首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 839 毫秒
1.
Phospholipids serve as central structural components in cellular membranes and as potent mediators in numerous signaling pathways. There are six main classes of naturally occurring phospholipids distinguished by their distinct polar head groups that contain many unique molecular species with distinct fatty acid composition. Phospholipid molecular species are often expressed as isobaric species that are denoted by the phospholipid class and the total number of carbon atoms and double bonds contained in the esterified fatty acyl groups (e.g., phosphatidylcholine 34:2). Techniques to separate these molecules exist, and each has positive and negative attributes. Hydrophilic interaction liquid chromatography uses polar bonded silica to separate lipids by polar head group but not by specific molecular species. Reversed phase (RP) chromatography can separate by fatty acyl chain composition but not by polar head group. Herein we describe a new strategy called differential ion mobility spectrometry (DMS), which separates phospholipid classes by their polar head group. Combining DMS with current LC methods enhances phospholipid separation by increasing resolution, specificity, and signal-to-noise ratio. Additional application of specialized information-dependent acquisition methodologies along with RP chromatography allows full isobaric resolution, identification, and compositional characterization of specific phospholipids at the molecular level.  相似文献   

2.
Hydrophobic interaction chromatography (HIC) is commonly used to separate protein monomer and aggregate species in the purification of protein therapeutics. Despite being used frequently, the HIC separation mechanism is quite complex and not well understood. In this paper, we examined the separation of a monomer and aggregate protein mixture using Phenyl Sepharose FF. The mechanisms of protein adsorption, desorption, and diffusion of the two species were evaluated using several experimental approaches to determine which processes controlled the separation. A chromatography model, which used homogeneous diffusion (to describe mass transfer) and a competitive Langmuir binary isotherm (to describe protein adsorption and desorption), was formulated and used to predict the separation of the monomer and aggregate species. The experimental studies showed a fraction of the aggregate species bound irreversibly to the adsorbent, which was a major factor governing the separation of the species. The model predictions showed inclusion of irreversible binding in the adsorption mechanism greatly improved the model predictions over a range of operating conditions. The model successfully predicted the separation performance of the adsorbent with the examined feed.  相似文献   

3.
《Process Biochemistry》2014,49(6):1005-1011
In negative chromatography, the impurities bind on the adsorbent, and the product is allowed to flow through the chromatographic column. Negative chromatography is an alternative to positive chromatography under certain circumstances and has been used to purify various biomolecules. For this review, a detailed survey of the performance of reported studies on negative chromatography was conducted. The applications of negative chromatography in the capture and intermediate purification steps for biomolecules (e.g., plasmid DNA, antibodies, enzymes, hemoglobin, virus particles and cells) are reviewed. The negative chromatographic adsorbents adsorb the impurities through surface charge, hydrophobic interaction at specific sites on the surface, hydrophobic interaction, hydrogen bonding and functional groups. Examples of applications of negative chromatography according to the type of chromatography matrix used are summarized and discussed. In addition, the effects of operating conditions (initial protein concentration, buffer ions, pH and salt concentration) are discussed, and the criteria for choosing negative or positive chromatography are summarized. The literature survey showed that there will be future limitations and challenges ahead in implementation of negative chromatography. Possible solutions to the limitations and challenges of negative chromatography and future trends for developing negative chromatography are discussed.  相似文献   

4.
This report demonstrates that due to the presence of residual reactive sites in their matrices, classical diethylaminoethyl-attaching commercial anion-exchanger resins such as DEAE-MacroPrep and DEAE-Sephadex A50 supports can be used for peptide synthesis. Moreover, due to the high stability of the peptide-resin bond in the final cleavage treatments, desired peptidyl-resins free of side-chain protecting groups, which enables them to be further used as solid support for affinity chromatography, can be obtained. To demonstrate this potentiality, a fragment corresponding to the antigenic and immunodominant epitope of sporozoites of the Plasmodium falciparum malaria parasite was synthesized in these traditional resins and antibody molecules generated against the peptide sequence were successfully retained in these peptidyl supports. Due to the maintenance of their original anion-exchange capacities, the present findings open the unique possibility of applying, simultaneously, dual anion-exchange and affinity procedures for purification of a variety of macromolecules.  相似文献   

5.
Glycoproteins, as a class of biomolecules, exhibit much more heterogeneous structures than non-glycosylated proteins. They present a challenging area of research. Model glycoproteins with well-defined protein and carbohydrate structures are helpful in the search for high-resolution methods for the separation of glycoproteins. Neoglycoproteins, maltose-modified chymotrypsin and lactose-modified chymotrypsin, were synthesised by modifying chymotrypsin with maltose and lactose, respectively, using the reductive amination method. Boronate chromatography was applied to isolate the neoglycoproteins from non-glycosylated substances. The use of Tris–HCl as a shielding reagent during the boronate chromatography proved to be efficient in eliminating unwanted interactions between the boronate ligand and the peptide backbone of chymotrypsin. The retention time of neoglycoproteins on the boronate column was increased with increasing the degree of modification.  相似文献   

