首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A collection of 313 motile aeromonads isolated at Danish rainbow trout farms was analyzed to identify some of the genes involved in high levels of antimicrobial resistance found in a previous field trial (A. S. Schmidt, M. S. Bruun, I. Dalsgaard, K. Pedersen, and J. L. Larsen, Appl. Environ. Microbiol. 66:4908-4915, 2000), the predominant resistance phenotype (37%) being a combined oxytetracycline (OTC) and sulphadiazine/trimethoprim resistance. Combined sulphonamide/trimethoprim resistance (135 isolates) appeared closely related to the presence of a class 1 integron (141 strains). Among the isolates containing integrons, four different combinations of integrated resistance gene cassettes occurred, in all cases including a dihydrofolate reductase gene and a downstream aminoglycoside resistance insert (87 isolates) and occasionally an additional chloramphenicol resistance gene cassette (31 isolates). In addition, 23 isolates had "empty" integrons without inserted gene cassettes. As far as OTC resistance was concerned, only 66 (30%) out of 216 resistant aeromonads could be assigned to resistance determinant class A (19 isolates), D (n = 6), or E (n = 39); three isolates contained two tetracycline resistance determinants (AD, AE, and DE). Forty OTC-resistant isolates containing large plasmids were selected as donors in a conjugation assay, 27 of which also contained a class 1 integron. Out of 17 successful R-plasmid transfers to Escherichia coli recipients, the respective integrons were cotransferred along with the tetracycline resistance determinants in 15 matings. Transconjugants were predominantly tetA positive (10 of 17) and contained class 1 integrons with two or more inserted antibiotic resistance genes. While there appeared to be a positive correlation between conjugative R-plasmids and tetA among the OTC-resistant aeromonads, tetE and the unclassified OTC resistance genes as well as class 1 integrons were equally distributed among isolates with and without plasmids. These findings indicate the implication of other mechanisms of gene transfer besides plasmid transfer in the dissemination of antibiotic resistance among environmental motile aeromonads.  相似文献   

2.
3.
Aims:  To determine the antimicrobial susceptibility profiles, distribution of class 1 integrons, virulence genes and genes encoding resistance to tetracycline ( tetA , tetC , tetD and tetE ) and streptomycin ( strA , strB and aadA1 ) in Salmonella recovered from turkeys.
Methods and Results:  The antimicrobial susceptibility of 80 isolates was determined using National Antimicrobial Resistance Monitoring System. The distribution of resistance genes, class 1 integrons and virulence genes was determined using PCR. Resistances to tetracycline (76·3%) and streptomycin (40%) were common. Sixty-two (77·5%) isolates displayed resistance against one or more antimicrobials and 33 were multi-drug resistant. tetA was detected in 72·5% of the isolates, while tetC , tetD and tetE were not detected. The strA and strB genes were detected in 73·8% of the isolates. Two isolates possessed class 1 integrons of 1 kb in size, containing the aadA1 gene conferring resistance to streptomycin and spectinomycin. Fourteen of the virulence genes were detected in over 80% of the isolates.
Conclusions:  This study shows that continuous use of tetracycline and streptomycin in poultry production selects for resistant strains. The Salmonella isolates recovered possess significant ability to cause human illness.
Significance and Impact of the Study:  Information from this study can be employed in guiding future strategies for the use of antimicrobials in poultry production.  相似文献   

4.
AIMS: To determine the genetic determinants responsible for tetracycline resistance in oxytetracycline resistant bacteria from aquaculture sources in Australia. METHODS AND RESULTS: Twenty of 104 (19%) isolates tested were resistant to oxytetracycline (MIC > or = 16 microg ml(-1)). Using polymerase chain reaction (PCR) amplification, one or more tet genes were detected in 15/20 (75%) isolates tested, but none were found in 5/20 (25%). tetM (50%) was the most common determinant, followed by tetE (45%), tetA (35%) and tetD (15%). Five of 12 oxytetracycline resistant isolates studied were able to transfer their R-plasmid to Escherichia coli recipients of chicken, pig and human origin. tetA, tetD and tetM were found to be transferred while tetE was not transferred. Southern hybridization and PCR were used to confirm transfer of determinants. CONCLUSIONS: Bacterial isolates from aquaculture sources in Australia harbour a variety of tetracycline resistance genes, which can be transferred to other bacteria of different origin. SIGNIFICANCE AND IMPACT OF THE STUDY: Bacteria from aquaculture sources in Australia contribute to the resistance gene pool reservoir. The in vitro transfer of tetracycline R-plasmid from aquatic bacteria to E. coli isolates from various sources is an indication of the potential public health risk associated with these resistance determinants.  相似文献   

