首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new enzymatic assay for specifically measuring allantoin concentration in serum has been developed. The currently used methods for allantoin analysis are time consuming and nonspecific or depend on the use of expensive equipment. In our method, allantoin is converted to allantoate by the action of allantoinase (EC 3.5.2.5). The allantoate produced is hydrolyzed to ureidoglycine and ammonia by the action of allantoate amidohydrolase (EC 3.5.3.9). Nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase (EC 1.4.1.4) subsequently acts on the ammonia produced, resulting in a change in absorbance at 340nm due to the consumption of reduced nicotinamide adenine dinucleotide phosphate. The amount of allantoin present is related to the change in the absorbance. The standard curve is linear up to at least 1mM allantoin. The procedure is simple, rapid, and accurate. The method has been used to measure serum allantoin levels after oral administration of purine nucleotides to experimental animals, including rats that have uricase catalyzing the conversion of urate to allantoin.  相似文献   

2.
Addition ofl-methionine-dl-sulphoximine to cells ofCyanidium caldarium brings about a loss of glutamine synthetase activity. Concomitantly ammonia assimilation is prevented.Under physiological conditions nitrate reductase [NAD(P)H: nitrate oxidoreductase EC 1.6.6.2] is reversibly converted into an inactive enzyme upon addition of ammonia. In the presence of methionine sulphoximine, when glutamine synthetase activity is lost, nitrate reductase is no longer inactivated by ammonia. It is suggested that ammonia itself is not the actual effector of nitrate reductase inactivation.Concomitantly with the failure of nitrate reductase to undergo ammonia-inactivation, in the presence of methionine sulphoximine nitrate reduction is an uncontrolled process, thus, in media with nitrate ammonia continues to be produced and excreted into the external medium at a constant rate.Abbreviations NR Nitrate reductase - GS Glutamine synthetase - GOGAT Glutamate syntase - MSX l-methionine-dl-sulphoximine  相似文献   

3.
NAD synthetase catalyzes the final step in the biosynthesis of NAD. In the present study, we obtained cDNAs for two types of human NAD synthetase (referred as NADsyn1 and NADsyn2). Structural analysis revealed in both NADsyn1 and NADsyn2 a domain required for NAD synthesis from ammonia and in only NADsyn1 an additional carbon-nitrogen hydrolase domain shared with enzymes of the nitrilase family that cleave nitriles as well as amides to produce the corresponding acids and ammonia. Consistent with the domain structures, biochemical assays indicated (i) that both NADsyn1 and NADsyn2 have NAD synthetase activity, (ii) that NADsyn1 uses glutamine as well as ammonia as an amide donor, whereas NADsyn2 catalyzes only ammonia-dependent NAD synthesis, and (iii) that mutant NADsyn1 in which Cys-175 corresponding to the catalytic cysteine residue in nitrilases was replaced with Ser does not use glutamine. Kinetic studies suggested that glutamine and ammonia serve as physiological amide donors for NADsyn1 and NADsyn2, respectively. Both synthetases exerted catalytic activity in a multimeric form. In the mouse, NADsyn1 was seen to be abundantly expressed in the small intestine, liver, kidney, and testis but very weakly in the skeletal muscle and heart. In contrast, expression of NADsyn2 was observed in all tissues tested. Therefore, we conclude that humans have two types of NAD synthetase exhibiting different amide donor specificity and tissue distributions. The ammonia-dependent synthetase has not been found in eucaryotes until this study. Our results also indicate that the carbon-nitrogen hydrolase domain is the functional domain of NAD synthetase to make use of glutamine as an amide donor in NAD synthesis. Thus, glutamine-dependent NAD synthetase may be classified as a possible glutamine amidase in the nitrilase family. Our molecular identification of NAD synthetases may prove useful to learn more of mechanisms regulating cellular NAD metabolism.  相似文献   

