首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Combining capture and lysis of the bacteria with partial purification of the plasmid DNA is beneficial for the design of efficient plasmid production processes at larger scale. Such an approach is possible when the bacteria are captured by filtration. Taking industrial requirements into account, however, such a capture requires complex filtration mixtures containing retentive additives such as bentonite and polycations. This makes the straightforward transfer of established lysis protocols to in situ lysis difficult. In this contribution, the different steps of such a protocol are designed for complex filter cakes, including fragilization (by lysozyme), lysis (alkaline pH/acidic pH, 70/37 degrees C, urea/NaCl/Triton), and specific elution (pH, NaCl, CaCl2, guanidinium hydrochloride). Results are compared in regard to plasmid quality (topoisomeric form) and quantity (compared to the yield obtained by a commercial miniprep of a small aliquot of the bacteria suspension from the bioreactor). Best results in these terms were obtained by the Triton lysis protocol performed at 37 degrees C (30 min of contact with a lysis buffer composed of 50 mM Tris pH 8, 1% Triton, 1 g/L lysozyme, and 6 M guanidinium hydrochloride) followed by the specific elution of the plasmid DNA in 50 mM Tris buffer pH 8.  相似文献   

2.
To meet the new challenge of generating the draft sequences of mammalian genomes, we describe the development of a novel high throughput 96-well method for the purification of plasmid DNA template using size-fractionated, acid-washed glass beads. Unlike most previously described approaches, the current method has been designed and optimized to facilitate the direct binding of alcohol-precipitated plasmid DNA to glass beads from alkaline lysed bacterial cells containing the insoluble cellular aggregate material. Eliminating the tedious step of separating the cleared lysate significantly simplifies the method and improves throughput and reliability. During a 4 month period of 96-capillary DNA sequencing of the Rattus norvegicus genome at the Baylor College of Medicine Human Genome Sequencing Center, the average success rate and read length derived from >1 800 000 plasmid DNA templates prepared by the direct lysis/glass bead method were 82.2% and 516 bases, respectively. The cost of this direct lysis/glass bead method in September 2001 was ~10 cents per clone, which is a significant cost saving in high throughput genomic sequencing efforts.  相似文献   

3.
A simple, scalable method for purification of plasmid DNA is described. Plasmid DNA was released from Escherichia coli JM109 by lysis (1% SDS, 0.2 M NaOH). Then a neutralization solution (3 M sodium acetate buffer, pH 4.8) was added to precipitate genomic DNA and protein. After the clarification of the lysate, the supernatant was placed in a multicompartment electrolyser separated by ultrafilter membranes to remove the remaining contamination (RNA, genomic DNA and protein). A recovery of 75%±2% of total plasmid DNA was obtained after 60 min electrophoresis with a field strength of 8 V cm–1 using cells at 30 g l–1 (quantified by dry cell weight). Genomic DNA, RNA and protein were undetectable in the purified plasmid DNA solution.  相似文献   

4.
5.
Chemical lysis of bacterial cells using an alkaline solution containing a detergent may provide an efficient scalable means for selectively removing covalently closed circular plasmid DNA from high-molecular-weight contaminating cellular components including chromosomal DNA. In this article we assess the chemical lysis of E. coli cells by SDS in a NaOH solution and determine the impact of pH environment and shear on the supercoiled plasmid and chromosomal DNA obtained. Experiments using a range of plasmids from 6 kb to 113 kb determined that in an unfavorable alkaline environment, where the NaOH concentration during lysis is greater than 0.15 +/- 0.03 M (pH 12.9 +/- 0.2), irreversible denaturation of the supercoiled plasmid DNA occurs. The extent of denaturation is shown to increase with time of exposure and NaOH concentration. Experiments using stirred vessels show that, depending on NaOH concentration, moderate to high mixing rates are necessary to maximize plasmid yield. While NaOH concentration does not significantly affect chromosomal DNA contamination, a high NaOH concentration is necessary to ensure complete conversion of chromosomal DNA to single-stranded form. In a mechanically agitated lysis reactor the correct mixing strategy must balance the need for sufficient mixing to eliminate potential regions of high NaOH concentrations and the need to avoid excessive breakage of the shear sensitive chromosomal DNA. The effect of shear on chromosomal DNA is examined over a wide range of shear rates (10(1)-10(5) s(-1)) demonstrating that, while increasing shear leads to fragmentation of chromosomal DNA to smaller sizes, it does not lead to significantly increased chromosomal DNA contamination except at very high shear rates (about 10(4)-10(5) s(-1)). The consequences of these effects on the choice of lysis reactor and scale-up are discussed.  相似文献   

