首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Grazing incidence x-ray diffraction measurements were performed on single hydrated bilayers and monolayers of Ceramide/Cholesterol/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocyholine at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing lipid leaflets. Depending on the lipid composition, these interactions lead to phase separation and formation of cholesterol crystals. The cholesterol and ceramide/cholesterol mixed phases were further characterized at 37°C by immunolabeling with specific antibodies recognizing ordered molecular arrays of cholesterol. Previous studies have shown that cholesterol may nucleate in artificial membranes to form thick two-dimensional bilayer crystals. The study herein demonstrates further growth of cholesterol into three-dimensional crystals. We believe that these results may provide further insight into the formation of cholesterol crystals in early stages of atherosclerosis inflammation.  相似文献   

2.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

3.
The growth of a cholesterol crystalline phase, three molecular layers thick at the air-water interface, was monitored by grazing incidence x-ray diffraction and x-ray reflectivity. Upon compression, a cholesterol film transforms from a monolayer of trigonal symmetry and low crystallinity to a trilayer, composed of a highly crystalline bilayer in a rectangular lattice and a disordered top cholesterol layer. This system undergoes a phase transition into a crystalline trilayer incorporating ordered water between the hydroxyl groups of the top and middle sterol layers in an arrangement akin to the triclinic 3-D crystal structure of cholesterol x H(2)O. By comparison, the cholesterol derivative stigmasterol transforms, upon compression, directly into a crystalline trilayer in the rectangular lattice. These results may contribute to an understanding of the onset of cholesterol crystallization in pathological lipid deposits.  相似文献   

4.
Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.  相似文献   

5.
Lipid lateral segregation into specific domains in cellular membranes is associated with cell signaling and metabolic regulation. This phenomenon partially arises as a consequence of the very distinct bilayer-associated lipid physico-chemical properties that give rise to defined phase states at a given temperature. Until now lamellar gel (Lβ) phases have been described in detail in single or two-lipid systems. Using x-ray scattering, differential scanning calorimetry, confocal fluorescence microscopy, and atomic force microscopy, we have characterized phases of ternary lipid compositions in the presence of saturated phospholipids, cholesterol, and palmitoyl ceramide mixtures. These phases stabilized by direct cholesterol-ceramide interaction can exist either with palmitoyl sphingomyelin or with dipalmitoyl phosphatidylcholine and present intermediate properties between raft-associated phospholipid-cholesterol liquid-ordered and phospholipid-ceramide Lβ phases. The present data provide novel, to our knowledge, evidence of a chemically defined, multicomponent lipid system that could cooperate in building heterogeneous segregated platforms in cell membranes.  相似文献   

6.
Very small rectangular domains were observed by atomic force microscopy in binary monolayers of synthetic ceramides and cholesterol. When the cholesterol content is increased the domains are bigger although the rectangular shape is retained. The almost perfect shape of the domains indicates two-dimensional single ceramide crystals. Lipid domains in monolayers of this particular shape and size have to our knowledge not been reported in the literature previously.  相似文献   

7.
Cholesterol is believed to be an important component in compositionally distinct lipid domains in the cellular plasma membrane, which are referred to as lipid rafts. Insight into how cholesterol influences the interactions that contribute to plasma membrane organization can be acquired from model lipid membranes. Here we characterize the lipid mixing and phase behavior exhibited by (15)N-dilaurolyphosphatidycholine ((15)N-DLPC)/deuterated distearoylphosphatiylcholine (D(70)-DSPC) membranes with various amounts of cholesterol (0, 3, 7, 15 or 19mol%) at room temperature. The microstructures and compositions of individual membrane domains were determined by imaging the same membrane locations with both atomic force microscopy (AFM) and high-resolution secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50. As the cholesterol composition increased from 0 to 19mol%, the circular ordered domains became more elongated, and the amount of (15)N-DLPC in the gel-phase domains remained constant at 6-7mol%. Individual and micron-sized clusters of nanoscopic domains enriched in D(70)-DSPC were abundant in the 19mol% cholesterol membrane. AFM imaging showed that these lipid domains had irregular borders, indicating that they were gel-phase domains, and not non-ideally mixed lipid clusters or nanoscopic liquid-ordered domains.  相似文献   

