首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Batch digestion of municipal garbage was carried out for 100 days at room temperature (26+/-4 degrees C; average temperature 25 degrees C) and at ambient temperature (32+/-10 degrees C; average temperature 29 degrees C) conditions for total solids concentrations varying between 45 and 135 g/l. A first order model based on the availability of substrate as the limiting factor was used to perform the kinetic studies of batch anaerobic digestion system. Effect of organic solids concentration and digestion time on biogas yield was studied and mass and energy balance analysis was conducted for batch digestion. The net bioenergy yield from municipal garbage and corresponding bioprocess conversion efficiency over the length of the digestion time were observed to be 12,528 kJ/kg volatile solids and 84.51% respectively. The methane content of the biogas generated from the reactors was in the range of 62-72% with the overall average methane content of the biogas, computed over the total digestion period was 65 vol%.  相似文献   

2.
In 1996, the first documented outbreak of salmonellosis associated with the consumption of peanut butter was reported. This study was undertaken to determine survival characteristics of high (5.68 log10 cfu g(-1)) and low (1.51 log10 cfu g(-1)) inocula of a five-serotype mixture of Salmonella in five commercial peanut butters and two commercial peanut butter spreads. Populations in samples inoculated with 5.68 log10 cfu g(-1) and stored for 24 weeks at 21 or 5 degrees C decreased 4.14-4.50 log10 cfu g(-1) and 2.86-4.28 log10 cfu g(-1), respectively, depending on the formulation. The order of retention of viability was: peanut butter spreads > traditional (regular) and reduced sugar, low-sodium peanut butters > natural peanut butter. Differences in rates of inactivation are attributed to variation in product composition as well as size and stability of water droplets in the colloidal matrix, which may influence nutrient availability. With the exception of natural peanut butter, products initially inoculated with 1.51 log10 cfu of Salmonella g(-1) (32 cfu g(-1)) were positive for the pathogen after storage for 24 weeks at 5 degrees C. At 21 degrees C, however, with the exception of one peanut butter spread, all products were negative for Salmonella after storage for 24 weeks. Post-process contamination of peanut butter and spreads with Salmonella may to result in survival in these products for the duration of their shelf life at 5 degrees C and possibly 21 degrees C, depending on the formulation.  相似文献   

3.
This work studied the hydrolysis kinetics and the solubilization of waste activated sludge under a medium range temperature (50-90 degrees C) and pH in the alkaline region (8-11), as a pretreatment stage for anaerobic digestion. The hydrolysis rate for the solubilization of volatile suspended solids (VSS) followed a first-order rate. A linear polynomial hydrolysis model was derived from the experimental results leading to a satisfactory correlation between the hydrolysis rate coefficient, pH, and temperature. At pH 11 and a temperature of 90 degrees C the concentration of the VSS was 6.82%, the VSS reduction reached 45% within ten hours and at the same time the soluble COD was 70.000 mg/l and the total efficiency for methane production 0.28 l of CH4 per g of VSS loading.  相似文献   

4.
Anaerobic digestion of grass silage in batch leach bed reactors, with and without a second stage upflow anaerobic sludge blanket (UASB) reactor, was evaluated. Sixty six percent of the methane potential in grass was obtained within the 55 days solids retention time in the leach bed-UASB process without pH adjustment, whereas in the one-stage leach bed process 20% of the methane potential in grass was extracted. In two-stage operation, adjustment of the pH of influent to the leach bed reactor to 6 with HCl led to inhibition of both hydrolysis/acidogenesis and methanogenesis. In the leach bed-UASB process 39% of the carbohydrates and 58% of the acid soluble lignin were solubilised within the 49 days of operation, whereas Klason lignin was most recalcitrant. The methane potential of the digestates varied from 0.141 to 0.204 m3 CH4 kg(-1) added volatile solids.  相似文献   

