首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The functional stability of mRNA is one of the crucial factors affecting the efficiency of cell-free protein synthesis. The importance of the stability of mRNA in the prolonged synthesis of protein molecules becomes even greater when the cell-free protein synthesis is directed by PCR-amplified DNAs, because the linear DNAs are rapidly degraded by the endogenous nucleases and, thus, the continuous generation of mRNA molecules is limited. With the aim of developing a highly efficient cell-free protein synthesis system directed by PCR products, in this study, we describe a systematic approach to enhance the stability of mRNA in cell-free extracts. First, exonuclease-mediated degradation was substantially reduced by introducing a stem-loop structure at the 3'-end of the mRNA. The endonucleolytic cleavage of the mRNA was minimized by using an S30 extract prepared from an Escherichia coli strain that is deficient in a major endonuclease (RNase E). Taken together, through the retardation of the endonucleolytic and exonucleolytic degradations of the mRNA molecules, the level of protein expression from the PCR-amplified DNA templates becomes comparable to that of conventional plasmid-based reactions. The enhanced productivity of the PCR-based cell-free protein synthesis enables the high-throughput generation of protein molecules required for many post-genomic applications.  相似文献   

2.
In crude extract-based cell-free protein synthesis (CFPS), DNA templates are transcribed and translated into functional proteins. Although linear expression templates (LETs) are less laborious and expensive to generate, plasmid templates are often desired over polymerase chain reaction-generated LETs due to increased stability and protection against exonucleases present in the extract of the reaction. Here we demonstrate that addition of a double stranded DNA-binding protein to the CFPS reaction, termed single-chain Cro protein (scCro), achieves terminal protection of LETs. This CroP-LET (scCro-based protection of LET) method effectively increases superfolder green fluorescent protein (sfGFP) expression levels from LETs in Escherichia coli CFPS reactions by sixfold. Our yields are comparable to other strategies that provide chemical and enzymatic DNA stabilization in E. coli CFPS. Notably, we also report that the CroP-LET method successfully enhanced yields in CFPS platforms derived from nonmodel organisms. Our results show that CroP-LET increased sfGFP yields by 18-fold in the Vibrio natriegens CFPS platform. With the fast-expanding applications of CFPS platforms, this method provides a practical and generalizable solution to protect linear expression DNA templates.  相似文献   

3.
In Deinococcus radiodurans, the extreme resistance to DNA–shattering treatments such as ionizing radiation or desiccation is correlated with its ability to reconstruct a functional genome from hundreds of chromosomal fragments. The rapid reconstitution of an intact genome is thought to occur through an extended synthesis-dependent strand annealing process (ESDSA) followed by DNA recombination. Here, we investigated the role of key components of the RecF pathway in ESDSA in this organism naturally devoid of RecB and RecC proteins. We demonstrate that inactivation of RecJ exonuclease results in cell lethality, indicating that this protein plays a key role in genome maintenance. Cells devoid of RecF, RecO, or RecR proteins also display greatly impaired growth and an important lethal sectoring as bacteria devoid of RecA protein. Other aspects of the phenotype of recFOR knock-out mutants paralleled that of a ΔrecA mutant: ΔrecFOR mutants are extremely radiosensitive and show a slow assembly of radiation-induced chromosomal fragments, not accompanied by DNA synthesis, and reduced DNA degradation. Cells devoid of RecQ, the major helicase implicated in repair through the RecF pathway in E. coli, are resistant to γ-irradiation and have a wild-type DNA repair capacity as also shown for cells devoid of the RecD helicase; in contrast, ΔuvrD mutants show a markedly decreased radioresistance, an increased latent period in the kinetics of DNA double-strand-break repair, and a slow rate of fragment assembly correlated with a slow rate of DNA synthesis. Combining RecQ or RecD deficiency with UvrD deficiency did not significantly accentuate the phenotype of ΔuvrD mutants. In conclusion, RecFOR proteins are essential for DNA double-strand-break repair through ESDSA whereas RecJ protein is essential for cell viability and UvrD helicase might be involved in the processing of double stranded DNA ends and/or in the DNA synthesis step of ESDSA.  相似文献   

