首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein aggregates are usually formed by interactions between unfolded or partially unfolded species, and often occur when a protein is denatured by, for example, heat or low pH. In earlier work, we used a Darwinian selection strategy to create human antibody variable domains that resisted heat aggregation. The repertoires of domains were displayed on filamentous phage and denatured (at 80 °C in pH 7.4), and folded domains were selected by binding to a generic ligand after cooling. This process appeared to select for domains with denatured states that resisted aggregation, but the domains only had low free energies of folding (ΔGN-Do = 15-20 kJ/mol at 25 °C in pH 7.4). Here, using the same phage repertoire, we have extended the method to the selection of domains resistant to acid aggregation. In this case, however, the thermodynamic stabilities of selected domains were higher than those selected by thermal denaturation (under both neutral and acidic conditions; ΔGN-Do = 26-47 kJ/mol at 25 °C in pH 7.4, or ΔGN-Do = 27-34 kJ/mol in pH 3.2). Furthermore, we identified a key determinant (Arg28) that increased the aggregation resistance of the denatured states of the domains at low pH without compromising their thermodynamic stabilities. Thus, the selection process yielded domains that combined thermodynamic stability and aggregation-resistant unfolded states. We suggest that changes to these properties are controlled by the extent to which the folding equilibrium is displaced during the process of selection.  相似文献   

2.
A double mutant of CuA azurin was prepared in which both bridging cysteine thiolate ligands of the binuclear CuA center were replaced by serine. The copper binding properties of this protein were investigated, and shown to be pH dependent. At lower pH (5.2 ± 0.1), the protein binds one copper per protein molecule as demonstrated by electrospray ionization mass spectrometry. Copper titrations resulted in electronic absorptions at 730 nm (peak) and ca. 330 nm (shoulder) in the UV-Vis spectrum. EPR data show a four line pattern with hyperfine A = 150 G and g and g values 2.32 and 2.03, characteristic of a type II (T2) copper. Superhyperfines to two nitrogen atoms were also observed. At higher pH (8.5 ± 0.1), the protein binds upto two copper atoms per protein molecule, and copper titrations exhibit a blue transition at 595 nm in the UV-Vis spectrum. The EPR data are consistent with two monomeric sites very similar to one another having hyperfines A = 182 and 150 G, g = 2.24 and 2.22 and a similar g value of 2.01. These results indicate that both bridging cysteines play a critical role in the CuA center, and replacing them with serines is not enough to maintain the symmetrical diamond core structure or the characteristic electronic and functional properties of the CuA center.  相似文献   

3.
Summary Cyprosin extract from dried flowers ofCynara cardunculus L. was dissolved in two different buffers (50 mM Tris-HCl, pH 8.3 and 10 mM PBS, pH 7.4), mixed with a sonicated soybean lecithin dispersion and microencapsulated in dehydration-rehydration liposomes. Efficiency of cyprosin encapsulation was 12.1% for Tris-HCl liposomes and 12.3% for PBS liposomes. TCA-soluble N in 24 h cheese was higher when PBS liposomes were added to milk (A280=0.604) than when Tris-HCl liposomes (A280=0.392) or no liposomes (A280=0.359) were added, due to the efficient delivery of cyprosin into the curd by PBS liposomes.  相似文献   

4.
Glycosylation affects the physical properties of proteins in a number of ways including solubility and aggregation behavior. To elucidate the mechanism underlying these effects, we have measured second virial coefficients (A2) of the heavily glycosylated pheniophora lycii phytase (Phy) and its enzymatically deglycosylated counterpart (dgPhy) in native and in denatured form by means of small angle x-ray scattering. The measured A2-values show that the native forms of Phy and dgPhy are equally repulsive at the studied pH 8 where A2 equals 10.9 ± 0.1 × 104 mL mol g−2. However, when thermally denatured, the A2 of dgPhy decreases to 9.0 ± 0.2 × 104 mL mol g−2 whereas it remained unchanged for Phy. In accord with earlier investigations, the p(r)-function measured here suggested that the glycans did not affect the peptide structure of the native protein. Conversely, glycosylation markedly changed the structure of thermally denatured protein. This was evident from the radius of gyration, which increased by 32% for Phy and only 11% for dgPhy on denaturation. We suggest that this expanding effect of the glycans on the denatured protein conformation relies on steric hindrance that limits the range of torsion angles available to the polypeptide.  相似文献   

