首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 326 毫秒
1.
During chronic lung infection of patients with cystic fibrosis, Pseudomonas aeruginosa can survive for long periods of time under the challenging selective pressure imposed by the immune system and antibiotic treatment as a result of its biofilm mode of growth and adaptive evolution mediated by genetic variation. Mucoidy, hypermutability and acquirement of mutational antibiotic resistance are important adaptive phenotypes that are selected during chronic P.?aeruginosa infection. This review dicsusses the role played by these phenotypes for the tolerance of biofilms to antibiotics and show that mucoidy and hypermutability change the architecture of in vitro formed biofilms and lead to increase tolerance to antibiotics. Production of high levels of beta-lactamase impairs penetration of beta-lactam antibiotics due to inactivation of the antibiotic. In conclusion, these data underline the importance of biofilm prevention strategies by early aggressive antibiotic prophylaxis or therapy before phenotypic diversification during chronic lung infection of patients with cystic fibrosis.  相似文献   

2.
3.
A series of mutations and transductants producing low-level aminoglycoside and beta-lactam antibiotic resistance of Pseudomonas aeruginosa have been constructed in an isogenic background. The phenotypes of these mutations are identical to or closely resemble those of clinical isolates of P. aeruginosa associated with therapeutic failure or microbial persistence in the presence of members of one or both groups of drugs. Virulence of the mutants was examined in an infection model using iron-dextran treated mice and bacteria grown in low-iron medium. All beta-lactam resistant mutants affecting affinity of penicillin-binding proteins for beta-lactams, constitutive beta-lactamase, or permeability of beta-lactams retained parental levels of virulence. Aminoglycoside-resistant mutants with defective energy generation or transductants with modified lipopolysaccharide showed reduced virulence. Strains with the preceding forms of resistance are likely to account for therapeutic failure or microbial persistence with antibiotic treatment. We propose that mechanisms of low or unstable forms of resistance should be designated mechanisms of persistence to differentiate them from more classical mechanisms of resistance.  相似文献   

4.
Profiles and mechanisms of resistance to beta-lactam antibiotics of isolates of Gram-negative microorganisms, which are causative agents of infections in Intensive Care Unit of hospital surgery department, were studied. Two hundred and ten clinical isolates were studied: Pseudomonas aeruginosa--86 strains (40.9%), Acinetobacter baummanii--45 strains (21.4%), Klebsiella pneumoniae--52 strains (24.8%), Escherichia coli--23 strains (11%), Enterobacter spp.--4 strains (1.9%). Profiles of antibiotic resistance were studied by the method of serial microdilutions; detection of most widespread and clinically significant genes of beta-lactamases of Gram-negative bacteria was performed by polymerase chain reaction. Carbapenems and cefoperazone/sulbactam were the most active antibiotics. Local features of distribution of beta-lactamase coding genes (TEM, SHV, CTX) in K. pneumoniae and E. coli isolates were revealed. Eleven strains of P. aeruginosa resistant to carbapenems and possessing genetic determinants of VIM-group, which codes metallo-beta-lactamases, were isolated. Obtained data allows to assess the parameters of resistance to beta-lactam antibiotics and to reveal the main mechanisms of such resistance in etiologic agents of nosocomial infections, that, in its turn, allows to choose preparations for etiotropic therapy.  相似文献   

5.
Cells of mucoid and non-mucoid Pseudomonas aeruginosa in colonies were at least one-thousandfold less sensitive to the antibiotics tobramycin or cefsulodin than were cells of the same bacteria in dispersed suspension. We did not detect any difference between the mucoid form and the non-mucoid form in the antibiotic sensitivity of colonies, from which we infer that the exopolysaccharide of the mucoid form does not contribute to colony-resistance by forming a barrier to antibiotic diffusion. Mathematical models were constructed in order to estimate time-courses of penetration of tobramycin and cefsulodin into biofilms and microcolonies of mucoid and non-mucoid P. aeruginosa. For tobramycin penetration, adsorption of antibiotic to the exopolysaccharide of the glycocalyx and antibiotic uptake by cells were taken into account in the calculations. The longest time-period for the concentration of tobramycin at the base of a biofilm 100 micron deep to rise to 90% of the concentration outside the biofilm was predicted to be 2.4 h. For cefsulodin penetration, irreversible hydrolysis catalysed by beta-lactamase was taken into account, using beta-lactamase levels taken from the literature. The calculations predicted that the cefsulodin concentration at the base of a biofilm 100 micron deep would rise to 90% of the external concentration in 29 s when the beta-lactamase was synthesized at the basal level. For a similar biofilm of bacteria synthesizing enhanced levels of beta-lactamase ('derepressed'), the concentration of cefsulodin at the base was calculated to rise to 41% of the external concentration in about 50 s and then remain at that level. This was despite the fact that cefsulodin is a poor substrate for this beta-lactamase.  相似文献   