6.
Escherichia coli is a favored host for rapid, scalable expression of recombinant proteins for academic, commercial, or therapeutic use. To maximize its economic advantages, however, it must be coupled with robust downstream processes. Affinity chromatography methods are unrivaled in their selectivity, easily resolving target proteins from crude lysates, but they come with a significant cost. Reported in this study are preliminary efforts to integrate downstream separation with upstream host design by evaluating co-eluting host proteins that most severely burden two different nonaffinity-based column processes. Phosphoenolpyruvate carboxykinase and peptidase D were significant contaminants during serial purification of green fluorescent protein (GFP) by hydrophobic interaction and anion exchange chromatography. Ribosomal protein L25 dominated non-target binding of polyarginine-tagged GFP on cation exchange resin. Implications for genetic knockout or site-directed mutagenesis resulting in diminished column retention are discussed for these and other identified contaminants.  相似文献   

7.
Protein A chromatography is a critical and ‘gold‐standard’ step in the purification of monoclonal antibody (mAb) products. Its ability to remove >98% of impurities in a single step alleviates the burden on subsequent process steps and facilitates the implementation of platform processes, with a minimal number of chromatographic steps. Here, we have evaluated four commercially available protein A chromatography matrices in terms of their ability to remove host cell proteins (HCPs), a complex group of process related impurities that must be removed to minimal levels. SELDI‐TOF MS was used as a screening tool to generate an impurity profile fingerprint for each resin and indicated a number of residual impurities present following protein A chromatography, agreeing with HCP ELISA. Although many of these were observed for all matrices there was a significantly elevated level of impurity binding associated with the resin based on controlled pore glass under standard conditions. Use of null cell line supernatant with and without spiked purified mAb demonstrated the interaction of HCPs to be not only with the resin back‐bone but also with the bound mAb. A null cell line column overload and sample enrichment method before 2D‐PAGE was then used to determine individual components associated with resin back‐bone adsorption. The methods shown allow for a critical analysis of HCP removal during protein A chromatography. Taken together they provide the necessary process understanding to allow process engineers to identify rational approaches for the removal of prominent HCPs. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 1037–1044, 2012  相似文献   

8.
Molecular species of mono-, di-, and triphosphoinositides of bovine brain   总被引:8,自引:0,他引:8  
The mono-, di-, and triphosphoinositides of bovine brain were isolated by chromatography on columns of DEAE-cellulose, alumina, and silicic acid. The major molecular species in each phosphoinositide class were identified and quantitatively estimated by combined thin-layer and gas-liquid chromatography of the component diglycerides, which were released by hydrolysis with a specific brain phosphodiesterase. The diglycerides were treated with pancreatic lipase, and the positional distribution of the fatty acids was determined. Over 27 molecular species were identified, and these accounted for about 95% of each phosphoinositide class, but the 1-stearate 2-arachidonate derivative contributed more than 40% of the total in each class. The other molecular species also were qualitatively and quantitatively similar in the three phosphoinositide classes. All the long-chain and polyunsaturated acids were confined to the 2-position and were preferentially paired with stearic acid in the 1-position. Oleic acid in the 2-position was about equally divided between species with palmitic and stearic acids in the 1-position. These results suggest that the mono-, di-, and triphosphoinositides of the bovine brain have similar compositions and that the various molecular species may be metabolically related.  相似文献   

9.
We have developed an online analytical method that combines A431 cell membrane chromatography (A431/CMC) with high performance liquid chromatography and mass spectrometry (LC/MS) for identifying active components from Radix Caulophylli acting on human EGFR. Retention fractions on A431/CMC model were captured onto an enrichment column and the components were directly analyzed by combining a 10-port column switcher with an LC/MS system for separation and preliminary identification. Using Sorafenib tosylate as a positive control, taspine and caulophine from Radix Caulophylli were identified as the active molecules which could act on the EGFR. This A431/CMC-online-LC/MS method can be applied for screening active components acting on EGFR from traditional Chinese medicines exemplified by Radix Caulophylli and will be of great utility in drug discovery using natural medicinal herbs as a source of novel compounds.  相似文献   

10.
Zone-interference chromatography is a new method for studying macromolecular interactions (S. Endo and A. Wada, Anal. Biochem. 124 (1982) 372). This method is a new style of affinity chromatography which requires no preparation of affinity-column materials but utilizes the velocity difference in a column between interacting molecular species. Using the stochastic theory on the behavior of solute molecules, both the association and the dissociation rate constants can be analytically obtained from the degree of deformation of elution patterns, i.e., the change of the first and second moments. In order to verify the present theory, computer simulation of elution profiles by the extended plate theory and a binding experiment between glutamate dehydrogenase and ADP have been carried out.  相似文献   

