首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A real-time PCR-based method targeting the 18S rRNA gene was developed for the quantitative detection of Hartmannella vermiformis, a free-living amoeba which is a potential host for Legionella pneumophila in warm water systems and cooling towers. The detection specificity was validated using genomic DNA of the closely related amoeba Hartmannella abertawensis as a negative control and sequence analysis of amplified products from environmental samples. Real-time PCR detection of serially diluted DNA extracted from H. vermiformis was linear for microscopic cell counts between 1.14 x 10(-1) and 1.14 x 10(4) cells per PCR. The genome of H. vermiformis harbors multiple copies of the 18S rRNA gene, and an average number (with standard error) of 1,330 +/- 127 copies per cell was derived from real-time PCR calibration curves for cell suspensions and plasmid DNA. No significant differences were observed between the 18S rRNA gene copy numbers for trophozoites and cysts of strain ATCC 50237 or between the copy numbers for this strain and strain KWR-1. The developed method was applied to water samples (200 ml) collected from a variety of lakes and rivers serving as sources for drinking water production in The Netherlands. Detectable populations were found in 21 of the 28 samples, with concentrations ranging from 5 to 75 cells/liter. A high degree of similarity (> or =98%) was observed between sequences of clones originating from the different surface waters and between these clones and the reference strains. Hence, H. vermiformis, which is highly similar to strains serving as hosts for L. pneumophila, is a common component of the microbial community in fresh surface water.  相似文献   

2.
In China alone, an estimated 30 million people are at risk of schistosomiasis, caused by the Schistosoma japonicum parasite. Disease has re-emerged in several regions that had previously attained transmission control, reinforcing the need for active surveillance. The environmental stage of the parasite is known to exhibit high spatial and temporal variability, and current detection techniques rely on a sentinel mouse method which has serious limitations in obtaining data in both time and space. Here we describe a real-time PCR assay to quantitatively detect S. japonicum cercariae in laboratory samples and in natural water that has been spiked with known numbers of S. japonicum. Multiple primers were designed and assessed, and the best performing set, along with a TaqMan probe, was used to quantify S. japonicum. The resulting assay was selective, with no amplification detected for Schistosoma mansoni, Schistosoma haematobium, avian schistosomes nor organisms present in non-endemic surface water samples. Repeated samples containing various concentrations of S. japonicum cercariae showed that the real-time PCR method had a strong linear correlation (R2 = 0.921) with light microscopy counts, and the detection limit was below the DNA equivalent of half of one cercaria. Various cercarial concentrations spiked in 1 liter of natural water followed by a filtration process produced positive detection from 93% of samples analyzed. The real-time PCR method performed well quantifying the relative concentrations of various spiked samples, although the absolute concentration estimates exhibited high variance across replicated samples. Overall, the method has the potential to be applied to environmental water samples to produce a rapid, reliable assay for cercarial location in endemic areas.  相似文献   

3.
Contamination of hospital water systems with legionellae is a well-known cause of nosocomial legionellosis. We describe a new real-time LightCycler PCR assay for quantitative determination of legionellae in potable water samples. Primers that amplify both a 386-bp fragment of the 16S rRNA gene from Legionella spp. and a specifically cloned fragment of the phage lambda, added to each sample as an internal inhibitor control, were used. The amplified products were detected by use of a dual-color hybridization probe assay design and quantified with external standards composed of Legionella pneumophila genomic DNA. The PCR assay had a sensitivity of 1 fg of Legionella DNA (i.e., less than one Legionella organism) per assay and detected 44 Legionella species and serogroups. Seventy-seven water samples from three hospitals were investigated by PCR and culture. The rates of detection of legionellae were 98.7% (76 of 77) by the PCR assay and 70.1% (54 of 77) by culture; PCR inhibitors were detected in one sample. The amounts of legionellae calculated from the PCR results were associated with the CFU detected by culture (r = 0.57; P < 0.001), but PCR results were mostly higher than the culture results. Since L. pneumophila is the main cause of legionellosis, we further developed a quantitative L. pneumophila-specific PCR assay targeting the macrophage infectivity potentiator (mip) gene, which codes for an immunophilin of the FK506 binding protein family. All but one of the 16S rRNA gene PCR-positive water samples were also positive in the mip gene PCR, and the results of the two PCR assays were correlated. In conclusion, the newly developed Legionella genus-specific and L. pneumophila species-specific PCR assays proved to be valuable tools for investigation of Legionella contamination in potable water systems.  相似文献   