4.
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.Key words: cell-free protein synthesis, Fab antibody, aglycosylated antibodies, HER2, trastuzumab  相似文献   

5.
Speeding up design-build-test (DBT) cycles is a fundamental challenge facing biochemical engineering. To address this challenge, we report a new cell-free protein synthesis driven metabolic engineering (CFPS-ME) framework for rapid biosynthetic pathway prototyping. In our framework, cell-free cocktails for synthesizing target small molecules are assembled in a mix-and-match fashion from crude cell lysates either containing selectively enriched pathway enzymes from heterologous overexpression or directly producing pathway enzymes in lysates by CFPS. As a model, we apply our approach to n-butanol biosynthesis showing that Escherichia coli lysates support a highly active 17-step CoA-dependent n-butanol pathway in vitro. The elevated degree of flexibility in the cell-free environment allows us to manipulate physiochemical conditions, access enzymatic nodes, discover new enzymes, and prototype enzyme sets with linear DNA templates to study pathway performance. We anticipate that CFPS-ME will facilitate efforts to define, manipulate, and understand metabolic pathways for accelerated DBT cycles without the need to reengineer organisms.  相似文献   

6.
DNA from adenovirus-2 and mouse myeloma tumors stimulate RNA synthesis and amino acid incorporation into protein in a cell-free extract from Escherichia coli. The RNA synthesis is dependent on exogenous DNA, and the RNA can be hybridized to respective template DNA. A major part of this RNA is also found attached to E. coli polysomes suggesting that RNA with messenger-like activity has been synthesized. However, the in vitro-synthesized polypeptides using adenovirus DNA or myeloma DNA do not correspond in size or antigenic activity to either the virion proteins or immunoglobulins, respectively.  相似文献   

7.
Rat liver mitochondria DNA and nuclear DNA from several sources stimulate amino acid incorporation in a cell-free extract of E. coli. In all cases, the endogenous E. coli polymerase synthesized RNA that specifically hybridizes with the added DNA. Although the newly synthesized RNA may be protecting endogenous E. coli mRNA from degradation, evidence is presented that some of the polypeptides synthesized are products of the added DNA.  相似文献   

8.
9.
Woodrow KA  Swartz JR 《Proteomics》2007,7(21):3870-3879
A method employing sequential rounds of cell-free protein synthesis (CFPS) was developed to identify gene products influencing the complex metabolic systems that result in protein accumulation and folding in vitro. The first round of CFPS creates an array of cell extracts individually enriched with a single gene product expressed in-parallel from linear DNA expression templates (ETs). The cell extract is engineered to enhance template stability and to provide reaction conditions conducive for general protein activation. Following first-round expression, linear templates are selectively degraded and a plasmid template for a reporter enzyme is added to initiate a subsequent round of protein expression. Reporter concentration and activity identify first-round gene products that affect amino acid and nucleic acid stability, energy supply, protein expression, stability, and activation. This sequential CFPS system provides a unique format for the functional genomic identification of broadly diverse metabolic activities.  相似文献   

10.
DNA helicases have important roles in genome maintenance. The RecD helicase has been well studied as a component of the heterotrimeric RecBCD helicase-nuclease enzyme important for double-strand break repair in Escherichia coli. Interestingly, many bacteria lack RecBC and instead contain a RecD2 helicase, which is not known to function as part of a larger complex. Depending on the organism studied, RecD2 has been shown to provide resistance to a broad range of DNA-damaging agents while also contributing to mismatch repair (MMR). Here we investigated the importance of Bacillus subtilis RecD2 helicase to genome integrity. We show that deletion of recD2 confers a modest increase in the spontaneous mutation rate and that the mutational signature in ΔrecD2 cells is not consistent with an MMR defect, indicating a new function for RecD2 in B. subtilis. To further characterize the role of RecD2, we tested the deletion strain for sensitivity to DNA-damaging agents. We found that loss of RecD2 in B. subtilis sensitized cells to several DNA-damaging agents that can block or impair replication fork movement. Measurement of replication fork progression in vivo showed that forks collapse more frequently in ΔrecD2 cells, supporting the hypothesis that RecD2 is important for normal replication fork progression. Biochemical characterization of B. subtilis RecD2 showed that it is a 5′-3′ helicase and that it directly binds single-stranded DNA binding protein. Together, our results highlight novel roles for RecD2 in DNA replication which help to maintain replication fork integrity during normal growth and when forks encounter DNA damage.  相似文献   