6.
Beta-lactamases are serine and metallo-dependent enzymes produced by the bacteria in defense against beta-lactam antibiotics. Production of class-A, class-B, and class-C enzymes by the bacteria make the use of beta-lactam antibiotics ineffective in certain cases. To overcome resistance to beta-lactam antibiotics, several beta-lactamase inhibitors such as clavulanic acid, sulbactam, and tazobactam are widely used in the clinic in combination with beta-lactam antibiotics. However, single point mutations within these enzymes have allowed bacteria to overcome the inhibitory effect of the commercially approved beta-lactamase inhibitors. Although the commercially available beta-lactamase inhibitor/beta-lactam antibiotic combinations are effective against class-A producing bacteria and many extended spectrum beta-lactamase (ESBL's) producing bacteria they are less effective against class-C enzymes expressing bacteria. To circumvent this problem, based on modeling studies several novel imidazole substituted 6-methylidene-penem derivatives were synthesized and tested against various beta-lactamase producing isolates. The present paper deals with the synthesis and structure-activity relationships (SAR) of these compounds.  相似文献   

7.
Pseudomonas aeruginosa produces a large variety of virulence factors and is characterized by its capacity to rapidly develop resistance when exposed to antibiotics. In order to evaluate a possible correlation between acquired resistance to antibiotics and virulence, we examined the virulence of four isogenic variants of P. aeruginosa O12 that differ in their resistance phenotypes to various beta-lactam antibiotics in a mouse model of acute pneumonia. Strains overproducing a chromosomal type 1 beta-lactamase were less virulent in both immunocompetent and immunosuppressed animals. Whereas the production of the exopolysaccharide alginate was similar between the four strains, extracellular virulence factors (elastase, rhamnolipid) that are controlled by the cell-to-cell signaling system circuit were detected in reduced amounts in the supernatant of the two isolates overproducing type 1 beta-lactamase. These results suggest that strains overexpressing the chromosomal type 1 beta-lactamase could be less virulent because of a reduction of cell-to-cell signaling dependent virulence factor production.  相似文献   

8.
Alginate overproduction by P. aeruginosa strains, also known as mucoidy, is associated with chronic lung infections in cystic fibrosis (CF). It is not clear how alginate induction occurs in the wild-type (wt) mucA strains. When grown on Pseudomonas isolation agar (PIA), P. aeruginosa strains PAO1 and PA14 are non-mucoid, producing minimal amounts of alginate. Here we report the addition of ammonium metavanadate (AMV), a phosphatase inhibitor, to PIA (PIA-AMV) induced mucoidy in both these laboratory strains and early lung colonizing non-mucoid isolates with a wt mucA. This phenotypic switch was reversible depending on the availability of vanadate salts and triclosan, a component of PIA. Alginate induction in PAO1 on PIA-AMV was correlated with increased proteolytic degradation of MucA, and required envelope proteases AlgW or MucP, and a two-component phosphate regulator, PhoP. Other changes included the addition of palmitate to lipid A, a phenotype also observed in chronic CF isolates. Proteomic analysis revealed the upregulation of stress chaperones, which was confirmed by increased expression of the chaperone/protease MucD. Altogether, these findings suggest a model of alginate induction and the PIA-AMV medium may be suitable for examining early lung colonization phenotypes in CF before the selection of the mucA mutants.  相似文献   

