首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High mobility group (HMG) proteins are usually considered ubiquitous components of the eukaryotic chromatin. Using HMG gene promoter-GUS reporter gene fusions we have examined the expression of the reporter gene in transgenic Arabidopsis plants. These experiments have revealed that the different HMGA and HMGB promoters display overlapping patterns of activity, but they also show tissue- and developmental stage-specific differences. Moreover, leader introns that are present in some of the HMGB genes can modulate reporter gene expression. The differential HMG gene expression supports the view that the various HMG proteins serve partially different architectural functions in plant chromatin.  相似文献   

2.
植物逆境相关启动子及功能   总被引:5,自引:0,他引:5  
朱丽萍  于壮  邹翠霞  李秋莉 《遗传》2010,32(3):229-234
启动子是调控基因表达的重要顺式元件, 在植物基因表达调控过程中起着重要作用。目前植物抗逆基因工程中, 人们大多使用组成型表达启动子驱动目的基因的表达。组成型表达启动子虽然能提高转基因植株的抗逆性, 但是其持续过量地表达转化的外源基因会阻碍植物的生长且减少其产量。因此, 只在胁迫条件下才会驱动外源基因表达的诱导型启动子的研究显得尤其重要, 已成为目前研究的热点。文章综述了受非生物逆境和生物逆境胁迫诱导的植物基因启动子的种类和功能, 并展望了植物逆境诱导启动子的研究方向和前景。  相似文献   

3.
Summary Plant genetic engineering has contributed substantially to the understanding of gene regulation and plant development, in the generation of transgenic organisms for widespread usage in agriculture, and has increased the potential uses of crops for industrial and pharmaceutical purposes. As the application of geneticallly engineered plants has widened, so has the need to develop methods to fine-tune control of transgene expression. The availability of a broad spectrum of promoters that differ in their ability to regulate the temporal and spatial expression patterns of the transgene can dramatically increase the successful application of transgenic technology. Indeed, a variety of promoters in necessary at all levels of genetic engineering in plants, from basic research discoveries, concepts and question to development of economically viable crops and plant commodities, to addressing legitimate concerns raised about the safety and containment of transgenic plants in the environment. This review covers the characterization and usage of a broad range of promoters employed in plant genetic engineering, including the widespread use of plant promoters with viral and plant origin that drive constitutive expression. Also covered are selected tissue-specific promoters from fruit, seed and grain, tubers, flowers, pistils, anther and pollen, roots and root nodules, and leaves and green tissue. Topics also include organellar promoters, and those found in specific cell types, as well as the development and evaluation of inducible (endogenous and exogenous origin) and synthetic plant promoter systems. Discussions on the relevance and potential pitfalls within specific applications are included.  相似文献   

4.
在常用的植物组成型表达载体pBI121的选择标记基因NPTII两侧插入同向的lox位点并用多克隆位点(MCS)取代了GUS基因序列,构建了NPTII基因可被去除的和可插入目的基因的通用植物表达载体pBI121-lox-MCS。替换pBI121-lox-MCS中驱动目的基因表达的35S启动子,可构建成一系列具有其他表达特性的植物表达载体,如本文描述的韧皮部特异表达载体pBdENP-lox-MCS。为方便地筛选去除选择标记基因的转基因植物,还构建了绿色荧光蛋白(GFP)表达框与NPTII表达框连锁的pBI121-gfp-lox-MCS载体。上述植物表达载体可广泛应用于培育选择标记可去除的转基因植物。  相似文献   

5.
Nuclear matrix attachment regions (MARs) are thought to influence the expression of the flanking genes. TM2, a new DNA fragment isolated from tobacco, can bind with the rice nuclear matrix in vitro. In this study, we investigated the effect of TM2 on transgene expression under the control of three different promoters in stably transformed rice calli and plants. The presence of TM2 flanking the transgene increased the expression of constructs based on the constitutive CaMV 35S and maize ubiquitin gene promoters in both resistant calli and transformed plants. The GUS expression directed by the photosynthetic-tissue-specific PNZIP promoter was also increased in photosynthetic tissues of transformants. However, TM2 did not change the gene expression pattern controlled by the PNZIP promoter. The effect of TM2 in transgenic plants was stronger than that in transgenic calli based on all three promoters. Our results indicate that TM2, as a novel strong MAR, can be used to increase the transgene expression levels in the whole plant or in particular tissues of monocotyledons.  相似文献   

6.
The successful development and application of transgenic Bt cotton is a milestone of cotton produc-tion in China[1]. However, the CaMV35s promoter is commonly used for driving Bt gene expression in transgenic cotton plants. During infection, the CaMV35S promoter can direct the synthesis of 35RNA [2]. From the aspect of bio-security, it would be more secure and compatible if the promoter of cot-ton plants could be utilized for transgene expression[3]. In addition, studies showed that unde…  相似文献   

7.
8.