11.
12.
13.
An efficient cell-free protein synthesis system has been developed using a novel energy-regenerating source. Using the new energy source, 3-phosphoglycerate (3-PGA), protein synthesis continues beyond 2 h. In contrast, the reaction rate slowed down considerably within 30–45 min using a conventional energy source, phosphoenol pyruvate (PEP) under identical reaction conditions. This improvement results in the production of twice the amount of protein obtained with PEP as an energy source. We have also shown that Gam protein of phage lambda, an inhibitor of RecBCD (ExoV), protects linear PCR DNA templates from degradation in vitro. Furthermore, addition of purified Gam protein in extracts of Escherichia coli BL21 improves protein synthesis from PCR templates to a level comparable to plasmid DNA template. Therefore, combination of these improvements should be amenable to rapid expression of proteins in a high-throughput manner for proteomics and structural genomics applications.  相似文献   

14.
As structural genomics and proteomics research has become popular, the importance of cell-free protein synthesis systems has been realized for high-throughput expression. Our group has established a high-throughput pipeline for protein sample preparation for structural genomics and proteomics by using cell-free protein synthesis. Among the many procedures for cell-free protein synthesis, the preparation of the cell extract is a crucial step to establish a highly efficient and reproducible workflow. In this article, we describe a detailed protocol for E. coli cell extract preparation for cell-free protein synthesis, which we have developed and routinely use. The cell extract prepared according to this protocol is used for many of our cell-free synthesis applications, including high-throughput protein expression using PCR-amplified templates and large-scale protein production for structure determinations.  相似文献   

15.
RecD2 from Deinococcus radiodurans is a superfamily 1 DNA helicase that is homologous to the Escherichia coli RecD protein but functions outside the context of RecBCD enzyme. We report here on the kinetics of DNA unwinding by RecD2 under single and multiple turnover conditions. There is little unwinding of 20-bp substrates by preformed RecD2-dsDNA complexes when excess ssDNA is present to trap enzyme molecules not bound to the substrate. A shorter 12-bp substrate is unwound rapidly under single turnover conditions. The 12-bp unwinding reaction could be simulated with a mechanism in which the DNA is unwound in two kinetic steps with rate constant of kunw = 5.5 s−1 and a dissociation step from partially unwound DNA of koff = 1.9 s−1. These results indicate a kinetic step size of about 3–4 bp, unwinding rate of about 15–20 bp/s, and low processivity (p = 0.74). The reaction time courses with 20-bp substrates, determined under multiple turnover conditions, could be simulated with a four-step mechanism and rate constant values very similar to those for the 12-bp substrate. The results indicate that the faster unwinding of a DNA substrate with a forked end versus only a 5′-terminal single-stranded extension can be accounted for by a difference in the rate of enzyme binding to the DNA substrates. Analysis of reactions done with different RecD2 concentrations indicates that the enzyme forms an inactive dimer or other oligomer at high enzyme concentrations. RecD2 oligomers can be detected by glutaraldehyde cross-linking but not by size exclusion chromatography.  相似文献   

16.
A bottleneck in our capacity to rationally and predictably engineer biological systems is the limited number of well-characterized genetic elements from which to build. Current characterization methods are tied to measurements in living systems, the transformation and culturing of which are inherently time-consuming. To address this, we have validated a completely in vitro approach for the characterization of DNA regulatory elements using Escherichia coli extract cell-free systems. Importantly, we demonstrate that characterization in cell-free systems correlates and is reflective of performance in vivo for the most frequently used DNA regulatory elements. Moreover, we devise a rapid and completely in vitro method to generate DNA templates for cell-free systems, bypassing the need for DNA template generation and amplification from living cells. This in vitro approach is significantly quicker than current characterization methods and is amenable to high-throughput techniques, providing a valuable tool for rapidly prototyping libraries of DNA regulatory elements for synthetic biology.  相似文献   