5.
Nonselected and natural populations of Escherichia coli from 12 animal sources and humans were examined for the presence and types of 14 tetracycline resistance determinants. Of 1,263 unique E. coli isolates from humans, pigs, chickens, turkeys, sheep, cows, goats, cats, dogs, horses, geese, ducks, and deer, 31% were highly resistant to tetracycline. More than 78, 47, and 41% of the E. coli isolates from pigs, chickens, and turkeys were resistant or highly resistant to tetracycline, respectively. Tetracycline MICs for 61, 29, and 29% of E. coli isolates from pig, chickens, and turkeys, respectively, were >/=233 micro g/ml. Muliplex PCR analyses indicated that 97% of these strains contained at least 1 of 14 tetracycline resistance genes [tetA, tetB, tetC, tetD, tetE, tetG, tetK, tetL, tetM, tetO, tetS, tetA(P), tetQ, and tetX] examined. While the most common genes found in these isolates were tetB (63%) and tetA (35%), tetC, tetD, and tetM were also found. E. coli isolates from pigs and chickens were the only strains to have tetM. To our knowledge, this represents the first report of tetM in E. coli.  相似文献   

6.
7.
Escherichia coli K-12 strains that carry the Tn10 tetracycline resistance determinant (tet) on multicopy plasmids are hypersensitive to 5a,6-anhydrotetracycline and heated chlortetracycline, two tetracycline derivatives that are relatively more effective as inducers of tet gene expression than as inhibitors of bacterial growth. Twenty spontaneous mutations that confer resistance to anhydrotetracycline (Atr) and resistance to heated chlortetracycline (Ctr) were isolated and characterized. All of these Atr mutations are located in the Tn10 tet region; the majority (18 of 20) have no effect on tetR repressor function. Atr mutations can increase, reduce, or eliminate the phenotypic expression of plasmid tetracycline resistance (Tcr). IS insertions that result in an Atr Tcs phenotype are clustered in a 150-base-pair promoter-proximal region of the tetA resistance gene. Some Atr mutations reduce expression of the tetA gene by altering either the tetR repressor or the tetA promoter. In addition, it appears that E. coli cannot tolerate constitutive expression of the wild-type tetA gene from a multicopy plasmid containing a tetR deletion. These observations support the proposal that high level expression of the 36-kilodalton tetA gene product inhibits the growth of E. coli. We speculate that this inhibition is related to the interaction of the tetA gene product with the cytoplasmic membrane.  相似文献   

8.
T Ohnuki  T Katoh  T Imanaka    S Aiba 《Journal of bacteriology》1985,161(3):1010-1016
Two tetracycline resistance genes of Streptomyces rimosus, an oxytetracycline producer, were cloned in Streptomyces griseus by using pOA15 as a vector plasmid. Expression of the cloned genes, designated as tetA and tetB was inducible in S. griseus as well as in the donor strain. The tetracycline resistance directed by tetA and tetB was characterized by examining the uptake of tetracycline and in vitro polyphenylalanine synthesis by the sensitive host and transformants with the resultant hybrid plasmids. Polyphenylalanine synthesis with crude ribosomes and the S150 fraction from S. griseus carrying the tetA plasmid was resistant to tetracycline, and, by a cross-test of ribosomes and S150 fraction coming from both the sensitive host and the resistant transformant, the resistance directed by tetA was revealed to reside mainly in crude ribosomes and slightly in the S150 fraction. However, the resistance in the crude ribosomes disappeared when they were washed with 1 M ammonium chloride. These results suggest that tetA specified the tetracycline resistance of the machinery for protein synthesis not through ribosomal subunits, but via an unidentified cytoplasmic factor. In contrast, S. griseus carrying the tetB plasmid accumulated less intracellular tetracycline than did the host, and the protein synthesis by reconstituting the ribosomes and S150 fraction was sensitive to the drug. Therefore, it is conceivable that tetB coded a tetracycline resistance determinant responsible for the reduced accumulation of tetracycline.  相似文献   