4.
Nicotinamide-adenine dinucleotide (NAD+) synthetases catalyze the last step in NAD+ metabolism in the de novo, import, and salvage pathways that originate from tryptophan (or aspartic acid), nicotinic acid, and nicotinamide, respectively, and converge on nicotinic acid mononucleotide. NAD+ synthetase converts nicotinic acid adenine dinucleotide to NAD+ via an adenylylated intermediate. All of the known eukaryotic NAD+ synthetases are glutamine-dependent, hydrolyzing glutamine to glutamic acid to provide the attacking ammonia. In the prokaryotic world, some NAD+ synthetases are glutamine-dependent, whereas others can only use ammonia. Earlier, we noted a perfect correlation between presence of a domain related to nitrilase and glutamine dependence and then proved in the accompanying paper (Bieganowski, P., Pace, H. C., and Brenner, C. (2003) J. Biol. Chem. 278, 33049-33055) that the nitrilase-related domain is an essential, obligate intramolecular, thiol-dependent glutamine amidotransferase in the yeast NAD+ synthetase, Qns1. Independently, human NAD+ synthetase was cloned and shown to depend on Cys-175 for glutamine-dependent but not ammonia-dependent NAD+ synthetase activity. Additionally, it was claimed that a 275 amino acid open reading frame putatively amplified from human glioma cell line LN229 encodes a human ammonia-dependent NAD+ synthetase and this was speculated largely to mediate NAD+ synthesis in human muscle tissues. Here we establish that the so-called NADsyn2 is simply ammonia-dependent NAD+ synthetase from Pseudomonas, which is encoded on an operon with nicotinic acid phosphoribosyltransferase and, in some Pseudomonads, with nicotinamidase.  相似文献   

5.
It has been previously demonstrated that ammonia exposure of neurons and astrocytes in co-culture leads to net synthesis not only of glutamine but also of alanine. The latter process involves the concerted action of glutamate dehydrogenase (GDH) and alanine aminotransferase (ALAT). In the present study it was investigated if the glutamine synthetase (GS) inhibitor methionine sulfoximine (MSO) would enhance alanine synthesis by blocking the GS-dependent ammonia scavenging process. Hence, co-cultures of neurons and astrocytes were incubated for 2.5 h with [U-13C]glucose to monitor de novo synthesis of alanine and glutamine in the absence and presence of 5.0 mM NH4Cl and 10 mM MSO. Ammonia exposure led to increased incorporation of label but not to a significant increase in the amount of these amino acids. However, in the presence of MSO, glutamine synthesis was blocked and synthesis of alanine increased leading to an elevated content intra- as well as extracellularly of this amino acid. Treatment with MSO led to a dramatic decrease in glutamine content and increased the intracellular contents of glutamate and aspartate. The large increase in alanine during exposure to MSO underlines the importance of the GDH and ALAT biosynthetic pathway for ammonia fixation, and it points to the use of a GS inhibitor to ameliorate the brain toxicity and edema induced by hyperammonemia, events likely related to glutamine synthesis.  相似文献   

6.
E. Harel  P. J. Lea  B. J. Miflin 《Planta》1977,134(2):195-200
The activities of nitrate reductase (EC1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC6.3.1.2), glutamate synthase (EC1.4.7.1) and NAD(P)H-dependent glutamate dehydrogenase (EC 1.4.1.3) were investigated in mesophyll and bundle sheath cells of maize leaves (Zea mays L.). Whereas nitrate and nitrite reductase appear to be restricted to the mesophyll and GDH to the bundle sheath, glutamine synthetase and glutamate synthase are active in both tissues.During the greening process, the activities of nitrate and nitrite reductase increased markedly, but glutamine synthetase, glutamate synthase and glutamate dehydrogenase changed little.Abbreviations BDH British Drug Houses - EDTA Ethylene diamine tetra-acetic acid - GDH Glutamate dehydrogenase - NADH Nicotinamide-adenine dinucleotide reduced form - NADPH Nicotnamide-adenine dinucleotide phosphate reduced form - PMSF Phenylmethyl sulphonyl fluoride  相似文献   