4.
The flora on the surface of smear-ripened cheeses is composed of numerous species of bacteria and yeasts that contribute to the production of the desired organoleptic properties. Due to the absence of selective media, it is very difficult to quantify cheese surface bacteria, and, consequently, the ecology of the cheese surface microflora has not been extensively investigated. We developed a SYBR green I real-time PCR method to quantify Corynebacterium casei, a major species of smear-ripened cheeses, using primers designed to target the 16S rRNA gene. It was possible to recover C. casei genomic DNA from the cheese matrix with nearly the same yield that C. casei genomic DNA is recovered from cells recovered by centrifugation from liquid cultures. Quantification was linear over a range from 105 to 1010 CFU per g of cheese. The specificity of the assay was demonstrated with DNA from species related to C. casei and from other bacteria and yeasts belonging to the cheese flora. Nine commercial cheeses were analyzed by real-time PCR, and six of them were found to contain more than 105 CFU equivalents of C. casei per g. In two of them, the proportion of C. casei in the total bacterial flora was nearly 40%. The presence of C. casei in these samples was further confirmed by single-strand conformation polymorphism analysis and by a combined approach consisting of plate counting and 16S rRNA gene sequencing. We concluded that SYBR green I real-time PCR may be used as a reliable species-specific method for quantification of bacteria from the surface of cheeses.  相似文献   

5.
We developed a real-time PCR assay for the quantitative detection of Clostridium tyrobutyricum, which has been identified as the major causal agent of late blowing in cheese. The assay was 100% specific, with an analytical sensitivity of 1 genome equivalent in 40% of the reactions. The quantification was linear (R2 > 0.9995) over a 5-log dynamic range, down to 10 genome equivalents, with a PCR efficiency of >0.946. With optimized detergent treatment and enzymatic pretreatment of the sample before centrifugation and nucleic acid extraction, the assay counted down to 300 C. tyrobutyricum spores, with a relative accuracy of 82.98 to 107.68, and detected as few as 25 spores in 25 ml of artificially contaminated raw or ultrahigh-temperature-treated whole milk.  相似文献   

6.
A quantitative method based on a real-time PCR assay to enumerate Listeria monocytogenes in biofilms was developed. The specificity for L. monocytogenes of primers targeting the listeriolysin gene was demonstrated using a SYBR Green I real-time PCR assay. The number of L. monocytogenes detected growing in biofilms was 6 × 102 CFU/cm2.  相似文献   

7.
SYNOPSIS. Carbohydrate utilization by 9 strains of Hartmannella castellanii has been studied by growing the amoebae in a chemically defined medium which did not support growth without an added energy source. Strains differed in the utilization of sucrose, raffinose, melibiose and mannitol. The strains which did not use sucrose for growth were shown to metabolize this sugar: 14CO2 was produced and 14C incorporated into TCA isoluble compounds when the amoebae were grown in the presence of radioactive sucrose.  相似文献   

8.
Cultures of 10 different bacteria were used to serve as food sources for axenically grown Acanthamoeba castellanii, Acanthamoeba polyphaga, and Hartmannella vermiformis. The nonpigmented enterobacteriaceae Escherichia coli K-12 and Klebsiella aerogenes appeared to be excellent feed to all three amoebae. Hardly any growth or ammonium production was observed in tests with Chromatium vinosum and Serratia marcescens, which share the presence of pigmented compounds. Distinct differences in net ammonium production were detected and were correlated to the amoebal growth yield. In general, growth of amoebae and ammonium production increased in the order A. polyphaga, A. castellanii, and H. vermiformis.  相似文献   

9.
枣疯病植原体实时荧光定量PCR检测方法的研究   总被引:2,自引:0,他引:2  
目的:建立枣疯病植原体拷贝数检测实时荧光定量PCR方法,为枣疯病植原体定量检测提供技术支持。方法:构建质粒标准品,设计实时荧光PCR探针引物,优化体系,建立标准曲线,并进行重复性验证。结果:制备了枣疯病植原体标准质粒,建立了稳定的质粒标准品检测体系(R2=0.998,检测限10拷贝,定量限100拷贝)。结论:实时荧光定量PCR检测方法重复性好,可用于枣疯病植原体的拷贝数检测,为枣疯病植原体检验检测和病害防治提供了技术支持。  相似文献   

10.
Free-living thermotolerant amoebae pose a significant health risk to people who soak and swim in habitats suitable for their growth, such as hot springs. In this survey of 23 different hot springs in Yellowstone and Grand Teton National Parks, we used PCR with primer sets specific for Naegleria to detect three sequence types that represent species not previously described, as well as a fourth sequence type identified as the pathogen Naegleria fowleri.  相似文献   

11.
A multiplex PCR was developed to simultaneously detect Naegleria fowleri and other Naegleria species in the environment. Multiplex PCR was also capable of identifying N. fowleri isolates with internal transcribed spacers of different sizes. In addition, restriction fragment length polymorphism analysis of the PCR product distinguished the main thermophilic Naegleria species from the sampling sites.  相似文献   