6.
The separation of structurally related impurities from pharmaceutical plasmid DNA by highly scalable purification techniques is a challenge for biochemical engineering. Next to RNA, proteins, and lipopolysaccharides, the chromosomal DNA of the plasmid replicating host has to be removed. Here, we describe the application of reverse micellar extraction for the separation of chromosomal from plasmid DNA. By applying different procedures for alkaline lysis, bacterial lysates with different amounts of chromosomal DNA were generated. A reverse micellar extraction step enabled us to deplete the concentration of this impurity below the required level of 50 mg g−1 of plasmid DNA with almost complete plasmid recovery.  相似文献   

7.
Cleared lysates of a proteolytic (Prt+) strain and a naturally occurring non-proteolytic (Prt) variant of Streptococcus cremoris Wg2 contain equal amounts of covalently closed circular plasmid DNA. An analysis of this plasmid DNA by agarose gel electrophoresis revealed the presence of at least five different plasmid species in the Prt+ strain and only three plasmid species in the Prt variant. Curing studies with acriflavine indicated that a 16-megadalton plasmid determined proteolytic activity in the Prt+ strain. In energy-limited chemostats inoculated with both strains it was observed that the Prt+ strain was replaced by the Prt variant. This effect was most apparent when the pH of the culture was fixed at a value above 6.3. No selection for the Prt variant was observed at pH 5.9. Since the two types of organisms contain equal amounts of plasmid DNA, it was concluded that the energy gain of the Prt variants at pH values above 6.0 probably has to be found in protein synthesis rather than in plasmid DNA synthesis.  相似文献   

8.
Plasmids are the workhorse of contemporary molecular biology, serving as vectors in the multitude of molecular cloning approaches now available. Plasmid minipreps are a routine and essential means of extracting plasmid DNA from bacteria, such as Escherichia coli, for identification, characterization, and further manipulation. Although there have been many approaches described and miniprep kits are commercially available, traditional minipreps typically require more than 16 h, including the time needed for bacterial cell culture. Here we describe the development of a microfluidic chip (MFC)-based miniprep that uses on-chip lysis and trapping of large DNA in agarose to differentially separate plasmid DNA from the bacterial chromosome. Our approach greatly decreases both the time required for the miniprep itself and the time required for growth of the bacterial cultures because our on-chip miniprep uses 105 times fewer E. coli cells. Because the quality of the isolated plasmid is comparable to that obtained using conventional miniprep protocols, this approach allows growth of E. coli and isolation of plasmid within hours, thereby making it ideal for rapid screening approaches. This MFC-based miniprep, coupled with recently demonstrated on-chip transfection capabilities, lays the groundwork for seamless manipulation of plasmids on MFC platforms.  相似文献   

9.
A procedure is described for the isolation and purification of the DNA of plasmids that are indigenous to the agriculturally important nitrogen-fixing bacterium Rhizobium meliloti. The procedure involves the lysis of bacteria with an ionic detergent or a mixture of ionic and nonionic detergents, the extraction of total DNA from precipitated membrane-DNA complexes, the enrichment of supercoiled plasmid DNA by the selective alkaline denaturation of chromosomal DNA, and a further purification of plasmid DNA using cesium chloridepropidium diiodide gradients. This procedure yields pure plasmid DNA in amounts of 30 to 50 μg per liter of a culture of cell density of approximately one A550 unit. The DNA thus obtained has been found to be of sufficient purity to serve as substrate for the most commonly used restriction endonucleases.  相似文献   

10.
A DNA-binding matrix was immobilized on the surface of a 96-well microplate and used for plasmid DNA preparation for DNA sequencing. The same DNA-binding plate was used for bacterial growth, cell lysis, DNA purification, and storage. In a single step using one buffer, bacterial cells were lysed by enzymes, and released DNA was captured on the plate simultaneously. After two wash steps, DNA was eluted and stored in the same plate. Inclusion of phosphates in the culture medium was found to enhance the yield of plasmid significantly. Purified DNA samples were used successfully in DNA sequencing with high consistency and reproducibility. Eleven vectors and nine libraries were tested using this method. In 10 μl sequencing reactions using 3 μl sample and 0.25 μl BigDye Terminator v3.1, the results from a 3730xl sequencer gave a success rate of 90–95% and read-lengths of 700 bases or more. The method is fully automatable and convenient for manual operation as well. It enables reproducible, high-throughput, rapid production of DNA with purity and yields sufficient for high-quality DNA sequencing at a substantially reduced cost.  相似文献   

11.
A scale-flexible and cost-efective protocol for plasmid preparation is described to cover miniprep and midiprep scale work in a microcentriguge format for analysis of recombinant clones. this protocol relies on a modified alkaline lysis of Escherichia coli cells and subsequent purification of plasmid DNA with no organic extraction and alcohol precipitation. It can process up to 20 mL of E. coli cells carrying 3–10 kbp plasmid vectors in <10 min. Flexprep delivers sufficient yield and purity of plasmid DNA for routine applications including restriction enzyme digestion and fluorescent automated sequencing.  相似文献   

