首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have designed a simple and novel electrochemical biosensor based on glassy carbon electrode (GCE) for DNA detection. GCE was modified with reduced graphene oxide (RGO) and gold nanoparticles (AuNPs) by the electrochemical method, which is helpful for immobilization of thiolated bioreceptors. The electrode modification processes were characterized by scanning electron microscopy (SEM) and electrochemical methods. Then a single-stranded DNA (ssDNA) probe for BRCA1 5382 insC mutation detection was immobilized on the modified electrode for a specific time. The experimental conditions, such as probe immobilization time and target DNA (complementary DNA) hybridization time and temperature with probe DNA, were optimized using electrochemical methods. The electrochemical response for DNA hybridization and synthesis was measured using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. The calibration graph contains two linear ranges; the first part is in the range of 3.0 × 10−20 to 1.0 × 10−12 M, and the second segment part is in the range of 1.0 × 10−12 to 1.0 × 10−7 M. The biosensor showed excellent selectivity for the detection of the complementary sequences from noncomplementary sequences, so it can be used for detection of breast cancer.  相似文献   

2.
Development of a mass sensitive quartz crystal microbalance (QCM)-based DNA biosensor for the detection of the hybridization of CaMV 35S promoter sequence (P35S) was investigated for the screening of genetically modified organisms (GMOs). Attention was focused on the choice of the coating chemistry that could be used for the immobilization of probe sequences on the gold surface of the quartz crystal. Two immobilization procedures were tested and compared considering the amount of the immobilized P35S probe and the extent of the hybridization reaction with the target oligonucleotide. In wet chemistry procedure, the interaction between the thiol and gold for the immobilization of a thiolated probe was employed. Direct surface functionalization of piezoelectric quartz crystals were achieved in 13.56 MHz plasma polymerization reactor utilising ethylenediamine (EDA) precursors for the immobilization of amined probes. Results indicated that immobilization of a thiolated probe provides better immobilization characteristics and higher sensitivity for the detection of the hybridization reaction. The thiolated probe was used for the detection of P35S sequence in PCR-amplified DNAs and in real samples of pflp (ferrodoxin like protein)-gene inserted tobacco plants. Fragmentation of the genomic DNAs were achieved by digestion with restriction endonucleases and ultrasonication. The results obtained from the fragmented genomic DNAs demonstrated that it is possible to detect the target sequence directly in non-amplified genomic DNAs by using the developed QCM-based DNA biosensor system. The developed QCM-based DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of GMOs.  相似文献   

3.
In this work, we present an electrochemical DNA sensor based on silver nanoparticles/poly(trans-3-(3-pyridyl) acrylic acid) (PPAA)/multiwalled carbon nanotubes with carboxyl groups (MWCNTs-COOH) modified glassy carbon electrode (GCE). The polymer film was electropolymerized onto MWCNTs-COOH modified electrode by cyclic voltammetry (CV), and then silver nanoparticles were electrodeposited on the surface of PPAA/MWCNTs-COOH composite film. Thiol group end single-stranded DNA (HS-ssDNA) probe was easily covalently linked onto the surface of silver nanoparticles through a 5′ thiol linker. The DNA hybridization events were monitored based on the signal of the intercalated adriamycin by differential pulse voltammetry (DPV). Based on the response of adriamycin, only the complementary oligonucleotides gave an obvious current signal compared with the three-base mismatched and noncomplementary oligonucleotides. Under the optimal conditions, the increase of reduction peak current of adriamycin was linear with the logarithm of the concentration of the complementary oligonucleotides from 9.0 × 10−12 to 9.0 × 10−9 M with a detection limit of 3.2 × 10−12 M. In addition, this DNA sensor exhibited an excellent reproducibility and stability during DNA hybridization assay.  相似文献   

4.
Development of an electrochemical DNA biosensor, using a gold electrode modified with a self-assembled monolayer composed of a peptide nucleic acid (PNA) probe and 6-mercapto-1-hexanol, is described. The sensor relies on covalent attachment of the14-mer PNA probe related to the hepatitis C virus genotype 3a (pHCV3a) core/E1 region on the electrode. Covalently self-assembled PNA could selectively hybridize with a complementary sequence in solution to form double-stranded PNA-DNA on the surface. The increase of peak current of methylene blue (MB), upon hybridization of the self-assembled probe with the target DNA in the solution, was observed and used to detect the target DNA sequence. Some hybridization experiments with noncomplementary oligonucleotides were carried out to assess whether the suggested DNA sensor responds selectively to the target. Diagnostic performance of the biosensor is described and the detection limit was found to be 5.7 × 10−11 M with a relative standard deviation of 1.4% in phosphate buffer solution, pH 7.0. This sensor exhibits high reproducibility and could be used for detection of the target DNA for seven times after the regeneration process.  相似文献   