12.
We describe a quick and simple method for the quantitative detection of Listeria monocytogenes in meat products. This method is based on filtration, Chelex-100-based DNA purification, and real-time PCR. It can detect as few as 100 CFU/g and quantify as few as 1,000 CFU/g, with excellent accuracy compared to that of the plate count method. Therefore, it is a promising alternative for the detection of L. monocytogenes in meat products.  相似文献   

13.
Ceratocystis platani is the causal agent of canker stain of plane trees, a lethal disease able to kill mature trees in one or two successive growing seasons. The pathogen is a quarantine organism and has a negative impact on anthropogenic and natural populations of plane trees. Contaminated sawdust produced during pruning and sanitation fellings can contribute to disease spread. The goal of this study was to design a rapid, real-time quantitative PCR assay to detect a C. platani airborne inoculum. Airborne inoculum traps (AITs) were placed in an urban setting in the city of Florence, Italy, where the disease was present. Primers and TaqMan minor groove binder (MGB) probes were designed to target cerato-platanin (CP) and internal transcribed spacer 2 (ITS2) genes. The detection limits of the assay were 0.05 pg/μl and 2 fg/μl of fungal DNA for CP and ITS, respectively. Pathogen detection directly from AITs demonstrated specificity and high sensitivity for C. platani, detecting DNA concentrations as low as 1.2 × 10−2 to 1.4 × 10−2 pg/μl, corresponding to ∼10 conidia per ml. Airborne inoculum traps were able to detect the C. platani inoculum within 200 m of the closest symptomatic infected plane tree. The combination of airborne trapping and real-time quantitative PCR assay provides a rapid and sensitive method for the specific detection of a C. platani inoculum. This technique may be used to identify the period of highest risk of pathogen spread in a site, thus helping disease management.  相似文献   

14.
A new real-time PCR assay was developed and validated in combination with an immunomagnetic separation system for the quantitative determination of Legionella pneumophila in water samples. Primers that amplify simultaneously an 80-bp fragment of the dotA gene from L. pneumophila and a recombinant fragment including a specific sequence of the gyrB gene from Aeromonas hydrophila, added as an internal positive control, were used. The specificity, limit of detection, limit of quantification, repetitivity, reproducibility, and accuracy of the method were calculated, and the values obtained confirmed the applicability of the method for the quantitative detection of L. pneumophila. Moreover, the efficiency of immunomagnetic separation in the recovery of L. pneumophila from different kinds of water was evaluated. The recovery rates decreased as the water contamination increased (ranging from 59.9% for distilled water to 36% for cooling tower water), and the reproducibility also decreased in parallel to water complexity. The feasibility of the method was evaluated by cell culture and real-time PCR analysis of 60 samples in parallel. All the samples found to be positive by cell culture were also positive by real-time PCR, while only eight samples were found to be positive only by PCR. Finally, the correlation of both methods showed that the number of cells calculated by PCR was 20-fold higher than the culture values. In conclusion, the real-time PCR method combined with immunomagnetic separation provides a sensitive, specific, and accurate method for the rapid quantification of L. pneumophila in water samples. However, the recovery efficiency of immunomagnetic separation should be considered in complex samples.  相似文献   

