首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leum-Pro-Glu-Ala-Leun (m=0-4, n=0-3). Neither Pro-Glu-Ala-Leu (m=0) nor Leu-Pro-Glu-Ala (n=0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leum-Pro-Glu-Ala-Leu increased with the increase of m=1 to 2 and 3, but was however, essentially same with the increase of m=3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leun increased with the increase of n=0 to 1 and 2, but was essentially same with the increase of n=2 to 3. Then, it was concluded that cucumisin has a S5-S3′ subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1′ position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1′ positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

2.
The substrate specificity of cucumisin [EC 3.4.21.25] was identified by the use of the synthetic peptide substrates Leu(m)-Pro-Glu-Ala-Leu(n) (m = 0-4, n = 0-3). Neither Pro-Glu-Ala-Leu (m = 0) nor Leu-Pro-Glu-Ala (n = 0) was cleaved by cucumisin, however other analogus peptides were cleaved between Glu-Ala. The hydrolysis rates of Leu(m)-Pro-Glu-Ala-Leu increased with the increase of m = 1 to 2 and 3, but was however, essentially same with the increase of m = 3 to 4. Similarly, the hydrolysis rates of Leu-Leu-Pro-Glu-Ala-Leu(n) increased with the increase of n = 0 to 1 and 2, but was essentially same with the increase of n = 2 to 3. Then, it was concluded that cucumisin has a S5-S3' subsite length. In order to identify the substrate specificity at P1 position, Leu-Leu-Pro-X-Ala-Leu (X; Gly, Ala, Val, Leu, Ile, Pro, Asp, Glu, Lys, Arg, Asn, Gln, Phe, Tyr, Ser, Thr, Met, Trp, His) were synthesized and digested by cucumisin. Cucumisin showed broad specificity at the P1 position. However, cucumisin did not cleave the C-terminal side of Gly, Ile, Pro, and preferred Leu, Asn, Gln, Thr, and Met, especially Met. Moreover, the substrates, Leu-Leu-Pro-Glu-Y-Leu (Y; Gly, Ala, Ser, Leu, Val, Glu, Lys, Phe) were synthesized and digested by cucumisin. Cucumisin did not cleave the N-terminal side of Val but preferred Gly, Ser, Ala, and Lys especially Ser. The specificity of cucumisin for naturally occurring peptides does not agree strictly with the specificity obtained by synthetic peptides at the P1 or P1' position alone, but it becomes clear that the most of the cleavage sites on naturally occurring peptides by cucumisin contain suitable amino acid residues at P1 and (or) P1' positions. Moreover, cucumisin prefers Pro than Leu at P2 position, indicating that the specificity at P2 position differs from that of papain.  相似文献   

3.
The complete amino acid sequence of the β-subunit of protocatechuate 3,4-dioxygenase was determined. The β-subunit contained four methionine residues. Thus, five peptides were obtained after cleavage of the carboxymethylated β-subunit with cyanogen bromide, and were isolated on Sephadex G-75 column chromatography. The amino acid sequences of the cyanogen bromide peptides were established by characterization of the peptides obtained after digestion with trypsin, chymotrypsin, thermolysin, or Staphylococcus aureus protease. The major sequencing techniques used were automated and manual Edman degradations. The five cyanogen bromide peptides were aligned by means of the amino acid sequences of the peptides containing methionine purified from the tryptic hydrolysate of the carboxymethylated β-subunit. The amino acid sequence of all the 238 residues was as follows: ProAlaGlnAspAsnSerArgPheValIleArgAsp ArgAsnTrpHis ProLysAlaLeuThrPro-Asp — TyrLysThrSerIleAlaArg SerProArgGlnAla LeuValSerIleProGlnSer — IleSerGluThrThrGly ProAsnPheSerHisLeu GlyPheGlyAlaHisAsp-His — AspLeuLeuLeuAsnPheAsn AsnGlyGlyLeu ProIleGlyGluArgIle-Ile — ValAlaGlyArgValValAsp GlnTyrGlyLysPro ValProAsnThrLeuValGluMet — TrpGlnAlaAsnAla GlyGlyArgTyrArg HisLysAsnAspArgTyrLeuAlaPro — LeuAspProAsn PheGlyGlyValGly ArgCysLeuThrAspSerAspGlyTyrTyr — SerPheArg ThrIleLysProGlyPro TyrProTrpArgAsnGlyProAsnAsp — TrpArgProAla HisIleHisPheGlyIle SerGlyProSerIleAlaThr-Lys — LeuIleThrGlnLeuTyr PheGluGlyAspPro LeuIleProMetCysProIleVal — LysSerIleAlaAsn ProGluAlaValGlnGln LeuIleAlaLysLeuAspMetAsnAsn — AlaAsnProMet AsnCysLeuAlaTyr ArgPheAspIleValLeuArgGlyGlnArgLysThrHis PheGluAsnCys. The sequence published earlier in summary form (Iwaki et al., 1979, J. Biochem.86, 1159–1162) contained a few errors which are pointed out in this paper.  相似文献   