11.
二化螟体内乙酰胆碱酯酶的分布及纯化方法   总被引:19,自引:1,他引:19  
研究了二化螟Chilo suppressalis乙酰胆碱酯酶(AChE)的体躯和亚细胞分布,并用凝胶过滤层析和2种亲和层析方法从二化螟幼虫体内分离、纯化乙酰胆碱酯酶。结果表明:二化螟幼虫乙酰胆碱酯酶的活性主要集中于头部和胸部,而成虫胸部乙酰胆碱酯酶的活性最低,显著低于头部和腹部。成虫体内AChE的活性明显高于幼虫。在亚细胞的分布上,乙酰胆碱酯酶主要位于膜上(86%),近46%的活性存在微粒体中。在3种纯化乙酰胆碱酯酶的方法中,以3-羧基苯基-乙基二甲基铵作配体的亲和层析法纯化效果最佳,乙酰胆碱酯酶的最高纯化倍数为536.05倍,产率30.46%。  相似文献   

12.
Membrane chromatography has been established as a viable alternative to packed-bed column chromatography for the purification of therapeutic proteins. Purification via membrane chromatography offers key advantages, including higher productivity and reduced buffer usage. Unlike column chromatography purification, the utilization of high-throughput screening in order to reduce development times and material requirements has been a challenge for membrane chromatography. This research focused on the development of a new, high-throughput screening technique for use in screening membrane chromatography conditions for monoclonal antibody purification. The developed screen utilizes a 96-well plate format, thereby allowing for the screening of multiple different membrane conditions at once. For this study, four mixed-mode cation exchange membranes and one cation exchange membrane were evaluated on the plate. The screen is performed in a similar manner to that of a resin slurry plate screen, however, instead of a single loading step, the antibody feed was loaded in 50 mg/ml increments up to a maximum loading of 450 mg/ml. Performing a similar, incremental loading on a resin plate would be impractical, as mixing times are substantially longer due to pore diffusion limitations. However, due to the significantly faster rate of mass transfer for membranes relative to resin, mixing times could be reduced by up to a factor of sixty on the membrane plate. Additional optimization showed that higher hydrophobicity can potentially lead to slower kinetics and mixing times that may need to be adjusted accordingly. The end result is a screen that has been proven to provide results comparable to those obtained on larger-scale membrane purification runs while also enabling exploration of a much greater operating space and significantly reducing the feed materials required.  相似文献   

13.
高分辨裂解—气相色谱在前胡族系统分类中的应用   总被引:2,自引:0,他引:2  
采用高分辨裂解-气相色谱法对前胡族(Peucedaneae Drude)20属35种植物的叶片成分进行分析,经过聚类分析得出以下结果:35种植物基本可分为3大类,对应于3个亚族。阿魏亚族(Ferulinae Drude)的球根阿魏属(Schumannia Kuntze)、伊犁芹属(Talassia Korov.)和簇花芹属(Soranthus Ledeb.)均应为独立属。环翅芹亚族(Tordyliinae Drude)的四带芹属[Tetrataenium(DC.)Manden.]和大瓣芹属(Semenovia Regel et Herd.)二者也作为独立属处理为宜,其中有争议的锐尖叶独活[Heracleum longilobum(Norman)Sheh et T.S.Wang]不应作为大瓣芹属成员,仍应保留于独活属。当归亚族(Angelicinae Drude)的山芎[Conioselinum chinense(L.)Britton]和东当归[Angelica acutiloba(Sieb.et Zucc.)Kitagawa]曾被作为阿米芹族(Ammineae Koch)的蛇床属(Cnidium Cuss.)或藁本属(Ligusticum L.)的成员,聚类图显示其属于前胡族的当归亚族是合适的。  相似文献   

14.
Thin-layer chromatography on silica gel 60 plates in the solvent N,N-dimethylformamide/methanol/ethylene glycol/glacial acetic acid/1-chlorobutane/chloroform (4/35/6/0.4/18/20 by volume) separates porphyrin carboxylic acids by the number of free carboxyl groups. Coproporphyrins I and III and isocoproporphyrin are separated in 30 min, other porphyrins in 15 min. The N,N-dimethylformamide and acetic acid in the solvent strongly increase porphyrin fluorescence on the plates. Fading and diffusion of the fluorescent patterns is prevented by storage of the plates in the cold and dark without oxygen and with desiccant. In a preliminary step, porphyrins are purified in high yields, concentrated, and deacidified rapidly (2 min) by reversephase chromatography on cartridges containing a C18 spacer or on Amberlite XAD-2 columns. The methods are applied to urines of porphyria patients and for following porphyrin ester hydrolysis.  相似文献   