5.
6.
Two single nucleotide polymorphisms (SNPs) in the Human Hemochromatosis (HFE) gene, C282Y and H63D, are the major variants associated to altered iron status and it is well known that these mutations are in linkage disequilibrium with certain Human Leukocyte Antigen (HLA)-A alleles. In addition, the C282Y SNP has been previously suggested to confer susceptibility to acute lymphoblastic leukemia (ALL). We have aimed to assess the diagnosis utility of these polymorphisms in a population of Spanish subjects with suspicion of hereditary iron overload and to evaluate the effect of their associations with HLA-A alleles on the susceptibility to ALL. Both the 63DD [OR = 4.31 (1.7–11.2)] and 282YY (p for trend = 0.02) genotypes were more frequently found among subjects with suspicion of iron overload than among controls. 282YY carriers displayed significantly higher transferrin saturation index (TSI) values (p < 0.001) as well as serum iron (p = 0.01) and ferritin (p = 0.01) levels. In addition, transferrin levels were lower in these subjects (p = 0.01). Likewise, patients who were carriers of the compound heterozygous diplotype (282CY/63HD) showed significantly higher TSI and serum iron and ferritin concentrations. The H63D SNP did not significantly affect the analytical parameters measured. All 282YY carriers and 69.2% of compound heterozygotes showed an altered biochemical index. The frequencies of the HFE SNPs in ALL pediatric patients were lower than those found in controls, whereas the HLA-A*24 allele was significantly overrepresented in the patients group [OR = 3.76 (1.9–7.3)]. No HFE-HLA-A associations were found to modulate the ALL risk. These results suggest that it may be useful to test for both HFE H63D and C282Y polymorphisms in patients with iron overload, as opposed to just genotyping for the C282Y SNP, which is customary in some healthcare centers. These HFE variants and their associations with HLA-A alleles were not observed to be relevant for the susceptibility to ALL in our population.  相似文献   

7.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59 uptake experiments with chemically labeled preparations indicated that iron bound at near neutral ph was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2–5.8) was required to effect dissociation of iron that had remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-binding properties of human transferrin and identifies that the near neutral iron-donating site initially surrenders its iron to these cells.  相似文献   

8.
9.
The dependence on pH of the absorption and circular dichroic spectra of iron(III), cobalt(III) and copper(II) transferrins has been (re)investigated. In the alkaline region, the CD profiles of iron(III) and cobalt(III) transferrin are essentially pH independent up to pH 11; only for very high pH values (pH > 11) is breakdown of the cobalt(III) and iron(III) transferrin derivatives observed, without evidence of conformational rearrangements. By contrast, the CD profiles of copper transferrin show drastic changes in shape around pH 10; these spectral changes, which are fitted to a pKa of ~10.4, are interpreted in terms of a substantial rearrangement of the local environment of the copper ions at high pH. Although the CD spectra of copper transferrin at alkaline pH strictly resemble those observed upon addition of modifier anions, the mechanism of site destabilization in the two cases is different; at variance with the case of modifier anions, our results suggest that the high pH form of copper transferrin still contains the synergistic anion. A13C NMR experiment has confirmed this view. In the acidic region, iron(III) and cobalt(III) transferrins are stable down to pH ~6. For lower pH values progressive metal detachment is observed without evidence of conformational changes; around pH 4.5 most bound metals are released. In the case of the less stable copper-transferrin, metal removal from the specific binding sites is already complete around pH 6.0; in concomitance with release from the primary sites, binding of copper ions to secondary sites is observed. Additional information has been gained from CD experiments in the far UV. The pH dependent properties of iron(III), cobalt(III) and copper(II) transferrin are discussed in the frame of the present knowledge of transferrin chemistry, particular emphasis being attributed to the comparison between tripositive and bipositive metal derivatives.  相似文献   