15.
Canada geese (Branta canadensis) are prevalent in North America and may contribute to fecal pollution of water systems where they congregate. This work provides two novel real-time PCR assays (CGOF1-Bac and CGOF2-Bac) allowing for the specific and sensitive detection of Bacteroides 16S rRNA gene markers present within Canada goose feces.The Canada goose (Branta canadensis) is a prevalent waterfowl species in North America. The population density of Canada geese has doubled during the past 15 years, and the population was estimated to be close to 3 million in 2007 (4). Canada geese often congregate within urban settings, likely due to available water sources, predator-free grasslands, and readily available food supplied by humans (6). They are suspected to contribute to pollution of aquatic environments due to the large amounts of fecal matter that can be transported into the water. This can create a public health threat if the fecal droppings contain pathogenic microorganisms (6, 7, 9, 10, 12, 13, 19). Therefore, tracking transient fecal pollution of water due to fecal inputs from waterfowl, such as Canada geese, is of importance for protecting public health.PCR detection of host-specific 16S rRNA gene sequences from Bacteroidales of fecal origin has been described as a promising microbial source-tracking (MST) approach due to its rapidity and high specificity (2, 3). Recently, Lu et al. (15) characterized the fecal microbial community from Canada geese by constructing a 16S rRNA gene sequence database using primers designed to amplify all bacterial 16S rRNA gene sequences. The authors reported that the majority of the 16S rRNA gene sequences obtained were related to Clostridia or Bacilli and to a lesser degree Bacteroidetes, which represent possible targets for host-specific source-tracking assays.The main objective of this study was to identify novel Bacteroidales 16S rRNA gene sequences that are specific to Canada goose feces and design primers and TaqMan fluorescent probes for sensitive and specific quantification of Canada goose fecal contamination in water sources.Primers 32F and 708R from Bernhard and Field (2) were used to construct a Bacteroidales-specific 16S rRNA gene clone library from Canada goose fecal samples (n = 15) collected from grass lawns surrounding Wascana Lake (Regina, SK, Canada) in May 2009 (for a detailed protocol, see File S1 in the supplemental material). Two hundred eighty-eight clones were randomly selected and subjected to DNA sequencing (at the Plant Biotechnology Institute DNA Technologies Unit, Saskatoon, SK, Canada). Representative sequences of each operational taxonomic unit (OTU) were recovered using an approach similar to that described by Mieszkin et al. (16). Sequences that were less than 93% similar to 16S rRNA gene sequences from nontarget host species in GenBank were used in multiple alignments to identify regions of DNA sequence that were putatively goose specific. Subsequently, two TaqMan fluorescent probe sets (targeting markers designated CGOF1-Bac and CGOF2-Bac) were designed using the RealTimeDesign software provided by Biosearch Technologies (http://www.biosearchtech.com/). The newly designed primer and probe set for the CGOF1-Bac assay included CG1F (5′-GTAGGCCGTGTTTTAAGTCAGC-3′) and CG1R (5′-AGTTCCGCCTGCCTTGTCTA-3′) and a TaqMan probe (5′-6-carboxyfluorescein [FAM]-CCGTGCCGTTATACTGAGACACTTGAG-Black Hole Quencher 1 [BHQ-1]-3′), and the CGOF2-Bac assay had primers CG2F (5′-ACTCAGGGATAGCCTTTCGA-3′) and CG2R (5′-ACCGATGAATCTTTCTTTGTCTCC-3′) and a TaqMan probe (5′-FAM-AATACCTGATGCCTTTGTTTCCCTGCA-BHQ-1-3′). Oligonucleotide specificities for the Canada goose-associated Bacteroides 16S rRNA primers were verified through in silico analysis using BLASTN (1) and the probe match program of the Ribosomal Database Project (release 10) (5). Host specificity was further confirmed using DNA extracts from 6 raw human sewage samples from various geographical locations in Saskatchewan and 386 fecal samples originating from 17 different animal species in Saskatchewan, including samples from Canada geese (n = 101) (Table (Table1).1). An existing nested PCR assay for detecting Canada goose feces (15) (targeting genetic marker CG-Prev f5) (see Table S1 in the supplemental material) was also tested for specificity using the individual fecal and raw sewage samples (Table (Table1).1). All fecal DNA extracts were obtained from 0.25 g of fecal material by using the PowerSoil DNA extraction kit (Mo Bio Inc., Carlsbad, CA) (File S1 in the supplemental material provides details on the sample collection).

TABLE 1.

