首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deregulated expression or activity of kinases can lead to melanomas, but often the particular kinase isoform causing the effect is not well established, making identification and validation of different isoforms regulating disease development especially important. To accomplish this objective, an siRNA screen was undertaken that which identified glycogen synthase kinase 3α (GSK3α) as an important melanoma growth regulator. Melanocytes and melanoma cell lines representing various stages of melanoma tumor progression expressed both GSK3α and GSK3β, but analysis of tumors in patients with melanoma showed elevated expression of GSK3α in 72% of samples, which was not observed for GSK3β. Furthermore, 80% of tumors in patients with melanoma expressed elevated levels of catalytically active phosphorylated GSK3α (pGSK3αY279), but not phosphorylated GSK3β (pGSK3βY216). siRNA‐mediated reduction in GSK3α protein levels reduced melanoma cell survival and proliferation, sensitized cells to apoptosis‐inducing agents and decreased xenografted tumor development by up to 56%. Mechanistically, inhibiting GSK3α expression using siRNA or the pharmacological agent AR‐A014418 arrested melanoma cells in the G0/G1 phase of the cell cycle and induced apoptotic death to retard tumorigenesis. Therefore, GSK3α is a key therapeutic target in melanoma.  相似文献   

2.
Cardiac myocyte growth is under differential control of mammalian target of rapamycin (mTOR) and glycogen-synthase-kinase-3β (GSK3β). Whereas active GSK3β negatively regulates growth and down-regulates cellular protein synthesis, activation of the mTOR pathway promotes protein expression and cell growth. Here we report that depletion of mTOR via siRNA mediated knockdown causes marked down-regulation of GSK3β protein in cardiac myocytes. As a result, GSK3β target protein β-catenin becomes stabilized and translocates into the nucleus. Moreover, mTOR knockdown leads to increase in cardiac myocyte surface area and produces an up-regulation of the fetal gene program. Our findings suggest a new type of convergence of mTOR and GSK3β activities, indicating that GSK3β-dependent stabilization of β-catenin in cardiac myocytes is influenced by mTOR.  相似文献   

3.
The aim of this study was to analyze milk protein composition in purebred and crossbred dairy cattle and estimate the effects of individual sources of variation on the investigated traits. Milk samples were collected from 505 cows from three commercial farms located in Northern Italy, some of which had originated from crossbreeding programs, although most were purebred Holsteins (HO). The basic crossbreeding scheme was a three-breed rotational system using Swedish Red (SR) semen on HO cows (SR×HO), Montbeliarde (MO) semen on SR×HO cows (MO×(SR×HO)) and HO semen again on MO×(SR×HO) cows. A smaller number of purebred HO from each of the herds were mated inverting the breed order (MO×HO and SR×(MO×HO)) or using Brown Swiss (BS) bulls (BS×HO) then MO bulls (MO×(BS×HO)). Milk samples were analyzed by reverse-phase HPLC to obtain protein fraction amounts (g/l) and proportions (% of total true protein). Traits were analyzed using a linear model, which included the fixed effects of herd-test-day (HTD), parity, days in milk and breed combination. Results showed that milk protein fractions were influenced by HTD, stage of lactation, parity and breed combination. The increase in protein concentration during lactation was due in particular to β-casein (β-CN), αS1-CN and β-lactoglobulin (β-LG). The higher protein content of primiparous milk was mainly due to higher concentrations of all casein fractions. The milk from crossbred cows had higher contents and proportions of κ-CN and α-lactalbumin (α-LA), lower proportions of β-LG and greater proportion of caseins/smaller in whey proteins on milk true protein than purebred HO. The three-way crossbreds differed from two-way crossbreds only in having greater proportions of α-LA in their milk. Of the three-way crossbreds, the SR sired cows yielded milk with a smaller content and proportion of β-LG than the MO sired cows, and, consequently, a higher proportion of caseins than whey proteins. Results from this study support the feasibility of using crossbreeding programs to alter milk protein profiles with the aim of improving milk quality and cheese-making properties.  相似文献   

