments', often providing great insight into disease mechanisms. Weaknesses in existing human studies are identified and future objectives are discussed.  相似文献   

13.
The aim of this study was to investigate the effects of concurrent training on endurance capacity and dynamic neuromuscular economy in elderly men. Twenty-three healthy men (65 ± 4 years) were divided into 3 groups: concurrent (CG, n = 8), strength (SG, n = 8), and aerobic training group (EG, n = 7). Each group trained 3 times a week for 12 weeks, strength training, aerobic training, or both types of training in the same session. The maximum aerobic workload (Wmax) and peak oxygen uptake (VO2peak) of the subjects were evaluated on a cycle ergometer before and after the training period. Moreover, during the maximal test, muscle activation was measured at each intensity by means of electromyographic signals from the vastus lateralis (VL), rectus femoris (RF), biceps femoris long head, and gastrocnemius lateralis to determine the dynamic neuromuscular economy. After training, significant increases in VO2peak and Wmax were only found in the CG and EG (p < 0.05), with no difference between groups. Moreover, there was a significant decrease in myoelectric activity of the RF muscle at 50 (EG), 75 and 100 W (EG and CG) and in the VL for the 3 groups at 100 W (p < 0.05). No change was seen in the electrical signal from the lateral gastrocnemius muscle and biceps femoris. The results suggest specificity in adaptations investigated in elderly subjects, because the most marked changes in the neuromuscular economy occurred in the aerobically trained groups.  相似文献   

14.
Concurrent exercise combines different modes of exercise (e.g., aerobic and resistance) into one training protocol, providing stimuli meant to increase muscle strength, aerobic capacity and mass. As disuse is associated with decrements in strength, aerobic capacity and muscle size concurrent training is an attractive modality for rehabilitation. However, interference between the signaling pathways may result in preferential improvements for one of the exercise modes. We recruited 18 young adults (10 ♂, 8 ♀) to determine if order of exercise mode during concurrent training would differentially affect gene expression, protein content and measures of strength and aerobic capacity after 2 weeks of knee-brace induced disuse. Concurrent exercise sessions were performed 3x/week for 6 weeks at gradually increasing intensities either with endurance exercise preceding (END>RES) or following (RES>END) resistance exercise. Biopsies were collected from the vastus lateralis before, 3 h after the first exercise bout and 48 h after the end of training. Concurrent exercise altered the expression of genes involved in mitochondrial biogenesis (PGC-1α, PRC, PPARγ), hypertrophy (PGC-1α4, REDD2, Rheb) and atrophy (MuRF-1, Runx1), increased electron transport chain complex protein content, citrate synthase and mitochondrial cytochrome c oxidase enzyme activity, muscle mass, maximum isometric strength and VO2peak. However, the order in which exercise was completed (END>RES or RES>END) only affected the protein content of mitochondrial complex II subunit. In conclusion, concurrent exercise training is an effective modality for the rehabilitation of the loss of skeletal muscle mass, maximum strength, and peak aerobic capacity resulting from disuse, regardless of the order in which the modes of exercise are performed.  相似文献   

15.
The effect of an endurance training program lasting 17 weeks was studied in two cyprinid species, Chondrostoma nasus (L.) and Leuciscus cephalus (L.). Red, intermediate and white axial muscle were investigated. Morphometrical analysis revealed that training induced, in both species, increased red and intermediate muscle mass, fibre diameter and capillarization. Differences between species in the response to training were observed for volume densities of mitochondria and lipid. In contrast to C. nasus, L. cephalus show higher values for these compartments in red and intermediate fibres. The results are considered adaptational changes which increase the aerobic capacity of red and intermediate muscle fibres to meet higher sustained swimming activities.  相似文献   

16.
Monodelphis domestica (Marsupialia: Didelphidae) was used as a model animal to investigate and compare muscle adaptation to exercise training and cold exposure. The experimental treatment consisted of four groups of animals: either warm or cold acclimation temperature and with or without endurance exercise training. Maximal aerobic capacity during a running VO2max test in the warm-exercised or cold-exposed (with or without exercise) groups was about 130 mL O(2)/kg/min, significantly higher than the warm-acclimated controls at 113.5 mL O(2)/kg/min. Similarly, during an acute cold challenge (VO2summit), maximal aerobic capacity was higher in these three experimental groups at approximately 95 mL O(2)/kg/min compared with 80.4 mL O(2)/kg/min in warm-acclimated controls. Respiratory exchange ratio was significantly lower (0.89-0.68), whereas relative heart mass (0.52%-0.73%) and whole-body muscle mitochondrial volume density (2.59 to 3.04 cm(3)) were significantly higher following cold exposure. Chronic cold exposure was a stronger stimulus than endurance exercise training for tissue-specific adaptations. Although chronic cold exposure and endurance exercise are distinct challenges, physiological adaptations to each overlap such that the capacities for aerobic performance in response to both cold exposure and running are increased by either or both treatments.  相似文献   

17.
Federal law prohibits pre-employment physical examination of firefighter recruits, but these workers must perform intense exercise in arduous environments. Components of physical fitness of rookie firefighters (n = 115; 104 men, mean +/- SD: age = 28.3 +/- 4.3 years; height = 1.76 +/- 0.07 m; weight = 83.2 +/- 13.9 kg; percent body fat = 17 +/- 8%) were measured upon being hired and following a 16-week exercise training program (1 h.d(-1), 3 d.wk(-1)) designed to improve physical fitness. Maximum aerobic capacity (VO2max) was estimated from submaximal cycle ergometry, body composition from skinfold tests, flexibility from a sit and reach test, strength by hand grip dynamometry, and muscle endurance by a push-up test. The results are as follows (*, p 相似文献   

18.
19.
Aging in humans is associated with loss of lean body mass, but the causes are incompletely defined. Lean tissue mass and function depend on continuous rebuilding of proteins. We tested the hypotheses that whole body and mixed muscle protein metabolism declines with age in men and women and that aerobic exercise training would partly reverse this decline. Seventy-eight healthy, previously untrained men and women aged 19-87 yr were studied before and after 4 mo of bicycle training (up to 45 min at 80% peak heart rate, 3-4 days/wk) or control (flexibility) activity. At the whole body level, protein breakdown (measured as [13C]leucine and [15N]phenylalanine flux), Leu oxidation, and protein synthesis (nonoxidative Leu disposal) declined with age at a rate of 4-5% per decade (P < 0.001). Fat-free mass was closely correlated with protein turnover and declined 3% per decade (P < 0.001), but even after covariate adjustment for fat-free mass, the decline in protein turnover with age remained significant. There were no differences between men and women after adjustment for fat-free mass. Mixed muscle protein synthesis also declined with age 3.5% per decade (P < 0.05). Exercise training improved aerobic capacity 9% overall (P < 0.01), and mixed muscle protein synthesis increased 22% (P < 0.05), with no effect of age on the training response for either variable. Fat-free mass, whole body protein turnover, and resting metabolic rate were unchanged by training. We conclude that rates of whole body and muscle protein metabolism decline with age in men and women, thus indicating that there is a progressive decline in the body's remodeling processes with aging. This study also demonstrates that aerobic exercise can enhance muscle protein synthesis irrespective of age.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号