10.
Rat plasma contains two isotransferrins rather than the single iron-binding protein found in plasma of other species, and it was recently proposd that differences between the biological behavior of each isotransferrin accounted for observations previously attributed to behavioral differences between each of the two transferrin iron-binding sites. The two isotransferrins were isolated from rat plasma by DEAE-Sephadex ion-exchange chromatography and isoelectric focusing. The pH-dependent iron-dissociating and reticulocyte iron-donating properties of each isotransferrin were investigated and found to be indistinguishable. Like human transferrin, one iron-binding site retains its affinity for iron below pH 6 and this property was used to investigate the invivo acquisition of catabolic iron in order to determine whether the process occurs at one specific or both binding sites. Plasma radioactive iron, derived from injected 59Fe-labelled heat denatured erythrocytes was bound with high specificity to the transferrin iron-binding site that was most resistant to acidic dissociation. This finding supports Fletcher and Huehns' hypothesis that each of the two rat transferrin iron-binding sites is endowed with a separate functional role.  相似文献   

11.
We describe a rapid method for monitoring the cell growth and decline phases in suspension cultures of animal cells. During the cell growth phase, ultraviolet (UV)-absorbing components in the medium are consumed, but at later times as cells begin to die, UV-absorbing molecules such as proteins are released into the medium. Measuring the absorbance at 280 nm (A280) with a NanoDrop spectrophotometer, an inverse correlation between the onset of the cell decline phase and A280 was observed. This simple method can be applied to quickly determine the beginning of the decline phase of cultures of mammalian and insect cells in suspension.  相似文献   

12.
Serum transferrin (sTf) is a bi-lobal protein. Each lobe of sTf binds one Fe3+ ion in the presence of a synergistic anion. Physiologically, carbonate is the main synergistic anion but other anions such as oxalate, malonate, glycolate, maleate, glycine, etc. can substitute for carbonate in vitro. The present work provides the possible pathways by which the substitution of carbonate with oxalate affects the structural, kinetic, thermodynamic, and functional properties of blood plasma sTf. Analysis of equilibrium experiments measuring iron release and structural unfolding of carbonate and oxalate bound diferric-sTf (Fe2sTf) as a function of pH, urea concentration, and temperature reveal that the structural and iron-centers stability of Fe2sTf increase by substitution of carbonate with oxalate. Analysis of isothermal titration calorimetry (ITC) scans showed that the affinity of Fe3+ with apo-sTf is enhanced by substituting carbonate with oxalate. Analysis of kinetic and thermodynamic parameters measured for the iron release from the carbonate and oxalate bound monoferric-N-lobe of sTf (FeNsTf) and Fe2sTf at pH 7.4 and pH 5.6 reveals that the substitution of carbonate with oxalate inhibits/retards the iron release via increasing the enthalpic barriers.  相似文献   

13.
Analytical methods which are capable of determining the plasma or serum metalloproteome have inherent diagnostic value for human diseases associated with increased or decreased concentrations of specific plasma metalloproteins. We have therefore systematically developed a method to rapidly determine the major Cu-, Fe-, and Zn-containing metalloproteins in rabbit plasma (0.5 mL) based on size-exclusion chromatography (SEC; stationary phase Superdex 200, mobile phase phosphate-buffered saline pH 7.4) and the simultaneous online detection of Cu, Fe, and Zn in the column effluent by an inductively coupled plasma atomic emission spectrometer (ICP-AES). Whereas most previous studies reported on the analysis of serum, our investigations clearly demonstrated that the analysis of plasma within 30 min of collection results in the detection of one more Cu peak (blood coagulation factor V) than has been previously reported (transcuprein, ceruloplasmin, albumin-bound Cu, and small molecular weight Cu). The average amount of Cu associated with these five proteins corresponded to 21, 18, 21, 30 and 10% of total plasma Cu, respectively. In contrast, only two Fe metalloproteins (ferritin and transferrin, corresponding to an average of 9 and 91% of total plasma Fe) and approximately five Zn metalloproteins (α2-macroglobulin and albumin-bound Zn, which corresponded to an average of plasma Zn) were detected. Metalloproteins were assigned on the basis of the coelution of the corresponding metal and protein identified by immunoassays or activity-based enzyme assays. The SEC-ICP-AES approach developed allowed the determination of approximately 12 Cu, Fe, and Zn metalloproteins in rabbit plasma within approximately 24 min and can be applied to analyze human plasma, which is potentially useful for diagnosing Cu-, Fe-, and Zn-related diseases. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Parts of the work described in this paper were presented at HPLC 2007 in Ghent, Belgium. An erratum to this article can be found at  相似文献   