15.
In this paper, five isoquinoline alkaloids were successfully separated from a crude extract of Stephania yunnanensis using pH-zone-refining counter-current chromatography in single-step. With a two-phase solvent system composed of methyl-tert-butyl ether (MtBE)–acetonitrile–water (2:2:3, v/v) where triethylamine (10 mM) was added to the upper organic phase as a retainer and hydrochloric acid (5 mM) to the aqueous mobile phase as an eluter. From 1.4 g crude extract, 68.7 mg isocorydine, 78.2 mg corydine, 583.4 mg tetrahydropalmatine, 36.3 mg N-methylasimilobine, and 47.3 mg anonaine were separated with purities over 90%. Their structures were identified by 1H NMR, 13C NMR, ESI-MS data.  相似文献   

16.
Weak partitioning chromatography (WPC) is an isocratic chromatographic protein separation method performed under mobile phase conditions where a significant amount of the product protein binds to the resin, well in excess of typical flowthrough operations. The more stringent load and wash conditions lead to improved removal of more tightly binding impurities, although at the cost of a reduction in step yield. The step yield can be restored by extending the column load and incorporating a short wash at the end of the load stage. The use of WPC with anion exchange resins enables a two-column cGMP purification platform to be used for many different mAbs. The operating window for WPC can be easily established using high throughput batch-binding screens. Under conditions that favor very strong product binding, competitive effects from product binding can give rise to a reduction in column loading capacity. Robust performance of WPC anion exchange chromatography has been demonstrated in multiple cGMP mAb purification processes. Excellent clearance of host cell proteins, leached Protein A, DNA, high molecular weight species, and model virus has been achieved.  相似文献   

17.
Weak partitioning chromatography (WPC) has been proposed for the purification of monoclonal antibodies using an anion exchange (AEX) resin to simultaneously remove both acidic and basic protein impurities. Despite potential advantages, the relationship between resin structure and WPC performance has not been evaluated systematically. In this work, we determine the structure of representative AEX resins (Fractogel® EMD TMAE HiCap, Q Sepharose FF, and POROS 50 HQ) using transmission electron microscopy and inverse size exclusion chromatography and characterize protein interactions while operating these resins under WPC conditions using two mAb monomers, a mAb dimer, mAb multimers, and BSA as model products and impurities. We determine the isocratic elution behavior of the weakly bound monomer and dimer species and the adsorptive and mass transfer properties of the strongly bound multimers and BSA by confocal laser scanning microscopy. The results show that for each resin, using the product Kp value as guidance, salt, and pH conditions can be found where mAb multimers and BSA are simultaneously removed. Isocratic elution and adsorption mechanisms are, however, different for each resin and for the different components. Under WPC conditions, the Fractogel resin exhibited very slow diffusion of both mAb monomer and dimer species but fast adsorption for both mAb multimers and BSA with high capacity for BSA, while the Sepharose resin, because of its small pore size, was unable to effectively remove mAb multimers. The POROS resin was instead able to bind both multimers and BSA effectively, while exhibiting a greater resolution of mAb monomer and dimer species. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:425–434, 2017  相似文献   

18.
19.
In addition to most chlorophylls and their derivatives, monovinyl and divinyl chlorophyll species were separated by high-performance liquid chromatography, using a polyethylene column and a simple elution with aqueous acetone. Peak retention and resolution of the pigment separation were greatly increased by increasing the polarity of the mobile phase and also by decreasing the column temperature. Polyethylene chromatography showed chlorophyll separation behavior similar to that of the octadecyl silica column, but it showed no adsorption of the pigment species containing free carboxylic acid groups, enabling the complete separation of chlorophylls and their derivatives. Polyethylene is a superior alternative stationary phase to the known reversed-phase materials for chlorophyll separation and analysis.  相似文献   

20.
Studies carried out using engineered proteins clearly demonstrate that adsorption to derivatized surfaces involves multiple interactions between functional groups on the protein and complementary sites distributed on the surface. The fact that adsorption involves multipoint interactions has important implications for the design of separations processes and for the interpretation of heterogeneity in biological recognition phenomena. Increasing the density of surface metal sites (immobilized copper ions) is found to be functionally equivalent to increasing the number of metal-coordinating groups on the protein (histidines and deporotonated amines), m in that both processes increase the likelihood of simultaneous interactions between the protein and the surface. A consequence of multiple-site interactions is a significant in crease in protein binding affinity that depends on the arrangement of surface sites. A protein will show the highest affinity for arrangements of surface sites which best match its own pattern of functioal groups and will show lower affinity for less optimal arrangements, resulting in binding that is inherently heterogeneous. We have found that reversible protein adsorption in immobilized metal affinity chromatography (IMAC) is described by the Temikin model, which characterizes binding heterogeneity by a uniform distribution of binding energies over the population of surface binding sites. (c) 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号