9.
目的分析非免疫抑制患者医院获得性肺炎及呼吸机相关肺炎临床特征、病原菌组成及耐药性,指导临床诊断及合理使用抗菌素。方法回顾性分析46例前瞻性观察诊断的非免疫抑制患者医院获得性肺炎及呼吸机相关肺炎临床及微生物学资料。结果平均起病时间为人院后(14.3±13.2)d,最常见基础疾病依次为脑血管意外(16/46),慢性肺部疾病(13/46)和糖尿病(5/46)。培养阳性率58.7%,最常见细菌依次为鲍曼不动杆菌(8/27)、铜绿假单胞菌(6/27)、阴沟肠杆菌(3/29)及金黄色葡萄球菌(3/29)。80.4%患者入院72h内使用过抗生素,初始经验性治疗最常使用的抗菌素依次为头孢菌素(29/46)、碳青霉烯类(9/46)、糖肽类(5/46)。8株鲍曼不动杆菌对头孢哌酮/舒巴坦中介MIC〉32mg/L,对其他抗生素耐药;2株铜绿假单胞菌对美罗培南高度耐药MIC=128mg/L。结论非免疫抑制患者医院获得性肺炎及呼吸机相关肺炎多发生在有脑血管疾病及慢性肺疾病老年患者,我院非免疫抑制患者医院获得性肺炎及呼吸机相关肺炎最常见的病原菌多药耐药鲍曼不动杆菌,铜绿假单胞菌对碳青霉烯类耐药率较高。应优化医院获得性肺炎及呼吸机相关肺炎初始抗生素使用。  相似文献   

10.
11.
The autosomal recessive disorder cystic fibrosis (CF) affects approximately 70,000 people worldwide and is characterized by chronic bacterial lung infections with the opportunistic pathogen Pseudomonas aeruginosa. To form a chronic CF lung infection, P. aeruginosa must grow and proliferate within the CF lung, and the highly viscous sputum within the CF lung provides a likely growth substrate. Recent evidence indicates that anaerobic microenvironments may be present in the CF lung sputum layer. Since anaerobic growth significantly enhances P. aeruginosa biofilm formation and antibiotic resistance, it is important to examine P. aeruginosa physiology and metabolism in anaerobic environments. Measurement of nitrate levels revealed that CF sputum contains sufficient nitrate to support significant P. aeruginosa growth anaerobically, and mutational analysis revealed that the membrane-bound nitrate reductase is essential for P. aeruginosa anaerobic growth in an in vitro CF sputum medium. In addition, expression of genes coding for the membrane-bound nitrate reductase complex is responsive to CF sputum nitrate levels. These findings suggest that the membrane-bound nitrate reductase is critical for P. aeruginosa anaerobic growth with nitrate in the CF lung.  相似文献   

12.
Antimicrobials derived from plants have been receiving increasing attention in recent years. Antimicrobial activities of a number of phytochemicals have been reported. Many present day antibiotics are ineffective against several pathogenic organisms. About 90% of Staphylococcus aureus isolates from clinical specimens is reported to have resistance against beta-lactam antibiotics. In the present study, the effect of hexane, diethyl ether, acetone and water extracts of leaves of a medicinal plant Holoptelea integrifolia has been tested against beta-lactam resistant strain of S. aureus in presence of antibiotics such as ampicillin, amoxicillin, cefotaxime and ceftriaxone. The diethyl ether extract has shown the maximum antibacterial activity and the active principle is found to be 1,4-naphthalenedione which is characterized by GC-MS and FTIR spectroscopy. The minimum inhibitory concentration (MIC) of the compound is found to be 4 mg/ml. Structural similarity of this compound with a functional group of a beta-lactamase-resistant antibiotic indicates that 1,4-naphthlenedione may be acting as an inhibitor to beta-lactamase.  相似文献   

13.
Anand  Rajesh  Moss  Richard B.  Sass  Gabriele  Banaei  Niaz  Clemons  Karl V.  Martinez  Marife  Stevens  David A. 《Mycopathologia》2018,183(1):263-272
Mycopathologia - Pseudomonas aeruginosa and Aspergillus fumigatus are major microbes in cystic fibrosis (CF). We reported non-mucoid P. aeruginosa isolates more inhibitory to A. fumigatus than...  相似文献   