Specificities of the CGOF1-Bac, CGOF2-Bac, and CG-Prev f5 PCR assays for different species present in Saskatchewan, Canada
Host group or sample typeNo. of samplesNo. positive for Bacteroidales marker:
CGOF1-BacCGOF2-BacCG-Prev f5All-Bac
Individual human feces2500125
Raw human sewage60006
Cows4100041
Pigs4800148
Chickens3400834
Geese10158515995a
Gulls1600614
Pigeons2510222
Ducks1000010
Swans10001
Moose1000010
Deer
    White tailed1000010
    Mule1000010
    Fallow1000010
Caribou1000010
Bison1000010
Goats1000010
Horses1500015
Total392595177381
Open in a separate windowaThe 6 goose samples that tested negative for the All-Bac marker also tested negative for the three goose markers.The majority of the Canada goose feces analyzed in this study (94%; 95 of 101) carried the Bacteroidales order-specific genetic marker designated All-Bac, with a relatively high median concentration of 8.2 log10 copies g1 wet feces (Table (Table11 and Fig. Fig.1).1). The high prevalence and abundance of Bacteroidales in Canada goose feces suggested that detecting members of this order could be useful in identifying fecal contamination associated with Canada goose populations.Open in a separate windowFIG. 1.Concentrations of the Bacteroidales (All-Bac, CGOF1-Bac, and CGOF2-Bac) genetic markers in feces from various individual Canada geese.The composition of the Bacteroidales community in Canada goose feces (n = 15) was found to be relatively diverse since 52 OTUs (with a cutoff of 98% similarity) were identified among 211 nonchimeric 16S rRNA gene sequences. Phylogenetic analysis of the 52 OTUs (labeled CGOF1 to CGOF52) revealed that 43 (representing 84% of the 16S rRNA gene sequences) were Bacteroides like and that 9 (representing 16% of the 16S rRNA gene sequences) were likely to be members of the Prevotella-specific cluster (see Fig. S2 in the supplemental material). Similarly, Jeter et al. (11) reported that 75.7% of the Bacteroidales 16S rRNA clone library sequences generated from goose fecal samples were Bacteroides like. The majority of the Bacteroides- and Prevotella-like OTUs were dispersed among a wide range of previously characterized sequences from various hosts and did not occur in distinct clusters suitable for the design of Canada goose-associated real-time quantitative PCR (qPCR) assays (see Fig. S2 in the supplemental material). However, two single Bacteroides-like OTU sequences (CGOF1 and CGOF2) contained putative goose-specific DNA regions that were identified by in silico analysis (using BLASTN, the probe match program of the Ribosomal Database Project, and multiple alignment). The primers and probe for the CGOF1-Bac and CGOF2-Bac assays were designed with no mismatches to the clones CGOF1 and CGOF2, respectively.The CGOF2-Bac assay demonstrated no cross-amplification with fecal DNA from other host groups, while cross-amplification for the CGOF1-Bac assay was limited to one pigeon fecal sample (1 of 25, i.e., 4% of the samples) (Table (Table1).1). Since the abundance in the pigeon sample was low (3.3 log10 marker copies g1 feces) and detection occurred late in the qPCR (with a threshold cycle [CT] value of 37.1), it is unlikely that this false amplification would negatively impact the use of the assay as a tool for detection of Canada goose-specific fecal pollution in environmental samples. In comparison, the nested PCR CG-Prev f5 assay described by Lu and colleagues (15) demonstrated non-host-specific DNA amplification with fecal DNA samples from several animals, including samples from humans, pigeons, gulls, and agriculturally relevant pigs and chickens (Table (Table11).Both CGOF1-Bac and CGOF2-Bac assays showed limits of quantification (less than 10 copies of target DNA per reaction) similar to those of other host-specific Bacteroidales real-time qPCR assays (14, 16, 18). The sensitivities of the CGOF1-Bac and CGOF2-Bac assays were 57% (with 58 of 101 samples testing positive) and 50% (with 51 of 101 samples testing positive) for Canada goose feces, respectively (Table (Table1).1). A similar sensitivity of 58% (with 59 of 101 samples testing positive) was obtained using the CG-Prev f5 PCR assay. The combined use of the three assays increased the detection level to 72% (73 of 101) (Fig. (Fig.2).2). Importantly, all markers were detected within groups of Canada goose feces collected each month from May to September, indicating relative temporal stability of the markers. The CG-Prev f5 PCR assay is an end point assay, and therefore the abundance of the gene marker in Canada goose fecal samples could not be determined. However, development of the CGOF1-Bac and CGOF2-Bac qPCR approach allowed for the quantification of the host-specific CGOF1-Bac and CGOF2-Bac markers. In the feces of some individual Canada geese, the concentrations of CGOF1-Bac and CGOF2-Bac were high, reaching levels up to 8.8 and 7.9 log10 copies g1, respectively (Fig. (Fig.11).Open in a separate windowFIG. 2.Venn diagram for Canada goose fecal samples testing positive with the CGOF1-Bac, CGOF2-Bac, and/or CG-Prev f5 PCR assay. The number outside the circles indicates the number of Canada goose fecal samples for which none of the markers were detected.The potential of the Canada goose-specific Bacteroides qPCR assays to detect Canada goose fecal pollution in an environmental context was tested using water samples collected weekly during September to November 2009 from 8 shoreline sampling sites at Wascana Lake (see File S1 and Fig. S1 in the supplemental material). Wascana Lake is an urban lake, located in the center of Regina, that is routinely frequented by Canada geese. In brief, a single water sample of approximately 1 liter was taken from the surface water at each sampling site. Each water sample was analyzed for Escherichia coli enumeration using the Colilert-18/Quanti-Tray detection system (IDEXX Laboratories, Westbrook, ME) (8) and subjected to DNA extraction (with a PowerSoil DNA extraction kit [Mo Bio Inc., Carlsbad, CA]) for the detection of Bacteroidales 16S rRNA genetic markers using the Bacteroidales order-specific (All-Bac) qPCR assay (14), the two Canada goose-specific (CGOF1-Bac and CGOF2-Bac) qPCR assays developed in this study, and the human-specific (BacH) qPCR assay (17). All real-time and conventional PCR procedures as well as subsequent data analysis are described in the supplemental material and methods. The E. coli and All-Bac quantification data demonstrated that Wascana Lake was regularly subjected to some form of fecal pollution (Table (Table2).2). The All-Bac genetic marker was consistently detected in high concentrations (6 to 7 log10 copies 100 ml1) in all the water samples, while E. coli concentrations fluctuated according to the sampling dates and sites, ranging from 0 to a most probable number (MPN) of more than 2,000 100 ml1. High concentrations of E. coli were consistently observed when near-shore water experienced strong wave action under windy conditions or when dense communities of birds were present at a given site and time point.

TABLE 2.