8.
Cholesterol plays a crucial role in cell membranes, and has been implicated in the assembly and maintenance of sphingolipid-rich rafts. We have examined the cholesterol-dependence of model rafts (sphingomyelin-rich domains) in supported lipid monolayers and bilayers using atomic force microscopy. Sphingomyelin-rich domains were observed in lipid monolayers in the absence and presence of cholesterol, except at high cholesterol concentrations, when separate domains were suppressed. The effect of manipulating cholesterol levels on the behavior of these sphingomyelin-rich domains in bilayers was observed in real time. Depletion of cholesterol resulted in dissolution of the model lipid rafts, whereas cholesterol addition resulted in an increased size of the sphingomyelin-rich domains and eventually the formation of a single raftlike lipid phase. Cholesterol colocalization with sphingomyelin-rich domains was confirmed using the sterol binding agent filipin.  相似文献   

9.
Structures of the monolayer films of dipalmitoylphosphatidylcholine (DPPC) mixed with different amounts of cholesterol were studied at air-water interface using surface pressure-area measurements, epifluorescence microscopy and atomic force microscopy (AFM). Pure DPPC, cholesterol or DPPC-cholesterol mixtures were dissolved in organic solvents with a small amount of fluorescently labeled phospholipid probe (NBD-PC) and spread onto the air-water interface. Surface pressure-area isotherms and epifluorescence microscopy of such films at the air-water interface suggested that DPPC undergoes a gas to fluid to condensed phase transition, while cholesterol undergoes a gas to solid-like transition. A shift of the surface pressure-area curve to lower area per molecule was observed when cholesterol was mixed with DPPC. Epifluorescence microscopy showed the formation of spiral shaped domains for mixed monolayers. Increase in cholesterol content abolished domain characteristics possibly due to fluidizing property of cholesterol. AFM measurements of monolayers, transferred onto freshly cleaved mica by Langmuir-Blodgett technique, revealed the alterations caused by cholesterol on the gel and fluid domains of such films. AFM measurements re-established similar trend in domain characteristics as evidenced in epifluorescence microscopy.  相似文献   

10.
Ethanol-lipid bilayer interactions have been a recurrent theme in membrane biophysics, due to their contribution to the understanding of membrane structure and dynamics. The main purpose of this study was to assess the interplay between membrane lateral heterogeneity and ethanol effects. This was achieved by in situ atomic force microscopy, following the changes induced by sequential ethanol additions on supported lipid bilayers formed in the absence of alcohol. Binary phospholipid mixtures with a single gel phase, dipalmitoylphosphatidylcholine (DPPC)/cholesterol, gel/fluid phase coexistence DPPC/dioleoylphosphatidylcholine (DOPC), and ternary lipid mixtures containing cholesterol, mimicking lipid rafts (DOPC/DPPC/cholesterol and DOPC/sphingomyelin/cholesterol), i.e., with liquid ordered/liquid disordered (ld/lo) phase separation, were investigated. For all compositions studied, and in two different solid supports, mica and silicon, domain formation or rearrangement accompanied by lipid bilayer thinning and expansion was observed. In the case of gel/fluid coexistence, low ethanol concentrations lead to a marked thinning of the fluid but not of the gel domains. In the case of ld/lo all the bilayer thins simultaneously by a similar extent. In both cases, only the more disordered phase expanded significantly, indicating that ethanol increases the proportion of disordered domains. Water/bilayer interfacial tension variation and freezing point depression, inducing acyl chain disordering (including opening and looping), tilting, and interdigitation, are probably the main cause for the observed changes. The results presented herein demonstrate that ethanol influences the bilayer properties according to membrane lateral organization.  相似文献   