12.
Tobias Kieser 《Plasmid》1984,12(1):19-36
Based on the results of a systematic study of factors affecting plasmid yield and purity, a procedure suitable for the rapid screening for and isolation of covalently closed circular DNA from Streptomyces lividans and Escherichia coli was developed. The method consists of lysis of lysozyme-treated bacteria combined with alkaline denaturation of DNA at high temperature. Renaturation of CCC DNA and precipitation of single-stranded DNA together with protein is achieved by the addition of a minimal amount of phenol/chloroform. The screening procedure uses only a single tube and the samples can be analyzed by agarose gel electrophoresis about 30 min after lysis. Removal of phenol and further purification of the plasmid preparation is achieved by consecutive precipitations with isopropanol and spermine, followed by extraction with ethanol, producing samples suitable for restriction endonuclease digestion, ligation, and transformation of S. lividans protoplasts or competent E. coli cells in about 2 h. All steps of the procedure are explained in detail with information about the effects of changing parameters. This should help the experimenter to obtain reproducible results and may be useful if the method has to be adapted to new strains or plasmids.  相似文献   

13.
Plasmid DNA for biopharmaceutical applications is produced easily in Escherichia coli bacteria. The cell lysis is the most crucial step for purification of plasmid DNA. In this paper, we describe a continuous cell alkaline lysis, neutralization, and clarification combination process for production of plasmid pUDK-HGF using hollow fiber ultrafiltration column as a lysis chamber and compare the plasmid DNA yield and homogeneity with the T-connector and manual processes, respectively. The results show that the plasmid pUDK-HGF yield of the combination process is 13% higher than manual lysis, twice higher than using T-connector. When the proportion of lysed cells and neutralization solution is 3:1, the plasmid pUDK-HGF yield can improve by 70%. This process could be easily scaled up to meet the industrial scale for cell lysis.  相似文献   

14.
A general method for plasmid isolation in lactobacilli   总被引:10,自引:0,他引:10  
A simple procedure for rapid isolation and detection of plasmid DNA fromLactobacillus species is described. Using an alkaline-detergent lysis method, plasmid DNA was released and characterized from cells treated with either mutanolysin or lysozyme for 1 h at 0°C. Treatment of cells with either enzyme at 37°C for 1h was detrimental to plasmid isolation and charaterization in someLactobacillus species. The procedure was effective with small volumes of cells and allowed rapid characterization of plasmid DNA inLactobacillus plantarum, Lactobacillus acidophilus, Lactobacillus helveticus, andLactobacillus bulgaricus strains.  相似文献   

15.
Bacterial ghost is a novel vaccine platform, and its safe and efficient production depends largely upon a suitable and functional vector. In this study, a series of temperature-inducible plasmids, carrying Phix174 lysis gene E and/or staphylococcal nuclease A (SNA) gene, were constructed and evaluated in Escherichia coli. The results showed that the direct product of SNA (pBV220-SNA) could degrade the plasmid and genomic DNA of E. coli while the fusion product of gene E and partial Cro gene (pKF396M-2) lost the ability to lyse the host strain. The insertion of enhancer T7g10 elements and Shine–Dalgarno box (ESD) between them (pKF396M-3) could resume the function of gene E. Using plasmid pKF396M-4 with gene E and SNA, respectively, under the immediate control of promoter pR and pL, the remnant plasmids and genomic DNA of E. coli were eliminated, and the rates of inactivation increased by two orders of magnitude over that obtained with the exclusive use of E-mediated lysis plasmid. By substituting these two genes with customized multiple cloning sites sequences, the plasmid could be modified to a dual expression vector (pKF396M-5).  相似文献   

16.
Conventional methods of plasmid extraction are largely unsuited to diagnostic laboratories. The 'Miniprep' is a rapid method that utilises a centrifugable column to separate plasmid DNA from chromosomal DNA. We have modified this technique to extract plasmid DNA from seven strains of vancomycin- and gentamicin-resistant Enterococcus faecium (VGREF): 1% mannitol was added to the growth medium and cell lysis was achieved by incubation in 10 mg of lysozyme/ml in 10 mM Tris, 1 mM EDTA and 25% sucrose at pH 8.0. RNase A was added to plasmid eluate rather than at the lytic step. In comparison to a standard phenol/chloroform method, Miniprep completely eliminated chromosomal interference in gel electrophoresis but otherwise produced identical plasmid profiles. Plasmids obtained from the VGREF ranged from 42 to 1.3 Md. Band densities on a single elution from the Miniprep varied from 8.3 to 106.3 relative units. Double elution increased band densities from the same preparation from 30.4 to 196 relative units; mean percentage increases per track between 7.0 and 34.6%. This method is suitable to achieve plasmid DNA extraction from VGREF within 1 h, making the process more suitable for diagnostic laboratories.  相似文献   