Levels of E. coli and incidences of the Canada goose-specific (CGOF1-Bac and CGOF2-Bac), human-specific (BacH), and generic (All-Bac) Bacteroidales 16S rRNA markers at the different Wascana Lake sites sampled weeklya
SiteE. coli
All-Bac
CGOF1-Bac
CGOF2-Bac
BacH
No. of positive water samples/total no. of samples analyzed (%)Min level-max level (MPN 100 ml−1)Mean level (MPN 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzed (%)Min level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)No. of positive water samples/total no. of samples analyzedMin level-max level (log copies 100 ml−1)Mean level (log copies 100 ml−1)
W18/8 (100)6-19671.18/8 (100)6.2-8.16.96/8 (75)0-4.72.44/8 (50)0-41.72/80-3.71.7
W29/10 (90)0-1,12019410/10 (100)5.8-6.86.49/10 (90)0-3.72.68/10 (80)0-3.32.20/1000
W310/10 (100)6-1,55053410/10 (100)6-7.8710/10 (100)2.9-4.83.810/10 (100)2-4.53.40/1000
W410/10 (100)16-1,73252910/10 (100)6.4-7.6710/10 (100)3.2-4.63.910/10 (100)2.8-4.33.40/1000
W510/10 (100)2-2,42068710/10 (100)5.5-6.96.37/10 (70)0-3.21.75/10 (50)0-3.11.20/1000
W610/10 (100)3-1,99038910/10 (100)5.5-76.39/10 (90)0-4.32.86/10 (60)0-5.121/100-3.41.3
W77/7 (100)5-2,4204457/7 (100)5.7-7.876/7 (86)0-3.82.65/7 (71)0-4.42.42/70-5.12.8
W810/10 (100)17-98016010/10 (100)6.3-8.67.18/10 (80)0-4.62.87/10 (70)0-4.42.30/1000
Open in a separate windowaMin, minimum; max, maximum.The frequent detection of the genetic markers CGOF1-Bac (in 65 of 75 water samples [87%]), CGOF2-Bac (in 55 of 75 samples [73%]), and CG-Prev f5 (in 60 of 75 samples [79%]) and the infrequent detection of the human-specific Bacteroidales 16S rRNA gene marker BacH (17) (in 5 of 75 water samples [7%[) confirmed that Canada geese significantly contributed to the fecal pollution in Wascana Lake during the sampling period. Highest mean concentrations of both CGOF1-Bac and CGOF2-Bac markers were obtained at the sampling sites W3 (3.8 and 3.9 log10 copies 100 ml1) and W4 (3.4 log10 copies 100 ml1 for both), which are heavily frequented by Canada geese (Table (Table2),2), further confirming their significant contribution to fecal pollution at these particular sites. It is worth noting that concentrations of the CGOF1-Bac and CGOF2-Bac markers in water samples displayed a significant positive relationship with each other (correlation coefficient = 0.87; P < 0.0001), supporting the accuracy of both assays for identifying Canada goose-associated fecal pollution in freshwater.In conclusion, the CGOF1-Bac and CGOF2-Bac qPCR assays developed in this study are efficient tools for estimating freshwater fecal inputs from Canada goose populations. Preliminary results obtained during the course of the present study also confirmed that Canada geese can serve as reservoirs of Salmonella and Campylobacter species (see Fig. S3 in the supplemental material). Therefore, future work will investigate the cooccurence of these enteric pathogens with the Canada goose fecal markers in the environment.  相似文献   

16.
Strains of Clostridium perfringens are a frequent cause of food-borne disease and gas gangrene and are also associated with necrotic enteritis in chickens. To detect and quantify the levels of C. perfringens in the chicken gastrointestinal tract, a quantitative real-time PCR assay utilizing a fluorogenic, hydrolysis-type probe was developed and utilized to assay material retrieved from the broiler chicken cecum and ileum. Primers and probe were selected following an alignment of 16S rDNA sequences from members of cluster I of the genus Clostridium, and proved to be specific for C. perfringens. The assay could detect approximately 50 fg of C. perfringens genomic DNA and approximately 20 cells in pure culture. Measurements of the analytical sensitivity determined with spiked intestinal contents indicated that the consistent limit of detection with ileal samples was approximately 102 CFU/g of ileal material, but only about 104 CFU/g of cecal samples. The decreased sensitivity with the cecal samples was due to the presence of an unidentified chemical PCR inhibitor(s) in the cecal DNA purifications. The assay was utilized to rapidly detect and quantify C. perfringens levels in the gut tract of broiler chickens reared without supplementary growth-promoting antibiotics that manifested symptoms of necrotic enteritis. The results illustrated that quantitative real-time PCR correlates well with quantification via standard plate counts in samples taken from the ileal region of the gastrointestinal tract.  相似文献   

