首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apurinic/apyrimidinic (AP) sites in cellular DNA are considered to be both cytotoxic and mutagenic, and can arise spontaneously or following exposure to DNA damaging agents. We have isolated cDNA clones which encode an endonuclease, designated HAP1 (human AP endonuclease 1), that catalyses the initial step in AP site repair in human cells. The predicted HAP1 protein has an Mr of 35,500 and shows striking sequence similarity (93% identity) to BAP 1, a bovine AP endonuclease enzyme. Significant sequence homology to two bacterial DNA repair enzymes, E. coli exonuclease III and S. pneumoniae ExoA proteins, and to Drosophila Rrp1 protein is also apparent. We have expressed the HAP1 cDNA in E. coli mutants lacking exonuclease III (xth), endonuclease IV (nfo), or both AP endonucleases. The HAP1 protein can substitute for exonuclease III, but not for endonuclease IV, in respect of some, but not all, DNA repair and mutagenesis functions. Moreover, a dut xth (ts) double mutant, which is nonviable at 42 degrees C due to an accumulation of unrepaired AP sites following excision of uracil from DNA, was rescued by expression of the HAP1 cDNA. These results indicate that AP endonucleases show remarkable conservation of both primary sequence and function. We would predict that the HAP1 protein is important in human cells for protection against the toxic and mutagenic effects of DNA damaging agents.  相似文献   

2.
Exposure of Escherichia coli strains deficient in molybdopterin biosynthesis (moa) to the purine base N-6-hydroxylaminopurine (HAP) is mutagenic and toxic. We show that moa mutants exposed to HAP also exhibit elevated mutagenesis, a hyperrecombination phenotype, and increased SOS induction. The E. coli rdgB gene encodes a protein homologous to a deoxyribonucleotide triphosphate pyrophosphatase from Methanococcus jannaschii that shows a preference for purine base analogs. moa rdgB mutants are extremely sensitive to killing by HAP and exhibit increased mutagenesis, recombination, and SOS induction upon HAP exposure. Disruption of the endonuclease V gene, nfi, rescues the HAP sensitivity displayed by moa and moa rdgB mutants and reduces the level of recombination and SOS induction, but it increases the level of mutagenesis. Our results suggest that endonuclease V incision of DNA containing HAP leads to increased recombination and SOS induction and even cell death. Double-strand break repair mutants display an increase in HAP sensitivity, which can be reversed by an nfi mutation. This suggests that cell killing may result from an increase in double-strand breaks generated when replication forks encounter endonuclease V-nicked DNA. We propose a pathway for the removal of HAP from purine pools, from deoxynucleotide triphosphate pools, and from DNA, and we suggest a general model for excluding purine base analogs from DNA. The system for HAP removal consists of a molybdoenzyme, thought to detoxify HAP, a deoxyribonucleotide triphosphate pyrophosphatase that removes noncanonical deoxyribonucleotide triphosphates from replication precursor pools, and an endonuclease that initiates the removal of HAP from DNA.  相似文献   

3.
Iu I Pavlov 《Genetika》1986,22(9):2235-2243
Yeast mutants hypersensitive to the mutagenic action of 6-N-hydroxylaminopurine (HAP) were obtained by EMS mutagenesis. One of the mutants segregated monogenically and possessed reduced capacity to utilize HAP as a purine source. A set of diploids suitable for parallel study of mutagenesis and induction of recombination, and differing in the trait of mutability after exposure to HAP ("hm" trait or HAP mutability), were constructed. It was shown that a weak recombinogenic effect of HAP is not enhanced in "hm" mutants when HAP mutability increases.  相似文献   