4.
Tryptic peptides which account for all five cysteinyl residues in ribulosebisphosphate carboxylase/oxygenase from Rhodospirillum rubrum have been purified and sequenced. Collectively, these peptides contain 94 of the approximately 500 amino acid residues per molecule of subunit. Due to one incomplete cleavage at a site for trypsin and two incomplete chymotryptic-like cleavages, eight major radioactive peptides (rather than five as predicted) were recovered from tryptic digests of the enzyme that had been carboxymethylated with [3H]iodoacetate. The established sequences are: GlyTyrThrAlaPheValHisCys1Lys TyrValAspLeuAlaLeuLysGluGluAspLeuIleAla GlyGlyGluHisValLeuCys1AlaTyr AlaGlyTyrGlyTyrValAlaThrAlaAlaHisPheAla AlaGluSerSerThrGlyThrAspValGluValCys1 ThrThrAsxAsxPheThrArg AlaCys1ThrProIleIleSerGlyGlyMetAsnAla LeuArg ProPheAlaGluAlaCys1HisAlaPheTrpLeuGly GlyAsnPheIleLys In these peptides, radioactive carboxymethylcysteinyl residues are denoted with asterisks and the sites of incomplete cleavage with vertical wavy lines. None of the peptides appear homologous with either of two cysteinyl-containing, active-site peptides previously isolated from spinach ribulosebisphosphate carboxylase/oxygenase.  相似文献   

5.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

6.
Three different His-tagged, mutant forms of the fission yeast glutathione synthetase (GSH2) were derived by site-directed mutagenesis. The mutant and wild-type enzymes were expressed in E. coli DH5α and affinity purified in a two-step procedure. Analysis of enzyme activity showed that it was possible to shift the substrate specificity of GSH2 from Gly (km 0,19; wild-type) to β-Ala or Ser. One mutation (substitution of Ile471, Cy472 to Met and Val and Ala 485 and Thr486 to Leu and Pro) increased the affinity of GSH2 for β-Ala (km 0,07) and lowered the affinity for Gly (km 0,83), which is a characteristic of the enzyme homoglutathione synthetase found in plants. Substitution of Ala485 and Thr486 to Leu and Pro only, increased instead the affinity of GSH2 for Ser (km 0,23) as a substrate, while affinity to Gly was preserved (km 0,12). This provides a new biosynthetic pathway for hydroxymethyl glutathione, which is known to be synthesized from glutathione and Ser in a reaction catalysed by carboxypeptidase Y. The reported findings provide further insight into how specific amino acids positioned in the GSH2 active site facilitate the recognition of different amino acid substrates, furthermore they support the evolutionary theory that homoglutathione synthetase evolved from glutathione synthetase by a single gene duplication event.  相似文献   