14.
The effect of acid pH and citrate on the exchange of iron between binding sites of rat transferrin has been studied. In the absence of citrate, diferric transferrin shows stepwise loss of iron atoms with the first atom of iron released at approximately pH 5.2. Citrate at physiologic concentrations (1 · 10?3 M) or greater allows random iron removal at pH 6.5 or less. Iron dissociation from monoferric transferrin at acid pH, with or without citrate, is a random process. At pH 7.4, randomization of iron on transferrin takes from 3 to 6 h in the presence of millimolar concentrations of citrate. We conclude that at acid pH and in the presence of citrate concentrations likely to occur in vivo in the rat there is little scrambling of iron bound to transferrin.  相似文献   

15.
RNA isolation is difficult in plants that contain large amounts of polysaccharides and polyphenol compounds. To date, no commercial kit has been developed for the isolation of high-quality RNA from tissues with these characteristics, especially for fruit. The common protocols for RNA isolation are tedious and usually result in poor yields when applied to recalcitrant plant tissues. Here an efficient RNA isolation protocol based on cetyltrimethylammonium bromide (CTAB) and two successive precipitations with 10 M lithium chloride (LiCl) was developed specifically for loquat fruits, but it was proved to work efficiently in other tissues of loquat and woody plants. The RNA isolated by this improved protocol was not only of high purity and integrity (A260/A280 ratios ranged from 1.90 to 2.04 and A260/A230 ratios were > 2.0) but also of high yield (up to 720 μg on average [coefficient of variation = 21%] total RNA per gram fresh tissue). The protocol was tested on loquat fruit (different stages of development, postharvest, ripening, and bruising), leaf, root, flower, stem, and bud; quince fruit and root; grapevine cells in liquid culture; and rose petals. The RNA obtained with this method is amenable to enzymatic treatments and can be efficiently applied for research on gene characterization, expression, and function.  相似文献   

16.
Dog kidney cytosol contains a high molecular weight (50 000–70 000) and a low molecular weight (approx. 6000) thyronine-binding protein. Low molecular weight cytosol thyronine-binding protein has not been previously recognized in cytoplasm. Binding of thyroxine (tetraiodothyronine, T4) by the low molecular weight protein has a half-time of association of more than 24 h and accounts for 32% of bound cytoplasmic tetraiodothyronine after 48 h of incubation. Binding of labeled tetraiodothyronine and triiodothyronine by this moiety is non-dissociable in the presence of 1 · 10?5 M unlabeled tetra- or triiodothyronine. The low molecular weight protein exists in a dispersed and apparently aggregated form; the latter elutes in the void volume on Sephadex G-100 and its generation is minimized by 2 mM Ca2+. This binding protein elutes in a fraction which has a high A260nm : A280nm ratio, is pentose enriched (orcinol method) and which, because of these characteristics and low susceptibility to digestion by nuclease, is postulated to be a ribosylated cytoplasmic protein or polypeptide.Binding of tetra- and triiodothyronine by the high molecular weight protein has a half-time of association of 2 h and is saturable. Displacement of labeled triiodothyronine from this cytosol thyronine-binding protein is more readily effected with excess unlabeled tetra- than with triiodothyronine, indicating the absence of a triiodothyronine-specific cytosol thyronine-binding protein site. 3,3′,5′-Triiodothyronine (reverse triiodothyronine) is bound with low avidity. Uptake of high molecular weight protein by isolated kidney cell nuclei cannot be demonstrated.Binding of tetraiodothyronine by cytosol proteins is independent of pH in the pH range 6.8–8.9, but binding of triiodothyronine is minimized at pH 7.4 and enhanced at alkaline pH to the point of equivalency of tetra- and triiodothyronine binding at pH 8.9.At concentrations of tetraiodothyronine calculated to exist intracellularly, essentially all soluble fraction tetraiodothyronine is bound to cytosol thyronine-binding protein, restricting access of this iodothyronine to binding sites in nucleus and mitochondria. Cytosol removes labeled tetra- and triiodothyronine previously reacted in vitro with isolated cell nuclei; such removal is a linear function of cytosol protein concentration and is blocked by saturation of cytosol thyronine-binding protein with unlabeled iodothyronines. Only the high molecular weight protein accounts for unbinding by cytosol of nuclear hormone.  相似文献   