4.
5.
BackgroundMutations in desmosomal genes linked to arrhythmogenic cardiomyopathy are commonly associated with Wnt/β-catenin signaling abnormalities and reduction of the sodium current density. Inhibitors of GSK3B were reported to restore sodium current and improve heart function in various arrhythmogenic cardiomyopathy models, but mechanisms underlying this effect remain unclear. We hypothesized that there is a crosstalk between desmosomal proteins, signaling pathways, and cardiac sodium channels.Methods and resultsTo reveal molecular mechanisms of arrhythmogenic cardiomyopathy, we established human iPSC-based model of this pathology. iPSC-derived cardiomyocytes from patient carrying two genetic variants in PKP2 gene demonstrated that PKP2 haploinsufficiency due to frameshift variant, in combination with the missense variant expressed from the second allele, was associated with decreased Wnt/β-catenin activity and reduced sodium current. Different approaches were tested to restore impaired cardiomyocytes functions, including wild type PKP2 transduction, GSK3B inhibition and Wnt/β-catenin signaling modulation. Inhibition of GSK3B led to the restoration of both Wnt/β-catenin signaling activity and sodium current density in patient-specific cardiomyocytes while GSK3B activation led to the reduction of sodium current density. Moreover, we found that upon inhibition GSK3B sodium current was restored through Wnt/β-catenin-independent mechanism.ConclusionWe propose that alterations in GSK3B-Wnt/β-catenin signaling pathways lead to regulation of sodium current implying its role in molecular pathogenesis of arrhythmogenic cardiomyopathy.  相似文献   

6.
Wnt/β-catenin signaling plays a central role in development and is also involved in a diverse array of diseases. Binding of Wnts to the coreceptors Frizzled and LRP6/5 leads to phosphorylation of PPPSPxS motifs in the LRP6/5 intracellular region and the inhibition of GSK3β bound to the scaffold protein Axin. However, it remains unknown how GSK3β is specifically inhibited upon Wnt stimulation. Here, we show that overexpression of the intracellular region of LRP6 containing a Ser/Thr rich cluster and a PPPSPxS motif impairs the activity of GSK3β in cells. Synthetic peptides containing the PPPSPxS motif strongly inhibit GSK3β in vitro only when they are phosphorylated. Microinjection of these peptides into Xenopus embryos confirms that the phosphorylated PPPSPxS motif potentiates Wnt-induced second body axis formation. In addition, we show that the Ser/Thr rich cluster of LRP6 plays an important role in LRP6 binding to GSK3β. These observations demonstrate that phosphorylated LRP6/5 both recruits and directly inhibits GSK3β using two distinct portions of its cytoplasmic sequence, and suggest a novel mechanism of activation in this signaling pathway.  相似文献   

7.
Cathepsin D from porcine spleen contained mannose (3.3%), glucosamine (1.4%), and mannose 6-phosphate (0.08%). Essentially all of the oligosaccharides of cathepsin D could be released by endo-β-N-acetylglucosaminidase H, pointing to oligomajmoside types of structures. Three neutral oligosaccharide fractions, containing 5, 6, and 7 mannose residues, respectively, were isolated by gel permeation chromatography on Bio-Gel P-2. Studies using exoglycosidase digestions and 500-MHz 1H NMR spectroscopy revealed that their structures are [Manα1 → 2]0 or 1Manα1 → 6[Manα1 → 3]Manα1 → 6[(Manα1 → 2)0 or 1Manα1 → 3]Manβ1 → 4GlcNAcβ1 → 4 GlcNAc. These structures are identical to what have recently been proposed by Takahashi et al. for the major oligosaccharide units of cathepsin D from the same source (T. Takahashi P.G. Schimidt, and J. Tang (1983)J. Biol. Chem.258, 2819–2930), except for the occurrence of two isomeric oligosaccharides containing six mannoses. Only a part (3.4%) of the oligosaccharides were acidic, containing phosphates in monoester linkage. The phosphorylated oligosaccharides also consisted of oligomannoside-type chains which were analogous to, but more heterogeneous in size than the neutral oligosaccharides. Cathepsin D was bound to a mannose- and N-acetylglucosamine-specific lectin (mannan-binding protein) isolated from rabbit liver with the Ki value of 5.4 × 10?6m.  相似文献   