7.
The specificity of the p15 proteinase of myeloblastosis-associated virus (MAV) was tested with nonviral high molecular weight substrates and with synthetic peptides. Peptides with sequences spanning known cleavage sites in viral polyproteins of Rous sarcoma virus (RSV) and avian leukemia viruses, as well as in BSA and HSA, were synthesized, and the rate of their cleavage by the MAV proteinase was compared. Synthetic peptides require for successful cleavage at least 4 residues at the N-terminal side and 3 residues at the C-terminal side. The proteinase shows a preference for hydrophobic residues with bulky side chains (Met, Tyr, Phe) in P3, although Arg and Gln can also be accepted. Small hydrophobic residues are required in P2 and P2', and large hydrophobic residues (Tyr, Met, Phe/p-nitro-Phe) are preferred in both P1 and P1'. The difference between the specificity of the p15 proteinase and that of the HIV-1 proteinase mostly pertains to position P2' of the substrate, where bulkier side chains are accepted by the HIV-1 proteinase (Richards et al., 1990). A good chromogenic substrate for the MAV and RSV proteinases was developed and used to further characterize the MAV proteinase activity with respect to ionic strength and pH. The activity of the proteinase is strongly dependent on ionic strength and pH. Both the kcat and Km values contribute to a higher cleavage efficiency at higher salt concentrations and show a bell-shaped pH dependence curve with a sharp maximum at pH 5.5 (kcat) and 6.5 (Km).  相似文献   

8.

Background

Cleavage of aggrecan by ADAMTS proteinases at specific sites within highly conserved regions may be important to normal physiological enzyme functions, as well as pathological degradation.

Methods

To examine ADAMTS selectivity, we assayed ADAMTS-4 and -5 cleavage of recombinant bovine aggrecan mutated at amino acids N-terminal or C-terminal to the interglobular domain cleavage site.

Results

Mutations of conserved amino acids from P18 to P12 to increase hydrophilicity resulted in ADAMTS-4 cleavage inhibition. Mutation of Thr, but not Asn within the conserved N-glycosylation motif Asn-Ile-Thr from P6 to P4 enhanced cleavage. Mutation of conserved Thr residues from P22 to P17 to increase hydrophobicity enhanced ADAMTS-4 cleavage. A P4′ Ser377Gln mutant inhibited cleavage by ADAMTS-4 and -5, while a neutral Ser377Ala mutant and species mimicking mutants Ser377Thr, Ser377Asn, and Arg375Leu were cleaved normally by ADAMTS-4. The Ser377Thr mutant, however, was resistant to cleavage by ADAMTS-5.

Conclusion

We have identified multiple conserved amino acids within regions N- and C-terminal to the site of scission that may influence enzyme–substrate recognition, and may interact with exosites on ADAMTS-4 and ADAMTS-5.

General significance

Inhibition of the binding of ADAMTS-4 and ADAMTS-5 exosites to aggrecan should be explored as a therapeutic intervention for osteoarthritis.  相似文献   

9.
The biotin-containing tryptic peptides of pyruvate carboxylase from sheep, chicken, and turkey liver mitochondria have been isolated and their primary structures determined. The amino acid sequences of the 19 residue peptides from chicken and turkey are identical and share a common sequence of 14 residues around biocytin with the 24-residue peptide isolated from sheep. The sequences obtained were: residue 1 → 11 Avian: Gly Ala Pro Leu Val Leu Ser Ala Met Biocytin Met Sheep: Gly Gln Pro Leu Val Leu Ser Ala Met Biocytin Met residues 12 → 19 or 24 Avian: Glu Thr Val Val Thr Ala Pro Arg Sheep: Glu Thr Val Val Thr Ser Pro Val Thr Glu Gly Val Arg A sensitive radiochemical assay for biotin was developed based on the tight binding of biotin by avidin. The ability of zinc sulfate to precipitate, without dissociating, the avidin-biotin complex provided a convenient procedure for separating free and bound biotin, and hence, for back-titrating a standard amount of avidin with [14C]biotin.  相似文献   

10.
Summary The action of the cell-envelope proteinase (PIII-type) from Lactococcus lactis ssp. cremoris AM1 on bovine -casein was studied. The results were compared with those obtained earlier with (PI-type) proteinases from the cell envelope of other L. lactis strains. From a 4-h digest (pH 6.2; 15°C) of -casein made with the PIII-type proteinase, 24 peptides were isolated and purified by selective precipitation followed by semi-preparative reversed-phase HPLC. Altogether, these peptides accounted for the preferential splitting of 16 peptide bonds in -casein by the PIII-type proteinase. In nine cases the primary cleavage site (P1-P1) was a Glx-X or X-Glx peptide bond. In ten cases at least one large hydrophobic residue (Met, Leu, Tyr, Phe) formed part of the cleavable bond. The P2-P3 and/or P2-P3 regions of the substrate consisted of hydrophobic and/or negatively charged side chains or of side chains potentially involved in hydrogen bonds. Nine of the peptide bonds split were reported previously to be also susceptible to cleavage by PI-type proteinases, although the kinetics may be different. The PIII-type proteinase shows a broader specificity in its initial cleavage of -casein than does the PI-type. Offprint requests to: S. Visser  相似文献   