5.
Recovery of Rhizobium leguminosarum cells by centrifugation after growth in an industrial fermenter was 100-fold higher when cells were grown on yeast extract (5 g/1) as sole source of carbon and nitrogen when compared with the yields recovered when cells were grown in standard mannitol-yeast extract medium. Methods of storing concentrated suspensions of R. leguminosarum were investigated. Freeze-drying caused a marked decrease in viable cell numbers. Viable cell numbers of bacterial concentrates stored in peat decreased steadily from 1011-1012 cfu/g to 109 cfu/g or less during 26 weeks storage at room temperature or at 4°C. Cell concentrates stored in 40% glycerol at — 20°C maintained viable numbers higher than 1011 cfu/ml during a 76 week storage period.  相似文献   

6.
In this study the comparative destruction of municipal biosolids using thermal hydrolysis (140 or 165 °C) and wet oxidation (220 °C) was followed by biological degradation via mesophilic anaerobic digestion (36 °C). Wet oxidation (WO) destroyed more than 93% of the VSS, while thermal hydrolysis (TH) at 140 and 165 °C destroyed 9% and 22%, respectively. Combined TH and anaerobic digestion resulted in approximately 50% VSS destruction. The ultimate methane potential of the combined fractions from the thermal hydrolysis at 140 and 165 °C improved by 12-13% relative to the untreated control sample. Methane production from the WO material was 53% of the control yield and wholly attributable to soluble organic carbon in the liquid fraction, indicating that the WO destroyed all putrescible carbon from the solids fraction. Point sampling during the BMP assay revealed that methanogenic development, not solids hydrolysis, was the kinetic barrier during anaerobic digestion in this study.  相似文献   

7.
The effect of different natural zeolite concentrations on the anaerobic digestion of piggery waste was studied. Natural zeolite doses in the range 0.2-10 g/l of wastewater were used in batch experiments, which were carried out at temperatures between 27 degrees C and 30 degrees C. Total chemical oxygen demand (COD), total and volatile solids, ammonia and organic nitrogen, pH, total volatile fatty acids (TVFA), alkalinity (Alk) and accumulative methane production were determined during 30 days of digestion. The anaerobic digestion process was favored by the addition of natural zeolite at doses between 2 and 4 g/l and increasingly inhibited at doses beyond 6 g/l. A first-order kinetic model of COD removal was used to determine the apparent kinetic constants of the process. The kinetic constant values increased with the zeolite amount up to a concentration of 4 g/l. The values of the maximum accumulative methane production (Gm) increased until zeolite concentrations of 2-4 g/l. The addition of zeolite reduced the values of the TVFA/ Alk ratio while increasing the pH values, and these facts could contribute to the process failure at zeolite doses of 10 g/l.  相似文献   

8.
Strains of the Lactobacillus sakei/curvatus group, mainly non-slime-producing Lact. sakei, dominated the microbial flora of industrially manufactured taverna sausage, a traditional Greek cooked meat, stored at 4 degrees C and 10 degrees C in air, vacuum and 100% CO2. Atypical, arginine-positive and melibiose-negative strains of this group were isolated. The isolation frequency of Lact. sakei/curvatus from sausages stored anaerobically was as high as 92-96%, while other meat spoilage organisms were practically absent. Conversely, in air-stored sausages, leuconostocs, mainly Leuconostoc mesenteroides ssp. mesenteroides, had a considerable presence (14-21%), whereas Brochothrix thermosphacta, pseudomonads and Micrococcaceae grew, but failed to increase above 10(5) cfu g(-1) in all samples during storage. Only yeasts were able to compete against LAB and reached almost 10(7) cfu g(-1) after 30 d of aerobic storage at 10 degrees C. The great dominance (> 10(8) cfu g(-1)) of LAB caused a progressive decrease of pH and an increase of the concentration of L-lactate, D-lactate and acetate in all sausage packs. The growth of LAB and its associated chemical changes were more pronounced at 10 degrees C than 4 degrees C. At both storage temperatures, L-lactate and acetate increased more rapidly and to a higher concentration aerobically, unlike D-lactate, which formed in higher amounts anaerobically. Storage in air was the worst packaging method, resulting in greening and unpleasant off-odours associated with the high acetate content of the sausages. Carbon dioxide had no significant effect on extending shelf-life. The factors affecting the natural selection of Lact. sakei/curvatus in taverna sausage are discussed. Moreover, it was attempted to correlate the metabolic activity of this group with the physicochemical changes and the spoilage phenomena occurring in taverna sausage under the different storage conditions.  相似文献   