8.
Our prior studies have confirmed that long-term colonization of Porphyromonas gingivalis (Pg) and overexpression of the inflammatory factor glycogen synthase kinase 3β (GSK3β) promote the malignant evolution of esophageal squamous cell carcinoma (ESCC). We aimed to investigate the functional mechanism by which Pg could promote ESCC malignancy and chemo-resistance through GSK3β-mediated mitochondrial oxidative phosphorylation (mtOXPHOS), and the clinical implications. The effects of Pg and GSK3β on mtOXPHOS, malignant behaviors and response to paclitaxel and cisplatin treatment of ESCC cells were evaluated by in vitro and in vivo studies. The results showed that Pg induced high expression of the GSK3β protein in ESCC cells and promoted the progression and chemo-resistance via GSK3β-mediated mtOXPHOS in human ESCC. Then, Pg infection and the expression of GSK3β, SIRT1 and MRPS5 in ESCC tissues were detected, and the correlations between each index and postoperative survival of ESCC patients were analysed. The results showed that Pg-positive ESCC patients with high-expression of GSK3β, SIRT1 and MRPS5 have significant short postoperative survival. In conclusion, we demonstrated that the effective removal of Pg and inhibition of its promotion of GSK3β-mediated mtOXPHOS may provide a new strategy for ESCC treatment and new insights into the aetiology of ESCC.  相似文献   

9.
《Theriogenology》1996,46(1):23-32
Progesterone is metabolized to pregnanediones and hydroxylated pregnanes prior to its fecal excretion. Therefore, use of progesterone antibodies underestimates the actual amount of fecal metabolites. To improve the methodology of noninvasive fecal progesterone metabolite analysis, enzymeimmunoassays (EIA) using group-specific antibodies against 5-reduced 20-oxo-pregnane-C3-conjugates were developed. Fecal and milk samples were collected at 1- to 2-d intervals during the morning and evening milking throughout 1 estrous cycle in dairy cows (n = 12). Six immunoreactive metabolites were detected in the feces with high performance liquid chromatography (HPLC), eluting as 5α- and 5β-reduced pregnanes containing a 20-oxo-group (20-oxo-pregnanes). Fecal samples of 3 cows were analyzed by 3 EIAs using antibodies against 4-pregnene-6α-ol-3,20-dione 6HS:BSA (6HS-progesterone), 5α-pregnane-3β-ol-20-one 3HS:BSA and 5β-pregnane-3β-ol-20-one 3HS:BSA, respectively. The follicular and luteal phases were identifiable with each EIA. Luteal phase values and the differences between mean follicular (Days 0 to 2 and 19 to 21) and luteal phase (Days 10 to 16) values obtained with the 5-pregnane EIAs were 3- to 4-fold higher than with the 6HS-progesterone EIA. Since results with the former 2 EIAs were almost identical, the remaining samples were only analyzed by the EIA for 5β-pregnane-3α-ol-20-one. Fecal 20-oxo-pregnane concentrations were parallel to milk progesterone values, but had a lag time of about 0.5 d; the coefficient of correlation (P < 0.001) was 0.76 (y = 155.2 × + 37.2). Fecal 20-oxo-pregnane concentrations during the follicular and luteal phase were 39.5 ± 2.2 and 341 ± 15.2 ng/g feces, respectively. In conclusion, fecal 20-oxo-pregnanes are significantly correlated to milk progesterone concentrations. They consist of several metabolites and compared to a 6HS-progesterone antibody, their evaluation was improved using antibodies against 5-reduced pregnanes.  相似文献   