11.
The effect of temperature on the lateral structure of lipid bilayers composed of porcine brain ceramide and 1-palmitoyl 2-oleoyl-phosphatidylcholine (POPC), with and without addition of cholesterol, were studied using differential scanning calorimetry, Fourier transformed infrared spectroscopy, atomic force microscopy, and confocal/two-photon excitation fluorescence microscopy (which included LAURDAN generalized polarization function images). A broad gel/fluid phase coexistence temperature regime, characterized by the presence of micrometer-sized gel-phase domains with stripe and flowerlike shapes, was observed for different POPC/ceramide mixtures (up to approximately 25 mol % ceramide). This observed phase coexistence scenario is in contrast to that reported previously for this mixture, where absence of gel/fluid phase coexistence was claimed using bulk LAURDAN generalized polarization (GP) measurements. We demonstrate that this apparent discrepancy (based on the direct comparison between the LAURDAN GP data obtained in the microscope and the fluorometer) disappears when the additive property of the LAURDAN GP function is taken into account to examine the data obtained using bulk fluorescence measurements. Addition of cholesterol to the POPC/ceramide mixtures shows a gradual transition from a gel/fluid to gel/liquid-ordered phase coexistence scenario as indicated by the different experimental techniques used in our experiments. This last result suggests the absence of fluid-ordered/fluid-disordered phase coexistence in the ternary mixtures studied in contrast to that observed at similar molar concentrations with other ceramide-base-containing lipid mixtures (such as POPC/sphingomyelin/cholesterol, which is used as a canonical raft model membrane). Additionally, we observe a critical cholesterol concentration in the ternary mixtures that generates a peculiar lateral pattern characterized by the observation of three distinct regions in the membrane.  相似文献   

12.
The interaction of the galactocerebroside, N-palmitoylgalactosylsphingosine (NPGS), with cholesterol has been studied by differential scanning calorimetry (DSC) and x-ray diffraction. Thermal and structural studies demonstrate complex behavior characterized by two endothermic transitions: transition I (TI approximately equal to 50-60 degrees C) corresponding to an NPGS-cholesterol bilayer gel----bilayer liquid crystal transition II (TII where TI less than TII less than TNPGS) corresponding to an NPGS bilayer crystal (stable E form)----bilayer liquid crystal transition. For mixtures containing from 6 to 80 mol % cholesterol, x-ray diffraction studies at 22 degrees C (T less than TI) indicate two separate lamellar phases; an NPGS crystal bilayer phase and a cholesterol monohydrate phase. For cholesterol concentrations less than 50 mol % at TI less than T less than TII, NPGS-cholesterol liquid crystal bilayer and excess NPGS crystal bilayer phases are observed. For greater than 50 mol % cholesterol concentrations at these temperatures, an excess cholesterol monohydrate phase coexists with the NPGS-cholesterol liquid crystal bilayers. At T greater than TII, complete NPGS-cholesterol miscibility is only observed for less than 50 mol % cholesterol concentrations, whereas at greater than 50 mol % cholesterol an excess cholesterol phase is present. The solid phase immiscibility of cerebroside and cholesterol at low temperatures is suggested to result from preferential NPGS-NPGS associations via hydrogen bonding. The unique thermal and structural behavior of NPGS-cholesterol dispersions is contrasted with the behavior of cholesterol-phosphatidycholine and cholesterol-sphingomyelin bilayers. Thermal and structural studies of NPGS in dipalmitoylphosphatidylcholine (DPPC)/cholesterol (1:1, molar ratio) bilayers have been performed. For dispersions containing less than 20 mol % NPGS at 22 degrees C there are no observable calorimetric transitions and x-ray diffraction studies indicate complete lipid miscibility. At greater than 20 mol % NPGS, a high temperature transition is observed that is shown by x-ray diffraction studies to be due to an excess NPGS crystal bilayer----liquid crystal bilayer transition. Complete miscibility of NPGS in DPPC/cholesterol bilayers is observed at T greater than TNPGS. The properties of NPGS/DPPC/cholesterol bilayers are discussed in terms of the lipid composition of the myelin sheath.  相似文献   

13.
The structural organization of ion channels formed in lipid membranes by amphiphilic alpha-helical peptides is deduced by applying direct structural methods to different lipid/alamethicin systems. Alamethicin represents a hydrophobic alpha-helical peptide antibiotic forming voltage-gated ion channels in lipid membranes. Here the first direct evidence for the existence of large-scale two-dimensional crystalline domains of alamethicin helices, oriented parallel to the air/water interface, is presented using synchrotron x-ray diffraction, fluorescence microscopy, and surface pressure/area isotherms. Proofs are obtained that the antibiotic peptide injected into the aqueous phase under phospholipid monolayers penetrates these monolayers, phase separates, and forms domains within the lipid environment, keeping the same, parallel orientation of the alpha-helices with respect to the phospholipid/water interface. A new asymmetrical, "lipid-covered ring" model of the voltage-gated ion channel of alamethicin is inferred from the structural results presented, and the mechanism of ion-channel formation is discussed.  相似文献   