9.
Effect of feed to inoculum ratios on biogas yields of food and green wastes   总被引:1,自引:0,他引:1  
Biogas and methane yields of food and green wastes and their mixture were determined using batch anaerobic digesters at mesophilic (35 ± 2 °C) and thermophilic (50 ± 2 °C) temperatures. The mixture was composed of 50% food waste and 50% green waste, based on the volatile solids (VS) initially added to the reactors. The thermophilic digestion tests were performed with four different feed to inoculum (F/I) ratios (i.e., 1.6, 3.1, 4.0 and 5.0) and the mesophilic digestion was conducted at one F/I (3.1). The results showed that the F/I significantly affected the biogas production rate. At four F/Is tested, after 25 days of thermophilic digestion, the biogas yield was determined to be 778, 742, 784 and 396 mL/g VS for food waste, respectively; 631, 529, 524 and 407 mL/g VS for green waste, respectively; and 716, 613, 671 and 555 mL/g VS for the mixture, respectively. About 80% of the biogas production was obtained during the first 10 days of digestion. At the F/I of 3.1, the biogas and methane yields from mesophilic digestion of food waste, green waste and their mixture were lower than the yields obtained at thermophilic temperature. The biogas yields were 430, 372 and 358 mL/g VS, respectively, and the methane yields were 245, 206, and 185 mL/g VS, respectively.  相似文献   

10.
Characterization of food waste as feedstock for anaerobic digestion   总被引:13,自引:0,他引:13  
Food waste collected in the City of San Francisco, California, was characterized for its potential for use as a feedstock for anaerobic digestion processes. The daily and weekly variations of food waste composition over a two-month period were measured. The anaerobic digestibility and biogas and methane yields of the food waste were evaluated using batch anaerobic digestion tests performed at 50 degrees C. The daily average moisture content (MC) and the ratio of volatile solids to total solids (VS/TS) determined from a week-long sampling were 70% and 83%, respectively, while the weekly average MC and VS/TS were 74% and 87%, respectively. The nutrient content analysis showed that the food waste contained well balanced nutrients for anaerobic microorganisms. The methane yield was determined to be 348 and 435 mL/gVS, respectively, after 10 and 28 days of digestion. The average methane content of biogas was 73%. The average VS destruction was 81% at the end of the 28-day digestion test. The results of this study indicate that the food waste is a highly desirable substrate for anaerobic digesters with regards to its high biodegradability and methane yield.  相似文献   

11.
The feasibility of nearly-complete conversion of lignocellulosic waste (70% food crops, 20% faecal matter and 10% green algae) into biogas was investigated in the context of a life support project. The treatment comprised a series of processes, i.e., a mesophilic laboratory scale CSTR (continuously stirred tank reactor), an upflow biofilm reactor, a fiber liquefaction reactor employing the rumen bacterium Fibrobacter succinogenes and a hydrothermolysis system in near-critical water. By the one-stage CSTR, a biogas yield of 75% with a specific biogas production of 0.37 l biogas g(-1) VSS (volatile suspended solids) added at a RT (hydraulic retention time) of 20-25 d was obtained. Biogas yields could not be increased considerably at higher RT, indicating the depletion of readily available substrate after 25 d. The solids present in the CSTR-effluent were subsequently treated in two ways. Hydrothermal treatment (T approximately 310-350 degrees C, p approximately 240 bar) resulted in effective carbon liquefaction (50-60% without and 83% with carbon dioxide saturation) and complete sanitation of the residue. Application of the cellulolytic Fibrobacter succinogenes converted remaining cellulose contained in the CSTR-effluent into acetate and propionate mainly. Subsequent anaerobic digestion of the hydrothermolysis and the Fibrobacter hydrolysates allowed conversion of 48-60% and 30%, respectively. Thus, the total process yielded biogas corresponding with conversions up to 90% of the original organic matter. It appears that particularly mesophilic digestion in conjunction with hydrothermolysis at near-critical conditions offers interesting features for (nearly) complete and hygienic carbon and energy recovery from human waste in a bioregenerative life support context.  相似文献   