7.
NAD is a ubiquitous and essential metabolic redox cofactor which also functions as a substrate in certain regulatory pathways. The last step of NAD synthesis is the ATP-dependent amidation of deamido-NAD by NAD synthetase (NADS). Members of the NADS family are present in nearly all species across the three kingdoms of Life. In eukaryotic NADS, the core synthetase domain is fused with a nitrilase-like glutaminase domain supplying ammonia for the reaction. This two-domain NADS arrangement enabling the utilization of glutamine as nitrogen donor is also present in various bacterial lineages. However, many other bacterial members of NADS family do not contain a glutaminase domain, and they can utilize only ammonia (but not glutamine) in vitro. A single-domain NADS is also characteristic for nearly all Archaea, and its dependence on ammonia was demonstrated here for the representative enzyme from Methanocaldococcus jannaschi. However, a question about the actual in vivo nitrogen donor for single-domain members of the NADS family remained open: Is it glutamine hydrolyzed by a committed (but yet unknown) glutaminase subunit, as in most ATP-dependent amidotransferases, or free ammonia as in glutamine synthetase? Here we addressed this dilemma by combining evolutionary analysis of the NADS family with experimental characterization of two representative bacterial systems: a two-subunit NADS from Thermus thermophilus and a single-domain NADS from Salmonella typhimurium providing evidence that ammonia (and not glutamine) is the physiological substrate of a typical single-domain NADS. The latter represents the most likely ancestral form of NADS. The ability to utilize glutamine appears to have evolved via recruitment of a glutaminase subunit followed by domain fusion in an early branch of Bacteria. Further evolution of the NADS family included lineage-specific loss of one of the two alternative forms and horizontal gene transfer events. Lastly, we identified NADS structural elements associated with glutamine-utilizing capabilities.  相似文献   

8.
Allantoinase (allantoin amidohydrolase, EC 3.5.2.5.) and allanoicase (allantoate amidinohydrolase, EC 3.5.3.4) of Pseudomonas aeruginosa are inducible enzymes, whose syntheses are enhanced by the presence of allantoin, allantoate, ureidoglycolate, N-carbamoyl-L-asparagine, N-carbamoyl-L-aspartate, hydantoate, and diureidomethane. For each compound a specific ratio between the activities of allantoinase and allantoicase was obtained. The synthesis of these enzymes is not coordinately controlled. N-Carbamoyl-L-aspartate, hydantoate, and diureidomethane are gratuitous inducers.  相似文献   

9.
Utilization of Nitrogen Sources by Immature Soybean Cotyledons in Culture   总被引:2,自引:0,他引:2  
HAGA  K. I.; SODEK  L. 《Annals of botany》1987,59(6):597-601
Immature Glycine max (L.) Merrill cotyledons were cultured ina defined medium containing different nitrogen sources. Glutaminewas the most efficient source in terms of protein accumulationin the cotyledons. Asparagine was less efficient (about 70 percent that of glutamine) while allantoin was a poor source ofnitrogen. This was also true for older cotyledons where asparaginaseand allantoinase activities were maximal. The utilization ofboth asparagine and allantoin (but not glutamine) was totallyinhibited by methionine sulfoximine suggesting that their metabolisminvolves ammonia assimilation via glutamine synthetase. Apparently,neither exogenous or endogenously-generated ammonia had mucheffect on glutamine utilization, but ammonia did have a smallinhibitory effect on asparagine, which may in part account forthe lower efficiency observed with this amide. Glycine max, soybean, cotyledon culture, nitrogen metabolism  相似文献   

10.
NAD+ is an essential co-enzyme for redox reactions and is consumed in lysine deacetylation and poly(ADP-ribosyl)ation. NAD+ synthetase catalyzes the final step in NAD+ synthesis in the well characterized de novo, salvage, and import pathways. It has been long known that eukaryotic NAD+ synthetases use glutamine to amidate nicotinic acid adenine dinucleotide while many purified prokaryotic NAD+ synthetases are ammonia-dependent. Earlier, we discovered that glutamine-dependent NAD+ synthetases contain N-terminal domains that are members of the nitrilase superfamily and hypothesized that these domains function as glutamine amidotransferases for the associated synthetases. Here we show yeast glutamine-dependent NAD+ synthetase Qns1 requires both the nitrilase-related active-site residues and the NAD+ synthetase active-site residues for function in vivo. Despite failure to complement the lethal phenotype of qns1 disruption, the former mutants retain ammonia-dependent NAD+ synthetase activity in vitro, whereas the latter mutants retain basal glutaminase activity. Moreover, the two classes of mutants fail to trans-complement despite forming a stable heteromultimer in vivo. These data indicate that the nitrilase-related domain in Qns1 is the fourth independently evolved glutamine amidotransferase domain to have been identified in nature and that glutamine-dependence is an obligate phenomenon involving intramolecular transfer of ammonia over a predicted distance of 46 A from one active site to another within Qns1 monomers.  相似文献   