14.
15.
Hydroxy-galactocerebrosides (mixed chain length, constituent of myelin membranes) from bovine brain are investigated as monolayers at the air-water interface with isotherms, fluorescence microscopy, x-ray reflectivity and grazing incidence diffraction. With grazing incidence diffraction a monoclinic tilted chain lattice is found in the condensed phase. According to x-ray reflectivity, the longest chains protrude above the chain lattice and roughen the lipid/air interface. On compressing the chain lattice, the correlation length increases by approximately 65%; obviously, the sugar headgroups are flexible enough to allow for lattice deformation. With fluorescence experiments, small coexisting fluid and ordered domains are observed, and there is lipid dissolution into the subphase as well. The dissolved hydroxy-galactocerebroside molecules reenter on monolayer expansion. The electron density profiles derived from x-ray reflectometry (coherent superposition) show that the chain-ordering transition causes the molecules to grow into the subphase.  相似文献   

16.
Crystalline nucleation of cholesterol at the air-water interface has been studied via grazing incidence x-ray diffraction using synchrotron radiation. The various stages of cholesterol molecular assembly from monolayer to three bilayers incorporating interleaving hydrogen-bonded water layers in a monoclinic cholesterol.H(2)O phase, has been monitored and their structures characterized to near atomic resolution. Crystallographic evidence is presented that this multilayer phase is similar to that of a reported metastable cholesterol phase of undetermined structure obtained from bile before transformation to the triclinic phase of cholesterol.H(2)O, the thermodynamically stable macroscopic form. According to grazing incidence x-ray diffraction measurements and crystallographic data, a transformation from the monoclinic film structure to a multilayer of the stable monohydrate phase involves, at least initially, an intralayer cholesterol rearrangement in a single-crystal-to-single-crystal transition. The preferred nucleation of the monoclinic phase of cholesterol.H(2)O followed by transformation to the stable monohydrate phase may be associated with an energetically more stable cholesterol bilayer arrangement of the former and a more favorable hydrogen-bonding arrangement of the latter. The relevance of this nucleation process of cholesterol monohydrate to pathological crystallization of cholesterol from cell biomembranes is discussed.  相似文献   

17.
The thermotropic phase behavior of cholesterol monohydrate in water was investigated by differential scanning calorimetry, polarizing light microscopy, and x-ray diffraction. In contrast to anhydrous cholesterol which undergoes a polymorphic crystalline transition at 39 degrees C and a crystalline to liquid transition at 151 degrees C, the closed system of cholesterol monohydrate and water exhibited three reversible endothermic transitions at 86, 123, and 157 degrees C. At 86 degrees C, cholesterol monohydrate loses its water of hydration, forming the high temperature polymorph of anhydrous cholesterol. At least 24 hours were required for re-hydration of cholesterol and the rate of hydration was dependent on the polymorphic crystalline form of anhydrous cholesterol. At 123 degrees C, anhydrous crystalline cholesterol in the presence of excess water undergoes a sharp transition to a birefringent liquid crystalline phase of smectic texture. The x-ray diffraction pattern obtained from this phase contained two sharp low-angle reflections at 37.4 and 18.7 A and a diffuse wide-angle reflection centered at 5.7 A, indicating a layered smectic type of liquid crystalline structure with each layer being two cholesterol molecules thick. The liquid crystalline phase is stable over the temperature range of 123 to 157 degrees C before melting to a liquid dispersed in water. The observation of a smectic liquid crystalline phase for hydrated cholesterol correlates with its high surface activity and helps to explain its ability to exist in high concentrations in biological membranes.  相似文献   