5.
In the present study, a gold nanoparticle-modified gold electrode (nanogold electrode) was used to develop a novel fluorescein electrochemical DNA biosensor based on a target-induced conformational change. The nanogold electrode was obtained by electrodepositing gold nanoparticles onto a bare gold electrode. This modification not only immobilized probe oligonucleotides, but also adsorbed fluorescein onto the surface of the gold nanoparticles to form an “arch-like” structure. This article compares the electrochemical signal changes caused by the hybridization of “arch-like” DNA on nanogold electrode and linear DNA on bare gold electrode. The results showed that the adsorption effect of nanogold can enhance the sensitivity of the sensor. The linear range of target ssDNA is from 2.0 × 10−9 M to 2.0 × 10−8 M with a correlation coefficient of 0.9956 and detection limit (3σ) of 7.10 × 10−10 M. Additionally, the specificity and hybridization response of this simple sensor were investigated.  相似文献   

6.
An electrochemical DNA sensor based on the hybridization recognition of a single-stranded DNA (ssDNA) probe immobilized onto a gold electrode to its complementary ssDNA is presented. The DNA probe is bound on gold surface electrode by using self-assembled monolayer (SAM) technology. An optimized mixed SAM with a blocking molecule preventing the nonspecific adsorption on the electrode surface has been prepared. In this paper, a DNA biosensor is designed by means of the immobilization of a single stranded DNA probe on an electrochemical transducer surface to recognize specifically Escherichia coli (E. coli) 0157:H7 complementary target DNA sequence via cyclic voltammetry experiments. The 21 mer DNA probe including a C6 alkanethiol group at the 5' phosphate end has been synthesized to form the SAM onto the gold surface through the gold sulfur bond. The goal of this paper has been to design, characterise and optimise an electrochemical DNA sensor. In order to investigate the oligonucleotide probe immobilization and the hybridization detection, experiments with different concentration of DNA and mismatch sequences have been performed. This microdevice has demonstrated the suitability of oligonucleotide Self-assembled monolayers (SAMs) on gold as immobilization method. The DNA probes deposited on gold surface have been functional and able to detect changes in bases sequence in a 21-mer oligonucleotide.  相似文献   

7.
Gold electrodes modified by nanogold aggregates (nanogold electrode) were obtained by the electrodeposition of gold nanoparticles onto planar gold electrode. The Electrochemical response of single-stranded DNA (ssDNA) probe immobilization and hybridization with target DNA was measured by cyclic voltammograms (CV) using methylene blue (MB) as an electroactive indicator. An improving method using long sequence target DNA, which greatly enhanced the response signal during hybridization, was studied. Nanogold electrodes could largely increase the immobilization amount of ssDNA probe. The hybridization amount of target DNA could be increased several times for the manifold nanogold electrodes. The detection limit of nanogold electrode for the complementary 16-mer oligonucleotide (target DNA1) and long sequence 55-mer oligonucleotide (target DNA2) could reach the concentration of 10(-9) mol/L and 10(-11) mol/L, respectively, which are far more sensitive than that of the planar electrode.  相似文献   

8.
Kang J  Li X  Wu G  Wang Z  Lu X 《Analytical biochemistry》2007,364(2):165-170
DNA hybridization on the Au(nano)-DNA modified glassy carbon electrode (GCE) was investigated. The thiol modified probe oligonucleotides (SH-ssDNA) at the 5' phosphate end were assembled on the Au(nano)-DNA modified GCE surface. The electrochemical response of the probe immobilization and hybridization with target DNA was measured by differential pulse voltammetry (DPV) using methylene blue (MB) as the electroactive indicator. Gold nanoparticles can be dispersed effectively on the GCE surface in the presence of calf thymus DNA. Au(nano)-DNA modified GCE could greatly increase the active sites and enhance the response signal during immobilization and hybridization. The hybridization amount of target DNA could be greatly increased. The linear detection range of Au(nano)-DNA electrode for the complementary 21-mer oligonucleotide (cDNA) was achieved from 1.52 x 10(-10) to 4.05 x 10(-8) mol L(-1). The detection limit could reach the concentration of 10(-10) mol/L.  相似文献   