11.
Ammonia assimilation by rhizobium cultures and bacteroids.   总被引:23,自引:0,他引:23  
The enzymes involved in the assimilation of ammonia by free-living cultures of Rhizobium spp. are glutamine synthetase (EC. 6.o.I.2), glutamate synthase (L-glutamine:2-oxoglutarate amino transferase) and glutamate dehydrogenase (ED I.4.I.4). Under conditions of ammonia or nitrate limitation in a chemostat the assimilation of ammonia by cultures of R. leguminosarum, R. trifolii and R. japonicum proceeded via glutamine synthetase and glutamate synthase. Under glucose limitation and with an excess of inorganic nitrogen, ammonia was assimilated via glutamate dehydrogenase, neither glutamine synthetase nor glutamate synthase activities being detected in extracts. The coenzyme specificity of glutamate synthase varied according to species, being linked to NADP for the fast-growing R. leguminosarum, R. melitoti, R. phaseoli and R. trifolii but to NAD for the slow-growing R. japonicum and R. lupini. Glutamine synthetase, glutamate synthase and glutamate dehydrogenase activities were assayed in sonicated bacteroid preparations and in the nodule supernatants of Glycine max, Vicia faba, Pisum sativum, Lupinus luteus, Medicago sativa, Phaseolus coccineus and P. vulgaris nodules. All bacteroid preparations, except those from M. sativa and P. coccineus, contained glutamate synthase but substantial activities were found only in Glycine max and Lupinus luteus. The glutamine synthetase activities of bacteroids were low, although high activities were found in all the nodule supernatants. Glutamate dehydrogenase activity was present in all bacteroid samples examined. There was no evidence for the operation of the glutamine synthetase/glutamate synthase system in ammonia assimilation in root nodules, suggesting that ammonia produced by nitrogen fixation in the bacteroid is assimilated by enzymes of the plant system.  相似文献   

12.
Bacillus fastidiosus was able to grow on glycerol as a carbon source when allantoin or urate was used as nitrogen source. The primary assimilatory enzyme for glycerol was glycerol kinase; glycerol dehydrogenase could not be detected. The glycerol kinase activity was increased 30-fold in allantoin/glycerol-grown cells as compared to alantoin-grown cells. Under both growth conditions high levels of glutamate dehydrogenase were found. Glutamine synthetase and glutamate synthase activities could not be demonstrated, while low levels of alanine dehydrogenase were present. It is concluded that B. fastidiosus assimilates ammonia by the NADP-dependent glutamate dehydrogenase.Abbreviations GS glutamine synthetase - GOGAT glutamate synthase - GDH glutamate dehydrogenase - ADH alanine dehydrogenase  相似文献   

13.
The study aimed to test the hypothesis that ammonia production by Rhizobium bacteroids provides not only a source of nitrogen for growth but has a central regulatory role in maintaining the metabolic activity and functional integrity of the legume nodule. Production of ammonia in intact, attached nodules was interrupted by short-term (up to 3 days) exposure of the nodulated root systems of cowpea (Vigna unguiculata L. Walp cv Vita 3: Rhizobium CB 756) and lupin (Lupinus albus L. cv Ultra: Rhizobium WU 425) to atmospheres of argon:oxygen (80:20; v/v). Treatment did not affect nodule growth, levels of plant cell and bacteroid protein, leghaemoglobin content, or nitrogenase (EC 1.7.99.2) activity (acetylene reduction) but severely reduced (by 90%) synthesis and export of the major nitrogenous solutes produced by the two symbioses (ureides in cowpea, amides in lupin). Glutamine synthetase (EC 6.3.1.2) and NAD:glutamate oxidoreductase (EC I.4.1.2) were more or less stable to Ar:O2 treatment, but activities of the glutamine-utilizing enzymes, glutamate synthase (EC 2.6.1.53), asparagine synthetase (EC 6.3.5.4) (lupin only), and de novo purine synthesis (cowpea only), were all markedly reduced. Production and export of nitrogenous solutes by both symbioses resumed within 2 hours after transferring Ar:O2-treated plants back to air. In each case the major exported product of fixation after transfer was initially glutamine, reflecting the relative stability of glutamine synthetase activity. Subsequently, glutamine declined and products of its assimilation became predominant consistent with resurgence of enzymes for the synthesis of asparagine in lupin and ureides in cowpea. Enzymes not directly involved with either ammonia or glutamine assimilation (purine synthesis, purine oxidation, and carbon metabolism of both bacteroids and plant cells) also showed transient changes in activity following interruption of N2 supply. These data have been interpreted to indicate a far-reaching effect of the production of ammonia by bacteroids on a wide range of enzymes, possibly through control of protein turnover, rather than a highly specific effect of ammonia, or some product of its assimilation, on a few enzyme species.  相似文献   