10.
Hydroboration of 5α-cholesta-8,14-dien-3β-ol (I) gave 5α-cholest-8-en-3β,15α-diol (IV) in 89% yield. 5α-Cholest-7-en-3β,15α-diol (V) was prepared in 91% yield by hydroboration of 5α-cholesta-7,14-dien-3β-ol (II). Hydroboration of 27:63 mixture of I and II gave IV and V in 18% and 70% yields, respectively. 5α-Cholest-8-en-15α-ol-3-one and 5α-cholest-7-en-15α-ol-3-one were prepared in high yields from IV and V, respectively, by either selective oxidation with silver carbonate-celite or by enzymatic oxidation using cholesterol oxidase. 7α,8α-Epoxy-5α-cholestan-3β,15α-diol (VIII) was prepared in 93% yield by treatment of V with m-chloroperbenzoic acid. 5α-Cholest-8(14)-en-7α-ol-3,15-dione (IX) was prepared in 56% yield by oxidation of VIII with pyridinium chlorochromate followed by treatment of the crude product with acid. Compound IX was also obtained in 72% yield by selective chemical oxidation of 5α-cholest-8(14)-en-3β,7α,15α-triol. 5α-Cholesta-6,8(14)-dien-3,15-dione (X) was prepared in 89% yield by treatment of IX with p-toluenesulfonic acid under controlled conditions. Reduction of X with lithium tri-tert-butoxyaluminum hydride under controlled conditions gave 5α-cholesta-6,8(14)-dien-3β-ol-15-one in 84% yield.  相似文献   

11.
12.
Buffalo milk production has become of significant importance on the world scale, however, there are few studies involving biotechnological tools specifically for buffalo. To verify the effects caused by subclinical mastitis on the components of milk and to study the innate immune system in the udder of dairy buffaloes with subclinical mastitis, we evaluated the levels of expression of the lactoferrin (LTF), tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), interleukin-8 (IL-8), and toll-like receptors 2 (TLR-2) and 4 (TLR-4) genes in buffaloes with and without subclinical mastitis. Milk samples were collected for the determination of milk components: somatic cell score (SCS), fat, protein, lactose, total solids and solids-not-fat (SNF), as well as for RNA extraction of milk cells, complementary DNA synthesis, and expression profile quantification by quantitative real-time PCR. For gene expression, the ΔΔCt was estimated using contrasts of the target genes expression adjusted for the expression of the housekeeping genes between both groups. Linear regression analysis was performed to determine the relationship between the genes studied and the milk components. Subclinical mastitis induced changes in the fat, lactose and SNF in milk of buffaloes, and the messenger RNA abundance was upregulated for TLR-2, TLR-4, TNF-α, IL-1β and IL-8 genes in milk cells of buffaloes with subclinical mastitis, whereas the LTF gene was not differentially expressed. Results of linear regression analysis showed that TLR-2 gene expression most explains the variation in SCS, and the change in a unit of ΔCt of the TNF-α gene would result in a higher increase in SCS. The study of these immune function genes that are active in the mammary gland is important to characterize the action mechanism of the innate immunity that occurs in subclinical mastitis in dairy buffaloes and may aid the development of strategies to preserve the health of the udder.  相似文献   

13.
BackgroundDeep vein thrombosis (DVT) is a kind of blood stasis syndrome. Paeoniae Radix Rubra (PRR) has long been widely used for eliminating blood stasis in China, but its effect on DVT has not yet been reported.PurposeThe present study aimed to assess the potential inhibitory effect of the aqueous extract of PRR (i.e.,PRR dispensing granule, PRRDG) on DVT and explore the underlying mechanism.Study design/MethodsThe chemical profile of PRRDG was analyzed by high-performance liquid chromatography. Sprague-Dawley rats were intragastrically treated with PRRDG (0.625, 1.25 and 1.875 g crude drug/kg/d) once daily for 7 consecutive days. On the sixth day, a model of inferior vena cava (IVC) stenosis-induced DVT was established. All rats were sacrificed on the seventh day. Serum was collected for enzyme-linked immunosorbent assay. Thrombus-containing IVC was weighed and further processed for histopathologic examination, immunohistochemical analysis and western blotting. LiCl and LY294002 were adopted to block and increase the activity of glycogen synthase kinase 3β (GSK3β), respectively.ResultsThe chemical profile analysis showed that paeoniflorin, benzoylpaeoniflorin, albiflorin, gallic acid and catechin were the main constituents of PRRDG. LiCl decreased thrombus weight, reduced the number of inflammatory cells in thrombus and vein wall, down-regulated phosphorylated NF-κB p65 (p-p65) protein expression. Similarly, PRRDG decreased thrombus weight and tissue factor (TF) protein expression. PRRDG reduced the protein expression levels of P-selectin, monocyte chemoattractant protein-1 (MCP-1), intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in venous endothelium, serum levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), and the number of inflammatory cells in thrombus and vein wall. Moreover, PRRDG down-regulated p-p65 protein expression and up-regulated phosphorylated GSK3β (p-GSK3β) protein expression. LY294002 abrogated the inhibitory effects of PRRDG on thrombus weight, TF protein expression, TNF-α and IL-1β serum levels, inflammatory cells influxes, and p-p65 protein expression.ConclusionPRRDG prevents DVT by ameliorating inflammation through inhibiting GSK3β activity.  相似文献   