17.
Zhu K  Jin H  He Z  Zhu Q  Wang B 《Nature protocols》2006,1(6):3088-3093
This protocol describes a streamlined method of plasmid DNA extraction by continual thermal lysis, a modification of the basic boiling lysis technique, to simplify the processing of large volumes of Escherichia coli cultures. Fermented bacteria are harvested using a hollow fiber-membrane module and pre-treated with lysozyme prior to passing through a thermal exchange coil set at 70 degrees C to lyse the cells, and into a juxtaposed cooling coil on ice. The lysed and cooled bacteria are subsequently separated from the lysate by centrifugation and plasmid DNA is precipitated from the supernatant for further purification. The use of peristaltic pumps and two heating coils at constant temperature without the use of centrifugation enable the lysis process to become constant and controllable, providing a flow-through protocol for cell lysis and plasmid DNA extraction. Large volumes of bacterial cultures (20 l) can be processed in 2 h, yielding approximately 100 mg plasmid DNA l(-1) culture, making this an attractive protocol for consistent and large-scale preparation of plasmid DNA.  相似文献   

18.
A simple and versatile procedure has been developed for the isolation of both large helper/Ti plasmids and binary vectors fromAgrobacterium tumefaciens. Using a slightly modified alkaline lysis protocol, intact plasmid can be recovered from cultures grown in standard micro-centrifuge tubes or culture tubes in sufficient yield and purity to allow for restriction analysis on ethidium bromide stained gels of the >200 kb Ti plasmid DNA. Contamination by chromosomal DNA is minimal and there is thus no need for isopycnic gradient purification. This same procedure can be combined with a high temperature treatment (37°C) and antibiotic selection to generate preparations containing binary vector DNA that are virtually free of interfering Ti plasmid DNA. Restriction patterns produced from these binary vector DNA preparations are unambiguous and therefore preliminary screening by Southern hybridization can be eliminated.  相似文献   

19.
Ubiquitin-activating enzyme E1 (UBE1) catalyzes the first step in the ubiquitination reaction, which targets a protein for degradation via a proteasome pathway. UBE1 plays an important role in metabolic processes. In this study, full-length cDNA and DNA sequences of UBE1 gene, designated CrUBE1, were obtained from ‘Wuzishatangju’ (self-incompatible, SI) and ‘Shatangju’ (self-compatible, SC) mandarins. 5 amino acids and 8 bases were different in cDNA and DNA sequences of CrUBE1 between ‘Wuzishatangju’ and ‘Shatangju’, respectively. Southern blot analysis showed that there existed only one copy of the CrUBE1 gene in genome of ‘Wuzishatangju’ and ‘Shatangju’. The temporal and spatial expression characteristics of the CrUBE1 gene were investigated using semi-quantitative RT-PCR (SqPCR) and quantitative real-time PCR (qPCR). The expression level of the CrUBE1 gene in anthers of ‘Shatangju’ was approximately 10-fold higher than in anthers of ‘Wuzishatangju’. The highest expression level of CrUBE1 was detected in pistils at 7 days after self-pollination of ‘Wuzishatangju’, which was approximately 5-fold higher than at 0 h. To obtain CrUBE1 protein, the full-length cDNA of CrUBE1 genes from ‘Wuzishatangju’ and ‘Shatangju’ were successfully expressed in Pichia pastoris. Pollen germination frequency of ‘Wuzishatangju’ was significantly inhibited with increasing of CrUBE1 protein concentrations from ‘Wuzishatangju’.  相似文献   

20.
Regulatory agencies have stringent requirements for the large-scale production of biotherapeutics. One of the difficulties associated with the manufacture of plasmid DNA for gene therapy is the removal of the host cell-related impurity RNA following cell lysis. We have constructed a modified Escherichia coli JM107 plasmid host (JMRNaseA), containing a bovine pancreatic ribonuclease (RNaseA) expression cassette, integrated into the host chromosome at the dif locus. The expressed RNaseA is translocated to the periplasm of the cell, and is released during primary plasmid extraction by alkaline lysis. The RNaseA protein is stable throughout incubation at high pH ( approximately 12-12.5), and subsequently acts to hydrolyse host cell RNA present in the neutralised solution following alkaline lysis. Results with this strain harbouring pUC18, and a 2.4 kb pUC18DeltalacO, show that sufficient levels of ribonuclease (RNase) activity are produced to hydrolyse the bulk of the host RNA. This provides a suitable methodology for the removal of RNA, whilst avoiding the addition of exogenous animal sourced RNase and its associated regulatory requirements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号