14.
Excretion of nitrogenous substances by Teladorsagia circumcincta was investigated during incubation of L3 in phosphate buffer for up to 30 h and adult worms for 4-6 h. Ammonia was the main excretory product, with about 20% urea. For the first 4-6 h, ammonia excretion by L3 was temperature dependent, directly proportional to the number of larvae, but independent of the pH or strength of the phosphate buffer. Later, ammonia excretion slowed markedly in L3 and adults and reversed to net uptake in L3 by 30 h. An initial external ammonia concentration of 600 μM did not alter the pattern or magnitude of excretion. Re-uptake of ammonia did not occur at extremes of pH or low buffer strength and was slightly reduced at the highest external concentrations. Ammonium transporters and enzymes of glutamate metabolism, including glutamate dehydrogenase, glutamine synthetase and possibly glutamate synthase, are worthy of further investigation as anthelmintic targets.  相似文献   

15.
1. The pathways and the fate of glutamate carbon and nitrogen were investigated in isolated guinea-pig kidney-cortex tubules. 2. At low glutamate concentration (1 mM), the glutamate carbon skeleton was either completely oxidized or converted into glutamine. At high glutamate concentration (5 mM), glucose, lactate and alanine were additional products of glutamate metabolism. 3. At neither concentration of glutamate was there accumulation of ammonia. 4. Nitrogen-balance calculations and the release of 14CO2 from L-[1-14C]glutamate (which gives an estimation of the flux of glutamate carbon skeleton through alpha-oxoglutarate dehydrogenase) clearly indicated that, despite the absence of ammonia accumulation, glutamate metabolism was initiated by the action of glutamate dehydrogenase and not by transamination reactions as suggested by Klahr, Schoolwerth & Bourgoignie [(1972) Am. J. Physiol. 222, 813-820] and Preuss [(1972) Am. J. Physiol. 222, 1395-1397]. Additional evidence for this was obtained by the use of (i) amino-oxyacetate, an inhibitor of transaminases, which did not decrease glutamate removal, or (ii) L-methionine DL-sulphoximine, an inhibitor of glutamine synthetase, which caused an accumulation of ammonia from glutamate. 5. Addition of NH4Cl plus glutamate caused an increase in both glutamate removal and glutamine synthesis, demonstrating that the supply of ammonia via glutamate dehydrogenase is the rate-limiting step in glutamine formation from glutamate. NH4Cl also inhibited the flux of glutamate through glutamate dehydrogenase and the formation of glucose, alanine and lactate. 6. The activities of enzymes possibly involved in the glutamate conversion into pyruvate were measured in guinea-pig renal cortex. 7. Renal arteriovenous-difference measurements revealed that in vivo the guinea-pig kidney adds glutamine and alanine to the circulating blood.  相似文献   

16.
Abstract— The effect of increased exposure to ketone bodies in the developing rat brain suggest that intrauterine and postnatal hyperketonemia lead to an altered metabolism of glutamine and glutamate. It is postulated that this effect is related to the delayed development of glutaminase ( l -glutamine amido-hydrolase EC 3.5.1.2) and glutamate dehydrogenase ( l -glutamate: NAD oxidoreductase EC 1.4.1.2).
The specific activities of glutamate dehydrogenase (GDH), glutaminase and glutamine synthetase ( l -glutamate: ammonia ligase EC 6.3.1.2) in the brains of newborn rats increased during early development. A positive correlation was observed between the specific activity of glutaminase and the concentration of glutamate in the brain as well as between the concentrations of blood and brain glutamine and glutamate in both control and hyperketonemic pups. This indicates a different degree of permeability and metabolism for glutamine and glutamate in the brain during the neonatal period, as compared to adulthood.
In hyperketonemic pups, glutamine and glutamate metabolism were found to differ from that in control animals. The concentrations of glutamate were higher, and glutamine lower, in both the blood and brain as compared to that in controls. The concentrations of α-ketoglutarate were also lower in their brain. In the brains of hyperketonemic and control pups, the concentration of malate was the same. During the first 3 weeks of life the increase of spec. act. of GDH and glutaminase was found to be suppressed in the brains of hyperketonemic pups. However, the spec. act. of glutamine synthetase was similar to that of the control pups.  相似文献   