11.
To explore the substrate or subsite specificity of a mouse hatching enzyme, effects of leupeptin [acetyl(P4)-Leu(P3)-Leu(P2)-argininal(P1)] and its analogs (peptidyl argininals) on mouse blastocyst hatching were investigated. The compounds containing benzyloxycarbonyl group (Z) in the P4 position inhibited the hatching more strongly than those containing acetyl group or unprotected N-terminal amino acid. Among five Z-Leu-P2-argininals, a derivative containing a P2 Ser residue was the most potent inhibitor, and the derivatives containing Leu, Thr, Pro, and Gly in the P2 position followed in this order. Then, we synthesized four Z-P3-Ser-argininals and tested their effects on hatching. The result indicated that the compound with Phe residue in the P3 position was the strongest inhibitor, and the Leu-, Pro-, and Ala-containing derivatives were ranked in this order. Thus, among Z-dipeptidyl-argininals tested, Z-Phe-Ser-argininal most potently inhibited the mouse embryonic hatching, suggesting the preference of the mouse hatching enzyme for Phe(P3)-Ser(P2)-Arg(P1) sequence as a substrate.  相似文献   

12.
Sensitive, soluble chromogenic substrates for HIV-1 proteinase   总被引:14,自引:0,他引:14  
By replacement of the P1' residue in a capsid/nucleocapsid cleavage site mimic with 4-NO2-phenylalanine (Nph), an excellent chromogenic substrate, Lys-Ala-Arg-Val-Leu*Nph-Glu-Ala-Met, for HIV-1 proteinase (kappa cat = 20 s-1, Km = 22 microM) has been prepared. Substitution of the Leu residue in P1 with norleucine, Met, Phe, or Tyr had minimal effects on the kinetic parameters (kappa cat and kappa cat/Km) determined at different pH values, whereas peptides containing Ile or Val in P1 were hydrolyzed extremely slowly. The spectrophotometric assay has been used to characterize the proteinase further with respect to pH dependence, ionic strength dependence, and the effect of competitive inhibitors of various types.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) nucleocapsid protein flanked by Gag sequences (r-preNC) was expressed in Escherichia coli and purified. HIV-1 proteinase cleaved r-preNC to the "mature" NCp7 form, which is comprised of 55 residues. Further incubation resulted in cleavages of NCp7 itself between Phe16 and Asn17 of the proximal zinc finger domain and between Cys49 and Thr50 in the C-terminal part. Kinetic parameters determined for the cleavage of oligopeptides corresponding to the cleavage sites in r-preNC correlated well with the sequential processing of r-preNC. Mutations of Asn17 were introduced to alter the susceptibility of NC protein to HIV-1 proteinase. While mutating Asn17 to Ala resulted in a protein which was processed in a manner similar to that of the wild type, mutating it to Phe or Leu resulted in proteins which were processed at a substantially higher rate at this site than the wild type. Mutation of Asn17 to Lys or Gly resulted in proteins which were very poorly cleaved at this site. Oligopeptides containing the same amino acid substitutions at the cleavage site of the proximal zinc finger domain were also tested as substrates of the proteinase, and the kinetic parameters agreed well with the semiquantitative results obtained with the protein substrates.  相似文献   

14.
Primary structure of β-chain of pigeon is presented. It was determined by amino acid sequence analysis of intact β-chain and its peptides obtained by the enzymatic and chemical cleavage. Comparison of amino acid sequence of the chain with other available data shows β 14 Ile, β61 Lys, and β113 Ile as residues specific to pigeon. One important replacement at α1β1 contact is β55 Met→Ser.  相似文献   