14.
In the production of the Spanish traditional blue-veined Cabrales cheese, lactic acid bacteria strains free of antibiotic resistance that have a transferrable capacity are necessary as components of a specific starter. To select for these bacteria, the minimum inhibitory concentration (MIC) of 12 antibiotics and 2 mixtures (containing beta-lactamase inhibitor and penicillin) were determined by microbroth and agar dilution techniques in 146 strains belonging to the genera Lactococcus, Enterococcus, Lactobacillus, and Leuconostoc. The antibiotic-resistance profiles of Lactococcus and Enterococcus species were different from those of Lactobacillus and Leuconostoc, but clear genus- or species-associated patterns were not observed. Cefoxitin and metronidazole were not effective against bacteria of these genera. The MICs of beta-lactam antibiotics for lactobacilli and leuconostoc isolates were higher than those for lactococci and enterococci, but no strain was clinically resistant. All lactobacilli and leuconostoc isolates were resistant to high levels of vancomycin, a type of resistance not seen among the tested members of the genera Lactococcus and Enterococcus. The majority of the observed resistance appeared to be either intrinsic or nonspecific, although some strains of Lactococcus lactis, Enterococcus spp., and Lactobacillus spp. were resistant to antibiotics, such as chloramphenicol, erythromycin, clindamycin, or tetracycline.  相似文献   

15.
Novel therapies to target lung inflammation are predicted to improve the lives of people with cystic fibrosis (CF) but specific antiinflammatory targets have not been identified. The goal of this study was to establish whether TLR5 signaling is the key molecular pathway mediating lung inflammation in CF, and to determine whether strategies to inhibit TLR5 can reduce the damaging inflammatory response. The innate immune responses were analyzed in both airway epithelial cells and primary PBMCs from CF patients and matched controls. Additionally, 151 clinical isolates of Pseudomonas aeruginosa from CF patients were assessed for motility and capacity to activate TLR5. Blood and airway cells from CF patients produced significantly more proinflammatory cytokine than did control cells following exposure to the CF pathogens P. aeruginosa and Burkholderia cepacia complex (p < 0.001). Stimulation with pure TLR ligands demonstrated that TLR signaling appears to mediate the excessive cytokine production occurring in CF. Using complementary approaches involving both neutralizing Ab targeting TLR5 and flagellin-deficient bacteria, we established that inhibition of TLR5 abolished the damaging inflammatory response generated by CF airway cells following exposure to P. aeruginosa (p < 0.01). The potential therapeutic value of TLR5 inhibition was further supported by our demonstration that 75% of clinical isolates of P. aeruginosa retained TLR5 activating capacity during chronic CF lung infection. These studies identify the innate immune receptor TLR5 as a novel antiinflammatory target for reducing damaging lung inflammation in CF.  相似文献   

16.
Imipenem is often used to treat intensive care unit patients infected by Enterobacter aerogenes, but it is leading to an increasing number of antibiotic resistant strains. Clinical isolates and imipenem resistant variants presented a high level of resistance to beta-lactam antibiotic group and to chemically unrelated drugs. We report here that imipenem selects strains which contain active efflux pumps ejecting various unrelated antibiotics including quinolones, tetracycline, and chloramphenicol. An increase of AcrA, an efflux pump component, was observed in the imipenem resistant variants. The overexpression of marA, involved in the genetic control of membrane permeability via porin and efflux pump expression, indicated the activation of the resistance genetic cascade in imipenem resistant variants.  相似文献   