17.
1. The metabolism of glutamine and ammonia was studied in isolated perfused rat liver in relation to its dependence on the direction of perfusion by comparing the physiological antegrade (portal to caval vein) to the retrograde direction (caval to portal vein). 2. Added ammonium ions are mainly converted to urea in antegrade and to glutamine in retrograde perfusions. In the absence of added ammonia, endogenously arising ammonium ions are converted to glutamine in antegrade, but are washed out in retrograde perfusions. When glutamine synthetase is inhibited by methionine sulfoximine, direction of perfusion has no effect on urea synthesis from added or endogenous ammonia. 3. 14CO2 production from [1-14C]glutamine is higher in antegrade than in retrograde perfusions as a consequence of label dilution during retrograde perfusions. 4. The results are explained by substrate and enzyme activity gradients along the liver lobule under conditions of limiting ammonia supply for glutamine and urea synthesis, and they are consistent with a perivenous localization of glutamine synthetase and a predominantly periportal localization of glutaminase and urea synthesis. Further, the data indicate a predominantly periportal localization of endogenous ammonia production. The results provide a basis for an intercellular (as opposed to intracellular) glutamine cycling and its role under different metabolic conditions.  相似文献   

18.
We report the facile purification of glutamine synthetase (L-glutamate: ammonia ligase (adenosine 5'-diphosphate-forming), EC 6.3.1.2) in both the adenylylated and unadenylylated form, from Azotobacter vinelandii ATCC 12837. A general affinity column, which used as an affinity ligand Reactive blue 2 dye (Cibacron blue) covalently linked to Agarose, was employed as an efficient first step of purification. Further purification to electrophoretic homogeneity employed DEAE-cellulose chromatography and an additional Affigel chromatographic step. The method was used successfully to prepare glutamine synthetase from Escherichia coli, Rhodopseudomonas sphaeroides and Anabaena sp. strain CA.  相似文献   

19.
Glutamine-dependent NAD(+) synthetase, Qns1, utilizes a glutamine aminotransferase domain to supply ammonia for amidation of nicotinic acid adenine dinucleotide (NaAD(+)) to NAD(+). Earlier characterization of Qns1 suggested that glutamine consumption exceeds NAD(+) production by 40%. To explore whether Qns1 is systematically wasteful or whether additional features account for this behavior, we performed a careful kinetic and molecular genetic analysis. In fact, Qns1 possesses remarkable properties to reduce waste. The glutaminase active site is stimulated by NaAD(+) more than 50-fold such that glutamine is not appreciably consumed in the absence of NaAD(+). Glutamine consumption exceeds NAD(+) production over the whole range of glutamine and NaAD(+) substrate concentrations with greatest efficiency occurring at saturation of both substrates. Kinetic data coupled with site-directed mutagenesis of amino acids in the predicted ammonia channel indicate that NaAD(+) stimulates the glutaminase active site in the k(cat) term by a synergistic mechanism that does not require ammonia utilization by the NaAD(+) substrate. Six distinct classes of Qns1 mutants that fall within the glutaminase domain and the synthetase domain selectively inhibit components of the coordinated reaction.  相似文献   

20.
Ammonia can easily be assimilated into amino acids and used for silk-protein synthesis in the silkworm, Bombyx mori. To determine the metabolic pathway of ammonia assimilation, silkworm larvae were injected with methionine sulfoximine (MS), a specific inhibitor of glutamine synthetase (GS). Activity of GS in the fat body 2h after treatment with 400&mgr;g MS decreased to less than 10% of the control activity, whereas MS had no effect on the activity of glutamate dehydrogenase (GDH), another enzyme which could possibly be responsible for ammonia assimilation. Glutamine concentration in the hemolymph rapidly decreased after MS treatment, while the ammonia level in the hemolymph sharply increased. Glutamine concentration in the hemolymph 4h after injection decreased with increasing doses of MS, whereas ammonia concentration increased in proportion to the MS dose. MS strongly blocked the incorporation of (15)N label into silk-protein in larvae injected with (15)N ammonia acetate, while it slightly inhibited the incorporation of (15)N-amide glutamine into silk-protein. These results suggest that ammonia is mainly assimilated into glutamine via the action of GS and then converted into other amino acids for silk-protein synthesis and that GDH does not play a major role in ammonia assimilation in B. mori.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号