Background  

In addition to studies of plant gene function and developmental analyses, plant biotechnological use is largely dependent upon transgenic technologies. The moss Physcomitrella patens has become an exciting model system for studying plant molecular processes due to an exceptionally high rate of nuclear gene targeting by homologous recombination compared with other plants. However, its use in transgenic approaches requires expression vectors that incorporate sufficiently strong promoters. To satisfy this requirement, a set of plant expression vectors was constructed and equipped with either heterologous or endogenous promoters.  相似文献   

9.
Expression of the seven open reading frames (ORFs) of single-stranded DNA Curtoviruses such as Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV) is driven by a bi-directional promoter. To investigate this bi-directional promoter activity with respect to viral late gene expression, transgenic Arabidopsis plants expressing a GUS reporter gene under the control of either the BCTV or BSCTV bi-directional promoter were constructed. Transgenic plants harboring constructs showed higher expression levels when the promoter of the less virulent BCTV was used than when the promoter of the more virulent BSCTV was used. In transgenic seedlings, the reporter gene constructs were expressed primarily in actively dividing tissues such as root tips and apical meristems. As the transgenic plants matured, reporter gene expression diminished but viral infection of mature transgenic plants restored reporter gene expression, particularly in transgenic plants containing BCTV virion-sense gene promoter constructs. A 30 base pair conserved late element (CLE) motif was identified that was present three times in tandem in the BCTV promoter and once in that of BSCTV. Progressive deletion of these repeats from the BCTV promoter resulted in decreased reporter gene expression, but BSCTV promoters in which one or two extra copies of this motif were inserted did not exhibit increased late gene promoter activity. These results demonstrate that Curtovirus late gene expression by virion-sense promoters depends on the developmental stage of the host plant as well as on the number of CLE motifs present in the promoter.  相似文献   

10.
Tissue specific expression of transgenes in plant species has several advantages over constitutive expression. Identification of ovule specific promoters would be useful in genetic engineering of plants with a variety of desirable traits such as genetically engineered parthenocarpy, female sterile plants or seedless fruits. Relative inaccessibility and difficulty in harvesting adequate amounts of tissue at known developmental stages has impeded the progress in cloning of promoters involved in ovule development. In the present study an ovule specific promoter was cloned from Arabidopsis AGL11 gene and used to express GUS (beta-glucuronidase) gene in transgenic Arabidopsis. Histochemical staining of GUS appeared in the center of young ovary (ovules), but no detectable GUS activity was observed in vegetative plant tissues, sepals, petals and androecium. AGL11 gene promoter can be useful to modify the developmental path of plants by expressing either plant hormones or lethal genes for agronomic purpose.  相似文献   

11.
12.
Transgenic Bt insect-resistant cotton plants have high insect resistance in the early stage of development, but relatively low resistance in the late stage. Substituting a reproductive organ-specific promoter for the CaMV35S promoter presently being used could be an ideal solution. For the first time, the promoter sequence of ADP-ribosylation factor 1 (arf1) gene was isolated from Gossypium hirsutumY18 by means of inverse PCR. The sequencing result discovered the unique structure of the arf1 promoter, including four promoter-specific elements, the initiator, TATA box, CAAT box and GC box, and also an intron in 5′-untranslation region. Four plant expression vectors were constructed for functional analysis of the promoter. Based on the pBI121 plant expression vector, four truncated arf1 promoters took the place of the CaMV35S promoter. These vectors were different only in their promoter regions. They were introduced into cotton plants via pollen tube pathway. Histochemical GUS staining and fluorescence quantitative analyses were performed to examine the expression patterns of the GUS gene driven by the 4 arf1 truncated promoters in transgenic cotton plants respectively. The results showed that the arf1 promoter was a typical reproductive organ-specific promoter. Hopefully, the arf1 promoter can be a regulatory element for designing cotton reproductive organs with desired characteristics.  相似文献   

13.
The proper use of a marker gene in a transformation process is critical for the production of transgenic plants. However, consumer concerns and regulatory requirements raise an objection to the presence of exogenous DNA in transgenic plants, especially antibiotic-resistant genes and promoters derived from viruses. One approach to overcome this problem is the elimination of marker genes from the plant genome by using several site-specific recombination systems. We propose an alternative method to solve this problem using a marker gene exclusively derived from the host plant DNA. We cloned a genomic DNA fragment containing regulatory and coding sequences of acetolactate synthase (ALS) gene from rice, and mutagenized the ALS gene into a herbicide-resistant form. After transfer of this construct to the rice genome, transgenic plants were efficiently selected with a herbicide, bispyribac-sodium salt, which inhibits the activity of wild type ALS. We also analyzed the regulatory feature of the rice ALS gene promoter with the gusA reporter gene and revealed that GUS expression was observed constitutively in aerial parts of rice seedlings and root tips. The marker system consisted exclusively of host plant DNA and enabled efficient selection in a monocot crop plant, rice. The selection system can potentially be applied to generate transgenic plants of other crop species and can be expected to be publicly acceptable.  相似文献   