9.
DNA electrochemical biosensor based on thionine-graphene nanocomposite   总被引:1,自引:0,他引:1  
A novel protocol for development of DNA electrochemical biosensor based on thionine-graphene nanocomposite modified gold electrode was presented. The thionine-graphene nanocomposite layer with highly conductive property was characterized by scanning electron microscopy, transmission electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy. An amino-substituted oligonucleotide probe was covalently grafted onto the surface of the thionine-graphene nanocomposite by the cross-linker glutaraldehyde. The hybridization reaction on the modified electrode was monitored by differential pulse voltammetry analysis using an electroactive intercalator daunomycin as the indicator. Under optimum conditions, the proposed biosensor exhibited high sensitivity and low detection limit for detecting complementary oligonucleotide. The complementary oligonucleotide could be quantified in a wide range of 1.0 × 10(-12) to 1.0 × 10(-7)M with a good linearity (R(2)=0.9976) and a low detection limit of 1.26 × 10(-13)M (S/N=3). In addition, the biosensor was highly selective to discriminate one-base or two-base mismatched sequences.  相似文献   

10.
Metal ion-DNA interactions are important in nature, often changing the genetic material's structure and function. A new Yb complex of YbCl3 (tris(8-hydroxyquinoline-5-sulfonic acid) ytterbium) was synthesized and utilized as an electrochemical indicator for the detection of DNA oligonucleotide based on its interaction with Yb(QS)3. Cyclic voltammetry (CV) and fluorescence spectroscopy were used to investigate the interaction of Yb(QS)3 with ds-DNA. It was revealed that Yb(QS)3 presented an excellent electrochemical activity on glassy carbon electrode (GCE) and could intercalate into the double helix of double-stranded DNA (ds-DNA). The binding mechanism of interaction was elucidated on glassy carbon electrode dipped in DNA solution and DNA modified carbon paste electrode by using differential pulse voltammetry and cyclic voltammetry. The binding ratio between this complex and ds-DNA was calculated to be 1:1. The extent of hybridization was evaluated on the basis of the difference between signals of Yb(QS)3 with probe DNA before and after hybridization with complementary DNA. With this approach, this DNA could be quantified over the range from 1 × 10−8 to 1.1 × 10−7 M. The interaction mode between Yb(QS)3 and DNA was found to be mainly intercalative interaction. These results were confirmed with fluorescence experiments.  相似文献   

11.
In this article, a supersandwich-type electrochemical biosensor for sequence-specific DNA detection is described. In design, single-strand DNA labeled with methylene blue (MB) was used as signal probe, and auxiliary probe was designed to hybridize with two different regions of signal probe. The biosensor construction contained three steps: (i) capture DNA labeled with thiol was immobilized on the surface of gold nanoparticles decorated reduced graphene oxide (Au NPs/rGO); (ii) the sandwich structure formation contained “capture–target–signal probe”; and (iii) auxiliary probe was introduced to produce long concatamers containing signal molecule MB. Differential pulse voltammetry (DPV) was used to monitor the DNA hybridization event using peak current changes of MB in phosphate-buffered saline (PBS) containing 1.0 M NaClO4. Under optimal conditions, the peak currents of MB were linear with the logarithm of the concentration of target DNA in the range of 0.1 μM to 0.1 fM with a detection limit of 35 aM (signal/noise = 3). In addition, this biosensor exhibited good selectivity even for single-base mismatched target DNA detection.  相似文献   

12.
A method of multiplex polymerase chain reaction (PCR) followed by hybridization on a hydrogel oligonucleotide biochip was developed for simultaneous identification of ten different transgenic elements of plant DNA in food and feed products. The biochip contained 22 immobilized oligonucleotide probes that were intended for (1) detection of plant DNA, (2) determination of plant species (soybean, maize, potato, and rice), and (3) identification of transgenic elements, including sequences of 35S CaMV, 35S FMV, rice actin gene promoters, nos, 35S CaMV, ocs, pea rbcS1 gene terminators, and bar, gus, and nptII marker genes. The limit of detection was 0.5% for genetically modified (GM) soybean and maize in the analyzed samples. The tests on food and feed products using the developed approach and real-time PCR showed full agreement in determination of transgenic DNA in the samples. The proposed assay can be used for selection of GM samples by screening food and feed products for subsequent quantitative determination of GM component based on the identified transgene.  相似文献   