17.
To improve the expression level of xylanase A in an Escherichia coli derived cell-free protein synthesis (CFPS) system, the mutation of the second codon of the signal peptide sequence (SPS) to AAA triplets was designed in xylA gene. Furthermore, the over-expression of molecular chaperons GroES-GroEL in the E. coli cell extract and the addition of Triton X-100 were also adopted to enhance the solubility and activity of the in vitro synthesized xylanase A. With the rational intrinsic manipulation and external modification, a combined strategy was established here to increase the functional expression level of xylanase A as much as 6.1-fold in CFPS. This strategy was further applied to produce other four enzymes in vitro with 3.2-fold to 5.3-fold improvements. Moreover, a modified DNA gel technique with a practical fabrication process was integrated into CFPS, resulting in a further 2.3-fold increase in the expression efficiency of xylanase A.  相似文献   

18.
DNA helicases of the RecD2 family are ubiquitous. Bacillus subtilis RecD2 in association with the single-stranded binding protein SsbA may contribute to replication fork progression, but its detailed action remains unknown. In this work, we explore the role of RecD2 during DNA replication and its interaction with the RecA recombinase. RecD2 inhibits replication restart, but this effect is not observed in the absence of SsbA. RecD2 slightly affects replication elongation. RecA inhibits leading and lagging strand synthesis, and RecD2, which physically interacts with RecA, counteracts this negative effect. In vivo results show that recD2 inactivation promotes RecA–ssDNA accumulation at low mitomycin C levels, and that RecA threads persist for a longer time after induction of DNA damage. In vitro, RecD2 modulates RecA-mediated DNA strand-exchange and catalyzes branch migration. These findings contribute to our understanding of how RecD2 may contribute to overcome a replicative stress, removing RecA from the ssDNA and, thus, it may act as a negative modulator of RecA filament growth.  相似文献   

19.
Synthesis of ribosomal RNA in a cell-free system was achieved using purified Escherichia coli RNA polymerase and bacterial DNA templates from E. coli, Proteus mirabilis and E. coli/P. mirabilis hybrid strains carrying an E. coli DNA enriched for ribosomal RNA genes.Both direct and indirect competition hybridization revealed that from 5 to 15% of the in vitro product, depending on the template used, had sequences homologous to rRNA. The level of synthesis of sequences homologous to rRNA was related directly to the proportion of rRNA genes in the template. The use of heterologous DNA during competition hybridization ensured at least a 100-fold greater sensitivity for the detection of rRNA sequences than from any messenger RNA sequence.  相似文献   

20.
《MABS-AUSTIN》2013,5(2):217-225
We describe protein synthesis, folding and assembly of antibody fragments and full-length aglycosylated antibodies using an Escherichia coli-based open cell-free synthesis (OCFS) system. We use DNA template design and high throughput screening at microliter scale to rapidly optimize production of single-chain Fv (scFv) and Fab antibody fragments that bind to human IL-23 and IL-13α1R, respectively. In addition we demonstrate production of aglycosylated immunoglobulin G (IgG1) trastuzumab. These antibodies are produced rapidly over several hours in batch mode in standard bioreactors with linear scalable yields of hundreds of milligrams/L over a 1 million-fold change in scales up to pilot scale production. We demonstrate protein expression optimization of translation initiation region (TIR) libraries from gene synthesized linear DNA templates, optimization of the temporal assembly of a Fab from independent heavy chain and light chain plasmids and optimized expression of fully assembled trastuzumab that is equivalent to mammalian expressed material in biophysical and affinity based assays. These results illustrate how the open nature of the cell-free system can be used as a seamless antibody engineering platform from discovery to preclinical development of aglycosylated monoclonal antibodies and antibody fragments as potential therapeutics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号