9.
10.
The tetracycline resistance determinant in transposon Tn10 consists of two genes, the tetA resistance gene and the tetR repressor gene, that are transcribed from divergent overlapping promoters. We determined the levels of pulse-labeled tet messenger RNA in Escherichia coli strains with the Tn10 tet genes on a multicopy plasmid. Addition of the inducer 5a,6-anhydrotetracycline results in a 270- to 430-fold increase in tetA mRNA and a 35- to 65-fold increase in tetR mRNA. As judged by the relative molar amounts of tetA and tetR mRNA synthesized under maximally inducing conditions, the tetA promoter (tetPA) is 7 to 11 times more active than the two tetR promoters (tetPR1 and tetPR2) combined. We characterized ten mutations in tetPA, including nine single-base-pair substitutions and a 30-base-pair deletion. All of the single-base-pair changes reduce the agreement with the consensus sequence for promoters recognized by E. coli RNA polymerase. Mutations in highly conserved nucleotides result in a 200- to 600-fold reduction in tetPA activity in vivo. Unexpectedly, tetPA mutations reduce by two- to fourfold the combined activity in vivo of tetPR1 and tetPR2, in spite of their locations outside the -35 and -10 regions of tetPR1 and tetPR2. For two tetPA mutations, the negative effect on tetPR activity was also demonstrated in tetR- tetPR-lacZ operon fusion strains, thus eliminating the possibility that it is due to variations in either plasmid copy-number or induction efficiency. The pleiotropic effects of tetPA mutations are discussed in terms of the expectation that the overlapping tet promoters compete for RNA polymerase.  相似文献   

11.
We describe here the construction of a plasmid that combines positive selection with tetracycline resistance. The vector comprises a modified version of the gene encoding the cytosine-specific DNA methyltransferase MspI and a modified form of the pBR322 tetA(C) gene. The combination of these two genes facilitates the selection of recombinant plasmids in broth cultures, thereby eliminating the need for bacterial plating.  相似文献   

12.
Eighty-one tetracycline-resistant Aeromonas sp. strains were isolated from farm-raised catfish. Morphological and biochemical characteristics indicated that 23 of the 81 aeromonads were Aeromonas hydrophila, 7 isolates were Aeromonas trota, 6 isolates were Aeromonas caviae, 42 isolates were Aeromonas veronii, and 3 isolates were Aeromonas jandaei. However, the AluI and MboI restriction fragment length polymorphism (RFLP) patterns of the PCR-amplified 1.4-kb 16S rRNA gene from all 81 tetracycline-resistant aeromonads from catfish were identical to the RFLP banding patterns of A. veronii ATCC 35626, indicating that all 81 isolates were strains of A. veronii. A multiplex PCR assay successfully amplified the 5 tetracycline-resistant genes (tetA to E) from the genomic DNA of all 81 isolates. The assay determined that tetE was the dominant gene occurring in 73/81 (90.0%) of the aeromonads. Plasmids (2.0 to 20 kb) were isolated from 33 of the 81 isolates. Dendrogram analysis of the SpeI pulsed-field gel electrophoresis identified 15 distinct macrorestriction patterns among the isolates. Our results indicate the need for use of 16S rRNA in the identification of Aeromonas spp. and the prevalence of catfish as a reservoir of tet genes.  相似文献   