13.
Disposable DNA electrochemical sensor for hybridization detection   总被引:3,自引:0,他引:3  
A disposable electrochemical sensor for the detection of short DNA sequences is described. Synthetic single-stranded oligonucleotides have been immobilized onto graphite screen printed electrodes with two procedures, the first involving the binding of avidinbiotinylated oligonucleotide and the second adsorption at a controlled potential. The probes were hybridized with different concentrations of complementary sequences. The formed hybrids on the electrode surface were evaluated by differential pulse voltammetry and chronopotentiometric stripping analysis using daunomycin hydrochloride as indicator of hybridization reaction. The probe immobilization step, the hybridization event and the indicator detection, have been optimized. The DNA sensor obtained by adsorption at a controlled potential was able to detect 1 microgram/ml of target sequence in the buffer solution using chronopotentiometric stripping analysis.  相似文献   

14.
An electrochemical genosensor for the detection of hypermethylation of the glutathione S-transferase P1 (GSTP1) gene, a specific marker of prostate cancer, was reported. This new sensor was used in combination with a single-use carbon graphite working electrode and differential pulse voltammetry, with the results of sample analysis based on the guanine oxidation signals obtained at +1.0 V before and after hybridization between probe and synthetic target or denatured PCR samples. The detected DNA hybridization was also characterized by electrochemical impedance spectroscopy with potassium ferri/ferrocyanide as a redox probe. The protocol consisted of 2 different modes: (i) capture probes selective for methylation-specific and unmethylated GSTP1 sequences were immobilized onto the sensor directly, and hybridization was formed on the electrode surface; (ii) probe/target or probe/noncomplementary target couples were mixed in solution phase, and the transducer was modified through simple adsorption. The limit of detection (S/N=3) was calculated as 2.92 pmol of target sequence in a 100-μl reaction volume. The optimum analytical detection parameters for the biosensor, as well as its future prospects, were also presented.  相似文献   

15.
Jin Y  Yao X  Liu Q  Li J 《Biosensors & bioelectronics》2007,22(6):1126-1130
In this paper, a label-free, rapid and simple method was proposed to study the hybridization specificity of hairpin DNA probe using methylene blue (MB) as a hybridization indicator. Thiolated hairpin DNA probe was immobilized on the gold electrode by self-assembly. The voltammetric signals of MB were investigated at these modified electrodes by means of cyclic voltammetry (CV) detection. Single-base mutation oligonucleotide and random oligonucleotide can be easily discriminated from complementary target DNA. The effect of mismatch position in target DNA was investigated. Experimental results showed that mutation in the center of target DNA had greatest effect on the hybridization with hairpin DNA probe. The relationship between electrochemical responses and DNA target concentration was also studied. The reduction current of MB intercalation decreased with increasing the concentration of target DNA. Taken together, these experiments demonstrate that the hybridization indicator MB provides great promise for rapid and specific measurement of target DNA.  相似文献   

16.
Xia Q  Chen X  Liu JH 《Biophysical chemistry》2008,136(2-3):101-107
A novel DNA hybridization sensor based on nanoparticle CdS modified glass carbon electrode (GCE) was constructed and characterized coupled with Cyclic Voltammogram (CV) and Differential Pulse Voltammogram (DPV) techniques. The mercapto group-linked probe DNA was covalently immobilized onto the CdS layer and exposed to oligonucleotide (ODN) target for hybridization. The structure of DNA sensor was characterized by X-ray diffraction (XRD), field-emission microscopy (FESEM) and X-ray photoelectron spectra (XPS). Sensitive electrical readout achieved by CV and DPV techniques shown that when the target DNA hybridized with probe CdS-ODN conjugates and the double helix formed on the modified electrode, a significant increased response was observed comparing with the bare electrodes. The selectivity of the sensor was tested using a series of matched and certain-point mismatched sequences with concentration grads ranging from 10(-6) microM to 10(1) microM. The signal was in good linear with the minus logarithm of target oligonucleotide concentration with detection limit <1 pM and the optimized target DNA concentration was 10(-6) microM for the signal amplification. Due to great surface properties, the additional negative charges and space resistance of as-prepared CdS nanoparticles, the sensor was able to robustly discriminate the DNA hybridization responses with good sensitivity and stability.  相似文献   