17.
There is growing concern about the relevance of in vitro antimicrobial susceptibility tests when applied to isolates of P. aeruginosa from cystic fibrosis (CF) patients. Existing methods rely on single or a few isolates grown aerobically and planktonically. Predetermined cut-offs are used to define whether the bacteria are sensitive or resistant to any given antibiotic. However, during chronic lung infections in CF, P. aeruginosa populations exist in biofilms and there is evidence that the environment is largely microaerophilic. The stark difference in conditions between bacteria in the lung and those during diagnostic testing has called into question the reliability and even relevance of these tests. Artificial sputum medium (ASM) is a culture medium containing the components of CF patient sputum, including amino acids, mucin and free DNA. P. aeruginosa growth in ASM mimics growth during CF infections, with the formation of self-aggregating biofilm structures and population divergence. The aim of this study was to develop a microtitre-plate assay to study antimicrobial susceptibility of P. aeruginosa based on growth in ASM, which is applicable to both microaerophilic and aerobic conditions. An ASM assay was developed in a microtitre plate format. P. aeruginosa biofilms were allowed to develop for 3 days prior to incubation with antimicrobial agents at different concentrations for 24 hours. After biofilm disruption, cell viability was measured by staining with resazurin. This assay was used to ascertain the sessile cell minimum inhibitory concentration (SMIC) of tobramycin for 15 different P. aeruginosa isolates under aerobic and microaerophilic conditions and SMIC values were compared to those obtained with standard broth growth. Whilst there was some evidence for increased MIC values for isolates grown in ASM when compared to their planktonic counterparts, the biggest differences were found with bacteria tested in microaerophilic conditions, which showed a much increased resistance up to a > 128 fold, towards tobramycin in the ASM system when compared to assays carried out in aerobic conditions. The lack of association between current susceptibility testing methods and clinical outcome has questioned the validity of current methods. Several in vitro models have been used previously to study P. aeruginosa biofilms. However, these methods rely on surface attached biofilms, whereas the ASM biofilms resemble those observed in the CF lung. In addition, reduced oxygen concentration in the mucus has been shown to alter the behavior of P. aeruginosa and affect antibiotic susceptibility. Therefore using ASM under microaerophilic conditions may provide a more realistic environment in which to study antimicrobial susceptibility.  相似文献   

18.
Pseudomonas aeruginosa causes chronic lung infections in the airways of cystic fibrosis (CF) patients. Psl is an extracellular polysaccharide expressed by non-mucoid P. aeruginosa strains, which are believed to be initial colonizers. We hypothesized that Psl protects P. aeruginosa from host defences within the CF lung prior to their conversion to the mucoid phenotype. We discovered that serum opsonization significantly increased the production of reactive oxygen species (ROS) by neutrophils exposed to a psl-deficient mutant, compared with wild-type (WT) and Psl overexpressing strains (Psl(++)). Psl-deficient P. aeruginosa were internalized and killed by neutrophils and macrophages more efficiently than WT and Psl(++) variants. Deposition of complement components C3, C5 and C7 was significantly higher on psl-deficient strains compared with WT and Psl(++) bacteria. In an in vivo pulmonary competition assay, there was a 4.5-fold fitness advantage for WT over psl-deficient P. aeruginosa. Together, these data show that Psl inhibits efficient opsonization, resulting in reduced neutrophil ROS production, and decreased killing by phagocytes. This provides a survival advantage in vivo. Since phagocytes are critical in early recognition and control of infection, therapies aimed at Psl could improve the quality of life for patients colonized with P. aeruginosa.  相似文献   

19.
20.
目的了解血培养病原菌种类、临床分布及耐药情况。方法对2008年6月至2009年6月的379株血培养病原菌及其药敏情况用WHONET5.4软件进行统计分析。结果 379株病原菌中,分离率从高到低依次是凝固酶阴性葡萄球菌(133/35.1%)、大肠埃希菌(44/11.6%)、肺炎克雷伯菌(32/8.4%)、鲍曼不动杆菌(30/7.9%)、铜绿假单胞菌(25/6.6%)、金黄色葡萄球菌(18/4.7%)、肠球菌(13/3.4%)和其他(75/22.2%)。这些菌株主要分布在ICU和普外科。药敏结果分析显示:革兰阳性球菌中,未发现利奈唑胺和万古霉素耐药株。金黄色葡萄球菌和凝固酶阴性葡萄球菌对苯唑西林的耐药率分别为61.1%和89.5%;屎肠球菌对多数抗生素耐药率超过80%,粪肠球菌对青霉素类抗生素敏感性较高。革兰阴性杆菌中,大肠埃希菌和肺炎克雷伯菌中产ESBLs菌株比例分别为36.4%和31.3%,且发现2株耐亚胺培南的肺炎克雷伯菌;鲍曼不动杆菌除对卡那霉素保持敏感外,对其他抗生素的耐药率为50%~100%;铜绿假单胞菌对头孢曲松的耐药率为100%,对其他β-内酰胺类抗生素、氨基糖苷类和喹诺酮类抗生素的耐药率相对较低。结论临床上应规范血培养标本留取方法以减少污染,加强细菌耐药监测、严格抗生素使用,以延缓细菌耐药情况的发生和发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号