17.
A quantitative real-time PCR assay targeting the pcrA gene, encoding the catalytic subunit of perchlorate reductase, detected pcrA genes from perchlorate-reducing bacteria in three different genera and from soil microbial communities. Partial pcrA sequences indicated differences in the composition of perchlorate-reducing bacterial communities following exposure to different electron donors.  相似文献   

18.
目的:对目前最常用的检测微小RNA(miRNA)的茎环实时定量PCR法和PAP实时定量PCR法进行比较。方法:分别用茎环实时定量PCR法和PAP实时定量PCR法检测人乳腺癌细胞MCF-7中U6和23种miRNA的表达,利用定量PCR分析软件和琼脂糖凝胶电泳方法,将2种方法在引物设计难度、特异性与灵敏度,以及检测通量方面进行比较。结果:茎环法的特异性和灵敏度比PAP法高,但引物设计难度大,检测通量低;PAP法引物设计难度较低,检测通量较高,但特异性和灵敏度较差。结论:茎环法实时定量PCR适于有针对性地检测小规模miRNA,而PAP法则适于大规模miRNA筛选实验。  相似文献   

19.
Enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) outbreaks have revealed the need for improved analytical techniques for environmental samples. Ultrafiltration (UF) is increasingly recognized as an effective procedure for concentrating and recovering microbes from large volumes of water and treated wastewater. This study describes the application of hollow-fiber UF as the primary step for concentrating EHEC O157:H7 seeded into 40-liter samples of surface water, followed by an established culture/immunomagnetic-separation (IMS) method and a suite of real-time PCR assays. Three TaqMan assays were used to detect the stx1, stx2, and rfbE gene targets. The results from this study indicate that approximately 50 EHEC O157:H7 cells can be consistently recovered from a 40-liter surface water sample and detected by culture and real-time PCR. Centrifugation was investigated and shown to be a viable alternative to membrane filtration in the secondary culture/IMS step when water quality limits the volume of water that can be processed by a filter. Using multiple PCR assay sets to detect rfbE, stx1, and stx2 genes allowed for specific detection of EHEC O157:H7 from strains that do not possess all three genes. The reported sample collection and analysis procedure should be a sensitive and effective tool for detecting EHEC O157:H7 in response to outbreaks of disease associated with contaminated water.Several highly publicized outbreaks of gastrointestinal diseases caused by enterohemorrhagic Escherichia coli O157:H7 (EHEC O157:H7) have highlighted the threat this pathogen poses to public health (1, 2, 3, 14). Although the predominant mode of transmission to humans appears to be contaminated meat or meat products, there have been a number of outbreaks associated with contaminated water (18). Microbiological, epidemiological, and environmental studies have found an association between EHEC O157:H7 outbreaks and recreational water, drinking water, crop irrigation, and wastewater (1, 2, 14). These investigations have also revealed that enhanced rapid analytical techniques are needed to improve the speed and effectiveness of these types of investigations.Hollow-fiber ultrafiltration (UF) is a sampling technique that is emerging as an option for recovering diverse microbes from large-volume water samples (8, 9, 12, 13, 15). There have been reports of the successful application of UF for surface water as well as for other E. coli strains (8, 13), but additional data are needed to evaluate the robustness of UF for surface water and its ability to effectively concentrate EHEC O157:H7 in the presence of background microbes. The presence of competitive microbes has been shown to significantly alter the growth rate and maximal density of EHEC O157:H7 in broth culture (5).EHEC O157:H7 is generally detected in water samples by using membrane filtration, selective broth enrichment, immunomagnetic-separation (IMS), and isolation on selective agar culture plates, followed by confirmatory tests such as PCR or serological tests (6, 7). However, sensitive detection of EHEC O157:H7 in surface waters can be difficult due to high levels of competing background microorganisms (7). Membrane filtration can also limit the volume processed for turbid surface waters due to filter clogging. Centrifugation is an alternative to membrane filtration and has an advantage of not being subject to potential sample volume processing constraints for turbid water samples, so the technique could potentially increase the sensitivity of detection. A number of PCR assays have been developed for detection of EHEC O157:H7 that target a variety of virulence genes (17). Testing multiple gene targets is necessary for accurate detection because certain non-EHEC O157:H7 serotypes and other bacterial species are known to possess the target genes; therefore, the isolate cannot be determined to be EHEC O157:H7 unless multiple assays show a positive signal (19).The goals of this study were to evaluate (i) the effectiveness of a previously reported UF method (8) for application to recovering EHEC O157:H7, (ii) the effectiveness of the culture/IMS technique performed in conjunction with primary UF concentration, (iii) the effectiveness of centrifugation as an alternative for membrane filtration in the culture/IMS method, and (iv) the ability of three previously reported real-time PCR assays to accurately detect EHEC O157:H7 in surface waters (16, 17).  相似文献   