17.
The bovine milk lipocalin, β-Lactoglobulin (β-LG), has been associated with the binding and transport of small hydrophobic and amphiphilic compounds, whereby it is proposed to increase their bioavailability. We have studied the binding of the fluorescent phospholipid-derivative, NBD-didecanoylphosphatidylethanolamine (NBD-diC10PE) to β-LG by following the increase in amphiphile fluorescence upon binding to the protein using established methods. The equilibrium association constant, KB, was (1.2 ± 0.2) × 106 M− 1 at 25 °C, pH 7.4 and I = 0.15 M. Dependence of KB on pH and on the monomer-dimer equilibrium of β-LG gave insight on the nature of the binding site which is proposed to be the hydrophobic calyx formed by the β-barrel in the protein. The monomer-dimer equilibrium of β-LG was re-assessed using fluorescence anisotropy of Tryptophan. The equilibrium constant for dimerization, KD, was (7.0 ± 1.5) × 105 M− 1 at 25 °C, pH 7.4, and 0.15 M ionic strength. The exchange of NBD-diC10PE between β-LG and POPC lipid bilayers was followed by the change in NBD fluorescence. β-LG was shown to be a catalyst of phospholipid exchange between lipid bilayers, the mechanism possibly involving adsorption of the protein at the bilayer surface.  相似文献   

18.

Background

Iron oxidation is thought to be predominantly handled enzymatically in the body, to minimize spontaneous combustion with oxygen and to facilitate cellular iron export by loading transferrin. This process may be impaired in disease, and requires more accurate analytical assays to interrogate enzymatic- and auto-oxidation within a physiologically relevant environment.

Method

A new triplex ferroxidase activity assay has been developed that overcomes the previous assay limitations of measuring iron oxidation at a physiologically relevant pH and salinity.

Results

Revised enzymatic kinetics for ceruloplasmin (Vmax ≈ 35 μM Fe3 +/min/μM; Km ≈ 15 μM) are provided under physiological conditions, and inhibition by sodium azide (Ki for Ferric Gain 78.3 μM, Ki for transferrin loading 8.1 × 104 μM) is quantified. We also used this assay to characterize the non-enzymatic oxidation of iron that proceeded linearly under physiological conditions.

Conclusions and general significance

These findings indicate that the requirement of an enzyme to oxidize iron may only be necessary under conditions of adverse pH or anionic strength, for example from hypoxia. In a normal physiological environment, Fe3 + incorporation into transferrin would be sufficiently enabled by the biological polyanions that are prevalent within extracellular fluids.  相似文献   

19.
The Mg2+ precipitation method has been adapted for isolation of ribosomes from roots of wheat. The ribosomes prepared by this procedure show A260/A280 = 1.6 and A260/A235 = 1.3 and contain 44d% RNA and 56% ribosomal proteins. There are no detectable differences in the ribosomal protein complement and accessibility of the ribosomal proteins to phosphorylation between ribosomes isolated by this procedure and those prepared by classical ultracentrifugation methods. The ribosomes are active in a poly-U directed cell-free system for protein synthesis.  相似文献   

20.
The objective of this study was to examine the effects of 2,2,2 trifluoroethanol (TFE) and acetonitrile (ACN) on the stability, behavior, and structural characteristics of giant multimeric protein Keyhole Limpet hemocyanin (KLH) by combining the circular dichroism (CD) and fluorescence measurements of KLH solution. In concentration range 20–50 % (v/v) TFE, protein at pH 7.4 shows visible aggregation while no aggregation was observed in the entire concentration range of TFE at molten globule (MG) state (pH 2.8) and resulted in stable α-helix. Our result shows that in the presence of 80 % (v/v) and 40 % (v/v) TFE, at native (pH 7.4) and MG state (pH 2.8) occurred in a highly helical state referred to as TFE denatured state I and II, respectively. However, in case of ACN, aggregation starts above 40 % (v/v) for pH 7.4 and at 80 % (v/v) for acid-induced MG (pH 2.8) state, which was dominated by β-sheet structure and referred to as ACN denatured state III and IV. An important object of our investigation is to get more detail study of efficiency of cosolvents in inducing structural changes in KLH. The dependence of scattering intensity and the R h on alcohol concentrations was investigated at 25 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号