13.
Resistances to tetracycline and mercury were identified in an environmental strain of Serratia marcescens isolated from a stream highly contaminated with heavy metals. As a step toward addressing the mechanisms of coselection of heavy metal and antibiotic resistances, the tetracycline resistance determinant was cloned in Escherichia coli. Within the cloned 13-kb segment, the tetracycline resistance locus was localized by deletion analysis and transposon mutagenesis. DNA sequence analysis of an 8.0-kb region revealed a novel gene [tetA(41)] that was predicted to encode a tetracycline efflux pump. Phylogenetic analysis showed that the TetA(41) protein was most closely related to the Tet(39) efflux protein of Acinetobacter spp. yet had less than 80% amino acid identity with known tetracycline efflux pumps. Adjacent to the tetA(41) gene was a divergently transcribed gene [tetR(41)] predicted to encode a tetracycline-responsive repressor protein. The tetA(41)-tetR(41) intergenic region contained putative operators for TetR(41) binding. The tetA(41) and tetR(41) promoters were analyzed using lacZ fusions, which showed that the expression of both the tetA(41) and tetR(41) genes exhibited TetR(41)-dependent regulation by subinhibitory concentrations of tetracycline. The apparent lack of plasmids in this S. marcescens strain, as well as the presence of metabolic genes adjacent to the tetracycline resistance locus, suggested that the genes were located on the S. marcescens chromosome and may have been acquired by transduction. The cloned Tet 41 determinant did not confer mercury resistance to E. coli, confirming that Tet 41 is a tetracycline-specific efflux pump rather than a multidrug transporter.  相似文献   

14.
Tetracycline resistance of three Bacteroides fragilis strains was shown to be inducible by subinhibitory concentrations of tetracycline. Tetracycline resistance markers could be transferred to another B. fragilis strain by filter mating. The transferability was inducible by subinhibitory concentrations of tetracycline and did not take place in the absence of tetracycline. The optimum concentration of tetracycline for induction of transfer was about 2 microgram/ml. The transfer was shown to be a conjugation-like process requiring cell-to-cell contact between donor and recipient. Screening of parental donor strains for the presence of plasmid DNA did not demonstrate any detectable plasmids in two of the strains. A 3.0-megadalton plasmid, designated pBY5, was present in the third donor strain. Mobilization of pBY5 by another plasmid (pBF4) showed that pBY5 did not carry the genes responsible for tetracycline resistance. It appears that the genes responsible for resistance to tetracycline as well as those responsible for conjugal transfer may be carried on the chromosome in all three donor strains.  相似文献   

15.
Deletions in the tet genes derived from Tn10 were formed from different tet::Tn5 insertion mutations by removing DNA sequences located between a HindIII site in Tn5 and a HindIII site adjacent to the tet genes. Tetracycline-sensitive point mutations were mapped in recombination tests with the deletions and were thus aligned with the genetic and physical map of the tet region. Plasmids carrying point mutations were tested for complementation with derivatives of pDU938, a plasmid carrying cloned tet genes derived from Tn10 which had been inactivated by Tn5 insertions. Complementation occurred between promoter-proximal tet point mutations and distal tet::Tn5 insertions, suggesting the existence of two structural genes, tetA and tetB. These results, together with the analysis of polypeptides in minicells harboring pDU938tet::Tn5 mutants, suggested that tetA and tetB are expressed coordinately in an operon. The tetB gene encodes the previously characterized 36,000-dalton cytoplasmic membrane TET protein, but the product of tetA was not identified. Point mutations in either tetA or tetB led to the defective expression of the resistance mechanism involving tetracycline efflux. It is suggested that the tetA and tetB products interact cooperatively in the membrane to express resistance.  相似文献   

16.
A total of 318 Escherichia coli isolates obtained from diarrheic and healthy pigs in Ontario from 2001 to 2003 were examined for their susceptibility to 19 antimicrobial agents. They were tested by PCR for the presence of resistance genes for tetracycline, streptomycin, sulfonamides, and apramycin and of 12 common virulence genes of porcine E. coli. Antimicrobial resistance frequency among E. coli isolates from swine in Ontario was moderate in comparison with other countries and was higher in isolates from pigs with diarrhea than in isolates from healthy finisher pigs. Resistance profiles suggest that cephamycinases may be produced by > or = 8% of enterotoxigenic E. coli (ETEC). Resistance to quinolones was detected only in enterotoxigenic E. coli (< or = 3%). The presence of sul3 was demonstrated for the first time in Canada in porcine E. coli isolates. Associations were observed among tetA, sul1, aadA, and aac(3)IV and among tetB, sul2, and strA/strB, with a strong negative association between tetA and tetB. The paa and sepA genes were detected in 92% of porcine ETEC, and strong statistical associations due to colocation on a large plasmid were observed between tetA, estA, paa, and sepA. Due at least in part to gene linkages, the distribution of resistance genes was very different between ETEC isolates and other porcine E. coli isolates. This demonstrates that antimicrobial resistance epidemiology differs significantly between pathogenic and commensal E. coli isolates. These results may have important implications with regards to the spread and persistence of resistance and virulence genes in bacterial populations and to the prudent use of antimicrobial agents.  相似文献   