20.
PCR techniques in combination with conventional parasite concentration procedures have potential for the sensitive and specific detection of Toxoplasma gondii oocysts in water. Three real-time PCR assays based on the B1 gene and a 529-bp repetitive element were analyzed for the detection of T. gondii tachyzoites and oocysts. Lower sensitivity and specificity were obtained with the B1 gene-based PCR than with the 529-bp repeat-based PCR. New procedures for the real-time PCR detection of T. gondii oocysts in concentrates of surface water were developed and tested in conjunction with a method for the direct extraction of inhibitor-free DNA from water. This technique detected as few as one oocyst seeded to 0.5 ml of packed pellets from water samples concentrated by Envirocheck filters. Thus, this real-time PCR may provide a detection method alternative to the traditional mouse assay and microscopy.Toxoplasma gondii is a ubiquitous parasite found in all classes of warm-blooded vertebrates. Nearly one-third of humans have been exposed to this parasite (15). In immunocompetent adults, acute infection normally results in transient influenza-like symptoms, but in immunocompromised persons retinochoroiditis and encephalitis are more common. Infected individuals can retain the parasite as quiescent tissue cysts for long periods, but invasive infection can occur if the immune status of the infected person deteriorates (42). If women become infected during pregnancy, the parasite can cause abortion or seriously damage the fetus. The potential morbidity from the ingestion of oocysts of T. gondii and the organism''s low infectious dose are a great concern for public health. There are at least four reported waterborne outbreaks of toxoplasmosis (2, 3, 14, 44), and endemic toxoplasmosis in Brazil is associated with the consumption of water or ice contaminated with T. gondii oocysts (1, 23), demonstrating the potential for the waterborne transmission of this disease (15).There is no rapid detection method for T. gondii oocysts recovered from water or other environmental samples. Traditionally, the detection of protozoa in water required their concentration from large volumes of water by filtration or centrifugation, isolation from concentrated particulates by immunomagnetic separation (IMS) or other methods, and detection by immunofluorescence microscopy, the infection of cultured cells, biochemistry, animal infection tests, molecular techniques, or combinations of these (17, 58). For T. gondii oocysts there are no commercially available IMS techniques, no widely available immunofluorescent staining reagents, and no standardized cultivation protocols. The identification of oocysts from environmental samples has included differential floatation and mouse inoculation (27). Recently, IMS techniques have been developed for the isolation of T. gondii oocysts and sporocysts in water (16, 18). Both the oocyst and sporocyst IMS assays, however, had poor specificity, because antibodies cross-reacted with water debris and the sporocyst wall of Hammondia hammondi, Hammondia heydorni, and Neospora caninum (16).PCR is becoming a favored technique for the detection of T. gondii oocysts in water (32, 35, 36, 46, 49, 55) over the conventional mouse bioassay (27, 55), as it reduces the detection time from weeks to 1 to 2 days. Although they have been developed for the detection of T. gondii in clinical specimens (50), no real-time PCR assays have been adapted for the detection of oocysts in water samples, possibly because of expected high concentrations of PCR inhibitors and low numbers of T. gondii oocysts in environmental samples (55).There are several unresolved issues regarding the effectiveness of the PCR detection of T. gondii oocysts in water. The most readily available method for the isolation of T. gondii oocysts from water samples is flocculation or sucrose floatation prior to DNA extraction (35, 36, 49, 55). Because sucrose flotation and flocculation result in oocyst losses, the recovery rate of using these methods is poor. For DNA extraction, the phenol-chloroform method or QIAamp mini kit frequently is used (16, 35, 36, 46, 55). When oocysts are recovered from water either by the Environmental Protection Agency (EPA) information collection rule method (53) or EPA Method 1623 (54) without purification by IMS, neither the conventional phenol-chloroform DNA extraction nor the QIAamp mini kit is effective at removing PCR inhibitors (30, 55, 57).Recently, a method was used effectively in the analysis of Cryptosporidium oocysts in surface water, storm water, and wastewater samples (30). This method extracted DNA directly from water concentrates without pathogen IMS, differential flotation, or enrichment cultures, and it utilized a commercial DNA extraction kit, the FastDNA spin kit for soil, and a high concentration of nonacetylated bovine serum albumin in PCR. The FastDNA soil kit has a higher capacity for PCR inhibitor removal than several other commercial extraction kits designed for environmental samples. The use of nonacetylated bovine serum in the PCR neutralizes residual PCR inhibitors that are coextracted with the DNA (30).In the present study, the performance of two published LightCycler real-time PCR assays based on the multicopy B1 gene and 529-bp repetitive element (13, 45) and a newly developed LightCycler real-time PCR assay using a common primer set were analyzed for the detection of T. gondii, using pure DNA and DNA extracted by the aforementioned extraction method (30) from water sample concentrates seeded with known number of oocysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号