14.
《Free radical research》2013,47(9):1100-1108
Abstract

Transforming growth factor β1 (TGF-β1) induces Mv1Lu cell senescence through inactivating glycogen synthase kinase 3 (GSK3), thereby inactivating complex IV and increasing intracellular ROS. In the present study, we identified protein kinase C delta (PKCδ) as an upstream regulator of GSK3 inactivation in this mechanism of TGF-β1-induced senescence. When Mv1Lu cells were exposed to TGF-β1, PKCδ phosphorylation simultaneously increased with GSK3 phosphorylation, and then AKT and ERK were phosphorylated. AKT phosphorylation and Smad signaling were independent of GSK3 phosphorylation, but ERK phosphorylation was downstream of GSK3 inactivation. TGF-β1-triggered GSK3 phosphorylation was blocked by inhibition of PKCδ, using its pharmacological inhibitor, Rottlerin, or overexpression of a dominant negative PKCδ mutant, but GSK3 inhibition with SB415286 did not alter PKCδ phosphorylation. Activation of PKCδ by PMA delayed cell growth and increased intracellular ROS level, but did not induce senescent phenotypes. In addition, overexpression of wild type or a constitutively active PKCδ mutant was enough to delay cell growth and decrease the mitochondrial oxygen consumption rate and complex IV activity, but weakly induce senescence. However, PMA treatment on Mv1Lu cells, which overexpress wild type and constitutively active PKCδ mutants, effectively induced senescence. These results indicate that PKCδ plays a key role in TGF-β1-induced senescence of Mv1Lu cells through the phosphorylation of GSK3, thereby triggering mitochondrial complex IV dysfunction and intracellular ROS generation.  相似文献   

15.
In this study on milk saccharides of the raccoon (Procyonidae: Carnivora), free lactose was found to be a minor constituent among a variety of neutral and acidic oligosaccharides, which predominated over lactose. The milk oligosaccharides were isolated from the carbohydrate fractions of each of four samples of raccoon milk and their chemical structures determined by 1H-NMR and MALDI-TOF mass spectroscopies. The structures of the four neutral milk oligosaccharides were Fuc(α1–2)Gal(β1–4)Glc (2′-fucosyllactose), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (lacto-N-fucopentaose IV), Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)GlcNAc(β1–3)Gal(β1–4)Glc (fucosyl para lacto-N-neohexaose) and Fuc(α1–2)Gal(β1–4)GlcNAc(β1–3)[Fuc(α1–2)Gal(β1–4)GlcNAc(β1–6)]Gal(β1–4)Glc (difucosyl lacto-N-neohexaose). No type I oligosaccharides, which contain Gal(β1–3)GlcNAc units, were detected, but type 2 saccharides, which contain Gal(β1–4)GlcNAc units were present. The monosaccharide compositions of two of the acidic oligosaccharides were [Neu5Ac]1[Hex]6[HexNAc]4[deoxy Hex]2, while those of another two were [Neu5Ac]1[Hex]8[HexNAc]6[deoxy Hex]3. These acidic oligosaccharides contained α(2–3) or α(2–6) linked Neu5Ac, non reducing α(1–2) linked Fuc, poly N-acetyllactosamine (Gal(β1–4)GlcNAc) and reducing lactose.  相似文献   