15.
The proteolytic specificity of the neutral Zn-dependent proteinase from Thermoactinomyces sacchari was determined by analysis of the peptides obtained after incubation with the oxidized insulin B chain as a substrate. The enzyme is an endopeptidase with broad specificity. In total, 12 peptide bonds in the B chain of insulin were hydrolyzed. The major requirement is that a hydrophobic residue such as Leu, Val, or Phe should participate with the α-amino group in the bond to be cleaved. However, hydrolysis of bonds at the N-terminal side of His, Thr, and Gly was also observed. The peptide bond Leu 15–Tyr 16 in the oxidized insulin B chain, which is the major cleavage site for the alkaline microbial proteinases, is resistant to the attacks of the enzyme from Thermoactinomyces sacchari and other neutral proteinases. The proteolytic activity of the Zn-dependent proteinase from T. sacchari is different from those of other metalloendopeptidases from microorganisms. Received: 10 November 1999 / Accepted: 15 December 1999  相似文献   

16.
Studies on the role of the S4 substrate binding site of HIV proteinases   总被引:5,自引:0,他引:5  
Kinetic analysis of the hydrolysis of the peptide H-Val-Ser-Gln-Asn-Tyr*Pro-Ile-Val-Gln-NH2 and its analogs obtained by varying the length and introducing substitutions at the P4 site was carried out with both HIV-1 and HIV-2 proteinases. Deletion of the terminal Val and Gln had only moderate effect on the substrate hydrolysis, while the deletion of the P4. Ser as well as P'3 Val greatly reduced the substrate hydrolysis. This is predicted to be due to the loss of interactions between main chains of the enzyme and the substrate. Substitution of the P4 Ser by amino acids having high frequency of occurrence in beta turns resulted in good substrates, while large amino acids were unfavorable in this position. The two proteinases acted similarly, except for substrates having Thr, Val and Leu substitutions, which were better accommodated in the HIV-2 substrate binding pocket.  相似文献   

17.
Onconase, a cytotoxic ribonuclease from Rana pipiens, possesses pyroglutamate (Pyr) at the N-terminus and has a substrate preference for uridine–guanine (UG). To identify residues responsible for onconase’s cytotoxicity, we cloned the rpr gene from genomic DNA and expressed it in Escherichia coli BL21(DE3). The recombinant onconase with Met at the N-terminus had reduced thermostability, catalytic activity and antigenicity. Therefore, we developed two methods to produce onconase without Met. One relied on the endogeneous E.coli methionine aminopeptidase and the other relied on the cleavage of a pelB signal peptide. The Pyr1 substitutional variants maintained similar secondary structures to wild-type onconase, but with less thermostability and specific catalytic activity for the innate substrate UG. However, the non-specific catalytic activity for total RNAs varied depending on the relaxation of base specificity. Pyr1 promoted the structural integrity by forming a hydrogen bond network through Lys9 in α1 and Val96 in β6, and participated in catalytic activity by hydrogen bonds to Lys9 and P1 catalytic phosphate. Residues Thr35 and Asp67 determined B1 base specificity, and Glu91 determined B2 base specificity. The cytotoxicity of onconase is largely determined by structural integrity and specific catalytic activity for UG through Pyr1, rather than non-specific activity for total RNAs.  相似文献   

18.
Methionine aminopeptidase (MAP) is a ubiquitous, essential enzyme involved in protein N-terminal methionine excision. According to the generally accepted cleavage rules for MAP, this enzyme cleaves all proteins with small side chains on the residue in the second position (P1'), but many exceptions are known. The substrate specificity of Escherichia coli MAP1 was studied in vitro with a large (>120) coherent array of peptides mimicking the natural substrates and kinetically analyzed in detail. Peptides with Val or Thr at P1' were much less efficiently cleaved than those with Ala, Cys, Gly, Pro, or Ser in this position. Certain residues at P2', P3', and P4' strongly slowed the reaction, and some proteins with Val and Thr at P1' could not undergo Met cleavage. These in vitro data were fully consistent with data for 862 E. coli proteins with known N-terminal sequences in vivo. The specificity sites were found to be identical to those for the other type of MAPs, MAP2s, and a dedicated prediction tool for Met cleavage is now available. Taking into account the rules of MAP cleavage and leader peptide removal, the N termini of all proteins were predicted from the annotated genome and compared with data obtained in vivo. This analysis showed that proteins displaying N-Met cleavage are overrepresented in vivo. We conclude that protein secretion involving leader peptide cleavage is more frequent than generally thought.  相似文献   