12.
The yeast Pichia anomala inhibits the spoilage mold Penicillium roqueforti in laboratory experiments with high-moisture wheat in malfunctioning airtight storage. The ability of P. anomala to prevent mold growth during 14 months of grain storage was evaluated in outdoor silos with different air permeabilities. Freshly harvested wheat in 160-kg portions was inoculated with 10(2) colony-forming units (cfu) g(-1) P. roqueforti, alone or together with 10(4) cfu g(-1) P. anomala. During the first month P. anomala increased to about 10(6) cfu g(-1) in the treated silos to reach 10(7) cfu g (-1) after 9 months. Naturally occurring P. anomala in the untreated silos increased from 10(2) to about 10(3) cfu g(-1) during the first month and reached the same level as the treated silos after 9 months. Oxygen levels were reduced below the detection limit within 1 day, while carbon dioxide levels increased to 80-90% during the first month. P. roqueforti did not grow in wheat treated with P. anomala, regardless of silo permeability, but had increased to 10(5) cfu g(-1) in the untreated silos after 14 months of storage.  相似文献   

13.
Vacuum-packaged poultry cooked sausages were pressure-treated at 500 MPa by combinations of time (5-45 min) and temperature (2-80 degrees C) and later stored at 6-8 degrees C for 12 we. Mesophile and psychrotrophe counts were determined 1 d, 3, 6, 9 and 12 we after treatment and compared with those of cooked sausages pasteurized at 80-85 degrees C for 40 min. Both pressure and heat treatments offer great possibilities for preservation. Sausages pressurized at 65 degrees C for 15 min showed mesophile numbers below 2 log cfu g(-1) throughout the chill storage. Pressurization, unlike heat treatment, causes a reversible bacterial stress. Thus, injured cells recovered during storage and, at 6 and 12 we, after a temperature abuse (room temperature for approx. 24 h), counts increased up to 6.5 - 7.5 log units. Psychrotrophes were more sensitive to both treatments; no growth was detected the day after (a lethality of more than 4 log units).  相似文献   

14.
AIMS: To investigate the survival of two animal isolates of Campylobacter jejuni on beef trimmings during freezing and frozen storage. METHODS AND RESULTS: Meat packs inoculated with 10(3) or 10(6) cfu g(-1) of either strain of C. jejuni were frozen to -18 degrees C, and sampled at regular intervals over 112 d storage to determine Campylobacter numbers and sublethal injury. For both strains and inoculation levels the numbers of Campylobacter decreased in the first 7 d of storage by ca. 0.6-2.2 log cfu g(-1) and then remaining constant over the remainder of the storage trial, with neither isolate exhibiting sublethal injury. CONCLUSIONS: Despite an initially significant decrease in number, these pathogens were able to survive standard freezing conditions in meat, but did not exhibit sublethal injury. SIGNIFICANCE AND IMPACT OF THE STUDY: Strict hygiene and/or the implementation of decontamination technologies are recommended as a means to assure the safety of meat with respect to this pathogen.  相似文献   

15.
In order to obtain basic design criteria for anaerobic digesters of swine manure, the effects of different digesting temperatures, temperature shocks and feed loads, on the biogas yields and methane content were evaluated. The digester temperatures were set at 25, 30 and 35 degrees C, with four feed loads of 5%, 10%, 20% and 40% (feed volume/digester volume). At a temperature of 30 degrees C, the methane yield was reduced by only 3% compared to 35 degrees C, while a 17.4% reduction was observed when the digestion was performed at 25 degrees C. Ultimate methane yields of 327, 389 and 403 mL CH(4)/g VS(added) were obtained at 25, 30 and 35 degrees C, respectively; with moderate feed loads from 5% to 20% (V/V). From the elemental analysis of swine manure, the theoretical biogas and methane yields at standard temperature and pressure were 1.12L biogas/g VS(destroyed) and 0.724 L CH(4)/g VS(destroyed), respectively. Also, the methane content increased with increasing digestion temperatures, but only to a small degree. Temperature shocks from 35 to 30 degrees C and again from 30 to 32 degrees C led to a decrease in the biogas production rate, but it rapidly resumed the value of the control reactor. In addition, no lasting damage was observed for the digestion performance, once it had recovered.  相似文献   