17.
The occurrence of drug resistance and plasmid-mediated transferability was investigated in 170 strains belonging to eight bacterial groups isolated from cultured rainbow trout. It was found that 87.6% of the strains were resistant to at least one drug, with the highest percentages of resistance being detected for ampicillin (54.7%), sulfadiazine (46.5%), nitrofurantoin (38.2%), and chloramphenicol (37.0%). Six enterobacteria, two Vibrio, and one Aeromonas isolate transferred resistance factors to Escherichia coli K-12. The most common transmissible R factor determined resistance to chloramphenicol and sulfadiazine, demonstrating an association between a specific plasmid and the resistance pattern transferred. The presence of chloramphenicol in fish food was detected by bioassay. In general, transfer frequencies were similar in primary and secondary matings, which indicate the potential water-borne dissemination of these R plasmids.  相似文献   

18.
The structural gene region for tetracycline resistance on Tn10 consists of two complementation groups, tetA and tetB (M. S. Curiale and S. B. Levy, J. Bacteriol. 151:209-215, 1982). Using a series of deletion mutants, we have determined that the tetA region is 450 to 600 base pairs long and that the tetB region, which is adjacent to tetA, is 600 to 750 base pairs long. Point mutations in either tetA or tetB affected the amount and size of the inducible inner-membrane Tet protein synthesized in Escherichia coli maxicells. Moreover, deletions in these regions led to the synthesis of an appropriately smaller Tet protein. A single tetracycline-inducible RNA of about 1,200 bases was detected that was homologous with the tetracycline resistance structural gene region. These results indicate that the tetA and tetB complementation regions represent two parts of a single gene encoding two domains of the tetracycline resistance protein Tet.  相似文献   

19.
The occurrence of drug resistance and plasmid-mediated transferability was investigated in 170 strains belonging to eight bacterial groups isolated from cultured rainbow trout. It was found that 87.6% of the strains were resistant to at least one drug, with the highest percentages of resistance being detected for ampicillin (54.7%), sulfadiazine (46.5%), nitrofurantoin (38.2%), and chloramphenicol (37.0%). Six enterobacteria, two Vibrio, and one Aeromonas isolate transferred resistance factors to Escherichia coli K-12. The most common transmissible R factor determined resistance to chloramphenicol and sulfadiazine, demonstrating an association between a specific plasmid and the resistance pattern transferred. The presence of chloramphenicol in fish food was detected by bioassay. In general, transfer frequencies were similar in primary and secondary matings, which indicate the potential water-borne dissemination of these R plasmids.  相似文献   

20.
Low-cost and rescue treatments for Helicobacter pylori infections involve combinations of several drugs including tetracycline. Resistance to tetracycline has recently emerged in H. pylori. The 16S rRNA gene sequences of two tetracycline-resistant clinical isolates (MIC = 64 microg/ml) were determined and compared to the consensus H. pylori 16S rRNA sequence. One isolate had four nucleotide substitutions, and the other had four substitutions and two deletions. Natural transformation with the 16S rRNA genes from the resistant organisms conferred tetracycline resistance on susceptible strains. 16S rRNA genes containing the individual mutations were constructed and tested for the ability to confer resistance. Only the 16S rRNA gene containing the triple mutation, AGA965-967TTC, was able to confer tetracycline resistance on H. pylori 26695. The MICs of tetracycline for the transformed strains were equivalent to those for the original clinical isolates. The two original isolates were also metronidazole resistant, but this trait was not linked to the tetracycline resistance phenotype. Serial passage of several H. pylori strains on increasing concentrations of tetracycline yielded mutants with only a very modest increase in tetracycline resistance to a MIC of 4 to 8 microg/ml. These mutants all had a deletion of G942 in the 16S rRNA genes. The mutations in the 16S rRNA are clearly responsible for tetracycline resistance in H. pylori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号