19.
A new simple fast and reproducible purification procedure for the proteinase from rat liver mitochondria has been worked out. The specificity of cleavage of peptide bonds in glucagon, oxidized A and B chains of insulin and yeast proteinase B inhibitor by the proteinase of the inner mitochondrial membrane has been studied. The proteinase hydrolyzed three peptide bonds in glucagon, Tyr (13) - Leu (14), Trp (25) - Leu (26) and Phe (22) - Val (23) (minor cleavage site); none in the insulin A chain; one in the B chain of insulin, Tyr (16) - Leu (17); and three in the yeast proteinase B inhibitor, Phe (4) - Ile (5), Phe (20) - Leu (21) and Tyr (41) - Thr (42) (minor cleavage site).Thus, the mitochondrial proteinase cleaves peptide bonds at the carboxyl site of an aromatic amino acid and the amino site of a leucine, isoleucine, threonine or valine. The comparison with chymotrypsin A shows that the mitochondrial proteinase cleaves peptide bonds in a more restricted manner.  相似文献   

20.
The amino acid sequences of both the alpha and beta subunits of human chorionic gonadotropin have been determined. The amino acid sequence of the alpha subunit is: Ala - Asp - Val - Gln - Asp - Cys - Pro - Glu - Cys-10 - Thr - Leu - Gln - Asp - Pro - Phe - Ser - Gln-20 - Pro - Gly - Ala - Pro - Ile - Leu - Gln - Cys - Met - Gly-30 - Cys - Cys - Phe - Ser - Arg - Ala - Tyr - Pro - Thr - Pro-40 - Leu - Arg - Ser - Lys - Lys - Thr - Met - Leu - Val - Gln-50 - Lys - Asn - Val - Thr - Ser - Glu - Ser - Thr - Cys - Cys-60 - Val - Ala - Lys - Ser - Thr - Asn - Arg - Val - Thr - Val-70 - Met - Gly - Gly - Phe - Lys - Val - Glu - Asn - His - Thr-80 - Ala - Cys - His - Cys - Ser - Thr - Cys - Tyr - Tyr - His-90 - Lys - Ser. Oligosaccharide side chains are attached at residues 52 and 78. In the preparations studied approximately 10 and 30% of the chains lack the initial 2 and 3 NH2-terminal residues, respectively. This sequence is almost identical with that of human luteinizing hormone (Sairam, M. R., Papkoff, H., and Li, C. H. (1972) Biochem. Biophys. Res. Commun. 48, 530-537). The amino acid sequence of the beta subunit is: Ser - Lys - Glu - Pro - Leu - Arg - Pro - Arg - Cys - Arg-10 - Pro - Ile - Asn - Ala - Thr - Leu - Ala - Val - Glu - Lys-20 - Glu - Gly - Cys - Pro - Val - Cys - Ile - Thr - Val - Asn-30 - Thr - Thr - Ile - Cys - Ala - Gly - Tyr - Cys - Pro - Thr-40 - Met - Thr - Arg - Val - Leu - Gln - Gly - Val - Leu - Pro-50 - Ala - Leu - Pro - Gin - Val - Val - Cys - Asn - Tyr - Arg-60 - Asp - Val - Arg - Phe - Glu - Ser - Ile - Arg - Leu - Pro-70 - Gly - Cys - Pro - Arg - Gly - Val - Asn - Pro - Val - Val-80 - Ser - Tyr - Ala - Val - Ala - Leu - Ser - Cys - Gln - Cys-90 - Ala - Leu - Cys - Arg - Arg - Ser - Thr - Thr - Asp - Cys-100 - Gly - Gly - Pro - Lys - Asp - His - Pro - Leu - Thr - Cys-110 - Asp - Asp - Pro - Arg - Phe - Gln - Asp - Ser - Ser - Ser - Ser - Lys - Ala - Pro - Pro - Pro - Ser - Leu - Pro - Ser-130 - Pro - Ser - Arg - Leu - Pro - Gly - Pro - Ser - Asp - Thr-140 - Pro - Ile - Leu - Pro - Gln. Oligosaccharide side chains are found at residues 13, 30, 121, 127, 132, and 138. The proteolytic enzyme, thrombin, which appears to cleave a limited number of arginyl bonds, proved helpful in the determination of the beta sequence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号