18.
Phospholipase D from Streptomyces chromofuscus (scPLD) hydrolyzes phosphatidylcholines (PC) to produce choline and phosphatidic acid (PA), a lipid messenger molecule within biological membranes. To scrutinize the influence of membrane structure on scPLD activity, three different substrate-containing monolayers are used as model systems: pure dipalmitoylphosphatidylcholine (DPPC) as well as equimolar mixtures of DPPC/n-hexadecanol (C(16)OH) and DPPC/dipalmitoylglycerol (DPG). The activity of scPLD toward these monolayers is tested by infrared reflection-absorption spectroscopy and exhibits different dependencies on surface pressure. For pure DPPC, the catalytic turnover drastically drops above 20 mN/m. On addition of C(16)OH, this strong decrease starts at 5 mN/m. For the DPPC/DPG system, the reaction yield linearly decreases between 5 and 25 mN/m. The difference in scPLD activity is correlated to the phase state of the monolayers as examined by x-ray diffraction, Brewster angle microscopy, and atomic force microscopy. Because the additives C(16)OH and DPG mediate the miscibility of PC and PA, only a basal activity of scPLD is observed toward the mixed systems at higher surface pressures. At pure DPPC monolayers, scPLD is activated after the segregation of initially formed PA. Furthermore, scPLD is inhibited when the lipids in the PA-rich domains adopt an upright orientation. This phenomenon offers a self-regulating mechanism for the concentration of the second messenger PA within biological membranes.  相似文献   

19.
Temperature-dependent techniques (differential scanning calorimetry, polarizing microscopy, and x-ray scattering and diffraction techniques) were used to compare the properties of human plasma low density lipoproteins (LDL) with its extracted lipid classes. Three types of thermal transitions were characterized: (a) a reversible transition in intact LDL near body temperature associated with a liquid crystalline order-disorder phase change of cholesterol esters within the particles; (b) an irreversible high temperature transition (approximately 70-90 degrees) associated with LDL denaturation and release of cholesterol esters from the disrupted particles; and (c) low temperature transitions related to liquid crystalline and crystalline phase changes in these released esters. The temperature of the reversible transition in intact LDL varies among individual donors. Correlation analysis shows that the temperature of this transition negatively correlates with the amount of triglyceride relative to cholesterol ester in LDL. Studies on mixtures of cholesterol esters and triglycerides isolated from LDL show a similar effect, increasing amounts of triglycerides decreasing the temperature of the liquid leads to smectic liquid crystalline transition of the isolated esters. Thus, the amount of triglyceride in LDL influences the fluidity of the cholesterol esters in LDL. The enthalpy of the reversible transition in intact LDL is 0.69 cal/g of LDL cholesterol ester. This compares with 0.89 cal/g for the liquid leads to liquid crystalline transition of the cholesterol esters released from denatured LDL and 1.01 cal/g for the same transition in the extracted esters. Unlike the cholesterol esters released from denatured LDL, or isolated LDL esters, cholesterol ester in the intact LDL particle does not crystallize. These findings suggest that the behavior of cholesterol esters in intact LDL is constrained relative to their behavior when freed from the restrictions of the particle. These results together with experiments on partitioning of the individual lipid classes of LDL allow us to define the distribution and interaction of lipids in the intact LDL particle.  相似文献   

20.
Ali MR  Cheng KH  Huang J 《Biochemistry》2006,45(41):12629-12638
The effect of brain ceramide on the maximum solubility of cholesterol in ternary mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), cholesterol, and ceramide was investigated at 37 degrees C by a cholesterol oxidase (COD) reaction rate assay and by optical microscopy. The COD reaction rate assay showed a sharp increase in cholesterol chemical potential as the cholesterol mole fraction approaches the solubility limit. A decline in the COD reaction rate was found after the formation of cholesterol crystals. The maximum solubility of brain ceramide in POPC bilayers was determined to be 68 +/- 2 mol % by microscopy. We found that ceramide has a much higher affinity for the ordered bilayers than cholesterol, and the maximum solubility of cholesterol decreases with the increase in ceramide content. More significantly, the displacement of cholesterol by ceramide follows a 1:1 relation. At the cholesterol solubility limit, adding one more ceramide molecule to the lipid bilayer drives one cholesterol out of the bilayer into the cholesterol crystal phase, and cholesterol is incapable of displacing ceramide from the bilayer phase. On the basis of these findings, a ternary phase diagram of the POPC/cholesterol/ceramide mixture was constructed. The behaviors of ceramide and cholesterol can be explained by the umbrella model. Both ceramide and cholesterol have small polar headgroups and relatively large nonpolar bodies. In a PC bilayer, ceramide and cholesterol compete for the coverage of the headgroups of neighboring PC to prevent the exposure of their nonpolar bodies to water. This competition results in the 1:1 displacement as well as the displacement of cholesterol by ceramide from lipid raft domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号