16.
The canonical Wnt signalling pathway plays a critical role in development and disease. The key player of the pathway is β-catenin. Its activity is mainly regulated by the destruction complex consisting of APC, Axin and GSK3. In the nucleus, the complex formation of β-catenin and TCF initiates target gene expression. Our study provides a comprehensive analysis of the role of nucleo-cytoplasmic shuttling of APC, Axin, and GSK3 and the inactivation of β-catenin by the destruction complex in Wnt/β-catenin signalling.We address the following questions: Can nucleo-cytoplasmic shuttling of APC, Axin and GSK3 increase the [β-catenin/TCF] concentration? And, how is the [β-catenin/TCF] concentration influenced by phosphorylation and subsequent degradation of nuclear β-catenin?Based on experimental findings, we develop a compartmental model and conduct several simulation experiments. Our analysis reveals the following key findings: 1) nucleo-cytoplasmic shuttling of β-catenin and its antagonists can yield a spatial separation between the said proteins, which results in a breakdown of β-catenin degradation, followed by an accumulation of β-catenin and hence leads to an increase of the [β-catenin/TCF] concentration. Our results strongly suggest that Wnt signalling can benefit from nucleo-cytoplasmic shuttling of APC, Axin and GSK3, although they are in general β-catenin antagonising proteins. 2) The total robustness of the [β-catenin/TCF] output is closely linked to its absolute concentration levels. We demonstrate that the compartmental separation of β-catenin and the destruction complex does not only lead to a maximization, but additionally to an increased robustness of [β-catenin/TCF] signalling against perturbations in the cellular environment. 3) A nuclear accumulation of the destruction complex renders the pathway robust against fluctuations in Wnt signalling and against changes in the compartmental distribution of β-catenin. 4) Elucidating the impact of destruction complex inhibition, we show that the [β-catenin/TCF] concentration is more effectively enhanced by inhibition of the kinase GSK3 rather than the binding of β-catenin to the destruction complex.  相似文献   

17.
Nonappa  Uday Maitra 《Steroids》2010,75(7):506-512
Synthesis, aggregation behavior and in vitro cholesterol solubilization studies of 16-epi-pythocholic acid (3α,12α,16β-trihydroxy-5β-cholan-24-oic acid, EPCA) are reported. The synthesis of this unnatural epimer of pythocholic acid (3α,12α,16α-trihydroxy-5β-cholan-24-oic acid, PCA) involves a series of simple and selective chemical transformations with an overall yield of 21% starting from readily available cholic acid (CA). The critical micellar concentration (CMC) of 16-epi-pythocholate in aqueous media was determined using pyrene as a fluorescent probe. In vitro cholesterol solubilization ability was evaluated using anhydrous cholesterol and results were compared with those of other natural di- and trihydroxy bile acids. These studies showed that 16-epi-pythocholic acid (16β-hydroxy-deoxycholic acid) behaves similar to cholic acid (CA) and avicholic acid (3α,7α,16α-trihydroxy-5β-cholan-24-oic acid, ACA) in its aggregation behavior and cholesterol dissolution properties.  相似文献   

18.
19.
20.
《Phytochemistry》1987,26(3):731-733
The sterols from eight species in seven genera of the Cactaceae are 24-alkyl-Δ5-sterols. In all eight species, Echinopsis tubiflora, Pereskia aculeata, Hylocereus undatus, Notocactus scopa, Epiphyllum sp., Schlumbergera bridgesii, Opuntia comonduensis and O. humifusa, the dominant sterol is sitosterol (24α-ethylcholest-5-en-3β-ol) at 66–87% of the total sterol composition with the 24ξ-methylcholest-5-en-3β-ol present at 8–33%. Stigmasterol (24α-ethylcholesta-5,22E-dien-3β-ol) is present at 2–8% of the total sterol in P. aculeata, H. undatus, N. scopa and Epiphyllum sp. whereas cholesterol (cholest-5-en-3β-ol) is present in six species at levels of <0.1–5.0%. Avenasterol (24-ethylcholesta-7,24(28)Z-dien-3/gb-ol) and sitostanol (24α-ethyl-5α-cholestan-3β-ol) are each present in two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号