16.
Effects of the ensiling process, storage periods of up to 1 year and several chemical and biological silage additives on biomethanation were assessed for maize, sorghum, forage rye and triticale with the aim to identify optimised conditions for silage production of crops used as feedstock in biogas plants. Ensiling, prolonged storage and biological silage additives showed positive effects on methane yield of up to 11%. These could be attributed to increases in organic acids and alcohols during ensiling. A regression model including acetic acid, butyric acid and ethanol accounts for 75-96% of the variation in methane yield. Storage periods of up to 1 year for properly ensiled crops could be possible without losses in methane production, considering the increase in methane yield and the losses of dry matter during this period. However, taking storage losses into account silage additives showed little effect on methane production.  相似文献   

17.
A laboratory study was carried out to obtain data on the influence of biomass temperature on biostabilization-biodrying of municipal solid waste (initial moisture content of 410 g kg wet weight (w.w.)(-1)). Three trials were carried out at three different biomass temperatures, obtained by airflow rate control (A = 70 degrees C, B = 60 degrees C and C = 45 degrees C). Biodegradation and biodrying were inversely correlated: fast biodrying produced low biological stability and vice versa. The product obtained from process A was characterized by the highest degradation coefficient (166 g kg TS0(-1); TS0(-1) = initial total solid content) and lowest water loss (409 g kg W0(-1); W0 = initial water content). Due to the high reduction of easily degradable volatile solid content and preservation of water, process A produced the highest biological stability (dynamic respiration index, DRI = 141 mg O2 kg VS(-1); VS = volatile solids) but the lowest energy content (EC = 10,351 kJ kg w.w.(-1)). Conversely, process C which showed the highest water elimination (667 g kg W0(-1)), and lowest degradation rate (18 g kg TS0(-1)) was optimal for refuse-derived fuel (RDF) production having the highest energy content (EC = 14,056 kJ kg w.w.(-1)). Nevertheless, the low biological stability reached, due to preservation of degradable volatile solids, at the end of the process (DRI = 1055 mg O2 kg VS(-1)), indicated that the RDF should be used immediately, without storage. Trial B showed substantial agreement between low moisture content (losses of 665 g kg W0(-1)), high energy content (EC = 13,558 kJ kg w.w.(-1)) and good biological stability (DRI = 166 mg O2 kg VS(-1)), so that, in this case, the product could be used immediately for RDF or stored with minimum pollutant impact (odors, leaches and biogas production).  相似文献   

18.
Results of our conclusive study on urinary enzyme stability during sample storage are reported. We measured alanine aminopeptidase (AAP) and N-acetyl-beta-D-glucosaminidase (NAG) in morning urines from 9 healthy normal subjects immediately after collection and throughout a 1-year storage at -70 and -20 degrees C. AAP proved to be quite stable at -70 degrees C (99.2% of the basal value at the end of the year). NAG is partially preserved (84.1% of the basal value) at -70 degrees C, but significantly decreased (50.4%) at -20 degrees C.  相似文献   

19.
The covalent immobilization of bovine liver catalase (CAT) on to florisil via glutaraldehyde was investigated. Optimum immobilization pH and temperature were determined as pH 6.0, 10 degrees C respectively, while the amount of initial CAT per g of carrier and immobilization time was determined as 5 mg g(-1) and 120 min, respectively. The Vmax values for free and immobilized CAT were found to be 1.7 x 10(5) and 2.0 x 10(4) micromol H2O2 min(-1) mg protein(-1), respectively, whereas KM values were 33.3 mM and 1722.0 mM respectively. Operational stability was determined by using a stirred batch-type column reactor. Immobilized CAT retained about 40% of its initial activity after 50 uses. It showed higher storage stability than free CAT at 4 degrees C and 25 degrees C. Its storage stability increased with increasing relative humidity (RH) from 0 to 20% of the medium. The highest storage stability was obtained in 20% RH, however, further increase in RH from 40 to 100% significantly decreased the storage stability.  相似文献   

20.
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号