17.
A simple electrochemical biosensor was developed for the detection of the mitochondrial NADH dehydrogenase 6 gene (MT-ND6) and its enzymatic digestion by BamHI enzyme. This biosensor was fabricated by modification of a glassy carbon electrode with gold nanoparticles (AuNPs/GCE) and a probe oligonucleotide (ssDNA/AuNPs/GCE). The probe, which is a thiolated segment of the MT-ND6 gene, was deposited by self-assembling immobilization on AuNPs/GCE. Two indicators including methylene blue (MB) and neutral red (NR) were used as the electroactive indicators and the electrochemical response of the modified electrode was measured by differential pulse voltammetry. The proposed biosensor can detect the complementary sequences of the MT-ND6 gene. Also the modified electrode was used for the detection of an enzymatic digestion process by BamHI enzyme. The electrochemical biosensor can detect the MT-ND6 gene and its enzymatic digestion in polymerase chain reaction (PCR)-amplified DNA extracted from human blood. Also the biosensor was used directly for detection of the MT-ND6 gene in all of the human genome.  相似文献   

18.
Microarrays based on DNA-DNA hybridization are potentially useful for detecting and subtyping viruses but require fluorescence labeling and imaging equipment. We investigated a label-free electrical detection system using electrochemical impedance spectroscopy that is able to detect hybridization of DNA target sequences derived from avian H5N1 influenza virus to gold surface-attached single-stranded DNA oligonucleotide probes. A 23-nt probe is able to detect a 120-nt base fragment of the influenza A hemagglutinin gene sequence. We describe a novel method of data analysis that is compatible with automatic measurement without operator input, contrary to curve fitting used in conventional electrochemical impedance spectroscopy (EIS) data analysis. A systematic investigation of the detection signal for various spacer molecules between the oligonucleotide probe and the gold surface revealed that the signal/background ratio improves as the length of the spacer increases, with a 12- to 18-atom spacer element being optimal. The optimal spacer molecule allows a detection limit between 30 and 100 fmol DNA with a macroscopic gold disc electrode of 1 mm radius. The dependence of the detection signal on the concentration of a 23-nt target follows a binding curve with an approximate 1:1 stoichiometry and a dissociation constant of KD=13+/-4 nM at 295 K.  相似文献   

19.
Liu X  Qu X  Dong J  Ai S  Han R 《Biosensors & bioelectronics》2011,26(8):3679-3682
A novel electrochemical method of detecting DNA hybridization is presented based on the change in flexibility between the single and double stranded DNA. A recognition surface based on gold nanoparticles (GNPs) is firstly modified via mixing self-assembled monolayer of thiolated probe DNA and 1,6-hexanedithiol. The hybridization and electrochemical detection are performed on the surface of probe-modified GNPs and electrode, respectively. Here in our method the charge transfer resistance (R(ct)) signal is enhanced by blocking the surface of electrode with DNA covered GNPs. The GNPs will be able to adsorb on the gold electrode when covered with flexible single stranded DNA (ssDNA). On the contrary, it will be repelled from the electrode, when covered with stiff double stranded DNA (dsDNA). Therefore, different R(ct) signals are observed before and after hybridization. The hybridization events are monitored by electrochemical impedance spectroscopy (EIS) measurement based on the R(ct) signals without any external labels. This method provides an alternative route for expanding the range of detection methods available for DNA hybridization.  相似文献   

20.
DNA hybridization and enzymatic digestion for the detection of mutation was investigated on the gold nanoparticles-calf thymus DNA (AuNPs-ctDNA) modified glassy carbon electrode (GCE). The thiol modified probe oligonucleotides (SH-ssDNA) were assembled on the surface of AuNPs-ctDNA modified GCE. The electrochemical response of the electrode was measured by differential pulse voltammetry and cyclic voltammetry. Methylene blue (MB) was used as the electroactive indicator. AuNPs were then dispersed effectively on the GCE surface in the presence of ct-DNA. When hybridization occurred, a decrease in the signal of MB current was observed. The modified electrode was used for the detection of mutations during the enzymatic digestion reaction in DNA. During this reaction, an increase in the signal of MB current was observed. So, the modified SH-ssDNA had a higher electrochemical response on the AuNPs-ctDNA/GCE because of the strong affinity of MB for guanine residues in it. The electrochemical detection of restriction enzyme digestion can provide a simple and practical method for observing single-base mismatches that can help in distinguishing mismatch sequences of DNA from the complementary ones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号