14.
Constitutive over‐expression of the TaDREB3 gene in barley improved frost tolerance of transgenic plants at the vegetative stage of plant development, but leads to stunted phenotypes and 3‐ to 6‐week delays in flowering compared to control plants. In this work, two cold‐inducible promoters with contrasting properties, the WRKY71 gene promoter from rice and the Cor39 gene promoter from durum wheat, were applied to optimize expression of TaDREB3. The aim of the work was to increase plant frost tolerance and to decrease or prevent negative developmental phenotypes observed during constitutive expression of TaDREB3. The OsWRKY71 and TdCor39 promoters had low‐to‐moderate basal activity and were activated by cold treatment in leaves, stems and developing spikes of transgenic barley and rice. Expression of the TaDREB3 gene, driven by either of the tested promoters, led to a significant improvement in frost tolerance. The presence of the functional TaDREB3 protein in transgenic plants was confirmed by the detection of strong up‐regulation of cold‐responsive target genes. The OsWRKY71 promoter–driven TaDREB3 provides stronger activation of the same target genes than the TdCor39 promoter. Analysis of the development of transgenic plants in the absence of stress revealed small or no differences in plant characteristics and grain yield compared with wild‐type plants. The WRKY71–TaDREB3 promoter–transgene combination appears to be a promising tool for the enhancement of cold and frost tolerance in crop plants but field evaluation will be needed to confirm that negative development phenotypes have been controlled.  相似文献   

15.
16.
A transgenic perspective on plant functional genomics   总被引:17,自引:0,他引:17  
Transgenic crops are very much in the news due to the increasing public debate on their acceptance. In the scientific community though, transgenic plants are proving to be powerful tools to study various aspects of plant sciences. The emerging scientific revolution sparked by genomics based technologies is producing enormous amounts of DNA sequence information that, together with plant transformation methodology, is opening up new experimental opportunities for functional genomics analysis. An overview is provided here on the use of transgenic technology for the functional analysis of plant genes in model plants and a link made to their utilization in transgenic crops. In transgenic plants, insertional mutagenesis using heterologous maize transposons or Agrobacterium mediated T-DNA insertions, have been valuable tools for the identification and isolation of genes that display a mutant phenotype. To discover functions of genes that do not display phenotypes when mutated, insertion sequences have been engineered to monitor or change the expression pattern of adjacent genes. These gene detector insertions can detect adjacent promoters, enhancers or gene exons and precisely reflect the expression pattern of the tagged gene. Activation tag insertions can mis-express the adjacent gene and confer dominant phenotypes that help bridge the phenotype gap. Employment of various forms of gene silencing technology broadens the scope of recovering knockout phenotypes for genes with redundant function. All these transgenic strategies describing gene-phenotype relationships can be addressed by high throughput reverse genetics methods that will help provide functions to the genes discovered by genome sequencing. The gene functions discovered by insertional mutagenesis and silencing strategies along with expression pattern analysis will provide an integrated functional genomics perspective and offer unique applications in transgenic crops. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

17.
The availability of a variety of promoter sequences is necessary for the genetic engineering of plants, in basic research studies and for the development of transgenic crops. In this study, the promoter and 5′ untranslated regions of the evolutionally conserved protein translation factor SUI1 gene and ribosomal protein L36 gene were isolated from pineapple and sequenced. Each promoter was translationally fused to the GUS reporter gene and transformed into the heterologous plant system Arabidopsis thaliana. Both the pineapple SUI1 and L36 promoters drove GUS expression in all tissues of Arabidopsis at levels comparable to the CaMV35S promoter. Transient assays determined that the pineapple SUI1 promoter also drove GUS expression in a variety of climacteric and non-climacteric fruit species. Thus the pineapple SUI1 and L36 promoters demonstrate the potential for using translation factor and ribosomal protein genes as a source of promoter sequences that can drive constitutive transgene expression patterns.  相似文献   

18.
19.
J J Chen  B J Janssen  A Williams    N Sinha 《The Plant cell》1997,9(8):1289-1304
Compound leaves are seen in many angiosperm genera and are thought to be either fundamentally different from simple leaves or elaborations of simple leaves. The knotted1-like homeobox (knox) genes are known to regulate plant development. When overexpressed in homologous or heterologous species, this family of genes can cause changes in leaf morphology, including excessive leaf compounding in tomato. We describe here an instance of a spontaneously arisen fusion between a gene encoding a metabolic enzyme and a homeodomain protein. We show that the fusion results in overexpression of the homeodomain protein and a change in morphology that approximates the changes caused by overexpression of the same gene under the control of the cauliflower mosaic virus 35S promoter in transgenic plants. Exon-shuffling events can account for the modularity of proteins. If the shuffled exons are associated with altered promoters, changes in gene expression patterns can result. Our results show that gene fusions of this nature can cause changes in expression patterns that lead to altered morphology. We suggest that such phenomena may have played a role in the evolution of form.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号