4.
The mutagenic potencies of 3 purine analogs were determined in the ad-3 forward-mutation test in growing cultures of heterokaryon 59 (H-59), a nucleotide excision repair-deficient (uvs-2/uvs-2) 2-component heterokaryon of Neurospora crassa. Two N-hydroxylaminopurines, 2-amino-6-N-hydroxylaminopurine (AHA) and 6-N-hydroxylaminopurine (HAP), were potent and strong mutagens, respectively, whereas 2-aminopurine (AP) was a moderate mutagen. Dose-response curves showed that AHA and HAP were about equally mutagenic at low doses but that AHA was more mutagenic than HAP at high doses. Comparison of these results in H-59 with our earlier results in heterokaryon 12 (H-12) of N. crassa, which is identical to H-59 except for being DNA-repair-proficient (uvs-2+/uvs-2+), shows that the defect in nucleotide excision repair due to uvs-2 has little or no effect on the mutagenic potencies of these 3 purine analogs. Therefore, the nucleotide excision-repair pathway in N. crassa that is deficient in H-59 does not appear to have a major role in the repair of pre-mutational lesions induced by these 3 purine analogs. On the other hand, based on the controls of these experiments, the frequency of spontaneous ad-3 mutants was 4 greater in H-59 than in H-12. This result suggests that the nucleotide excision-repair pathway in N. crassa that is inactivated by the uvs-2 mutation has a major role in the repair of lesions that would lead to spontaneous mutation at the ad-3+ region if they were not repaired.  相似文献   

5.
We have shown previously that Escherichia coli and Salmonella enterica serovar Typhimurium strains carrying a deletion of the uvrB-bio region are hypersensitive to the mutagenic and toxic action of 6-hydroxylaminopurine (HAP) and related base analogs. This sensitivity is not due to the uvrB excision repair defect associated with this deletion because a uvrB point mutation or a uvrA deficiency does not cause hypersensitivity. In the present work, we have investigated which gene(s) within the deleted region may be responsible for this effect. Using independent approaches, we isolated both a point mutation and a transposon insertion in the moeA gene, which is located in the region covered by the deletion, that conferred HAP sensitivity equal to that conferred by the uvrB-bio deletion. The moeAB operon provides one of a large number of genes responsible for biosynthesis of the molybdenum cofactor. Defects in other genes in the same pathway, such as moa or mod, also lead to the same HAP-hypersensitive phenotype. We propose that the molybdenum cofactor is required as a cofactor for an as yet unidentified enzyme (or enzymes) that acts to inactivate HAP and other related compounds.  相似文献   

6.
The generation of reactive oxygen species in the cell provokes, among other lesions, the formation of 8-oxo-7,8-dihydroguanine (8-oxoG) in DNA. Due to mispairing with adenine during replication, 8-oxoG is highly mutagenic. To minimise the mutagenic potential of this oxidised purine, human cells have a specific 8-oxoG DNA glycosylase/AP lyase (hOGG1) that initiates the base excision repair (BER) of 8-oxoG. We show here that in vitro this first enzyme of the BER pathway is relatively inefficient because of a high affinity for the product of the reaction it catalyses (half-life of the complex is >2 h), leading to a lack of hOGG1 turnover. However, the glycosylase activity of hOGG1 is stimulated by the major human AP endonuclease, HAP1 (APE1), the enzyme that performs the subsequent step in BER, as well as by a catalytically inactive mutant (HAP1-D210N). In the presence of HAP1, the AP sites generated by the hOGG1 DNA glycosylase can be occupied by the endonuclease, avoiding the re-association of hOGG1. Moreover, the glycosylase has a higher affinity for a non-cleaved AP site than for the cleaved DNA product generated by HAP1. This would shift the equilibrium towards the free glycosylase, making it available to initiate new catalytic cycles. In contrast, HAP1 does not affect the AP lyase activity of hOGG1. This stimulation of only the hOGG1 glycosylase reaction accentuates the uncoupling of its glycosylase and AP lyase activities. These data indicate that, in the presence of HAP1, the BER of 8-oxoG residues can be highly efficient by bypassing the AP lyase activity of hOGG1 and thus excluding a potentially rate limiting step.  相似文献   

7.
8.
Mutagenicity, toxicity and repair of DNA base damage induced by oxidation   总被引:1,自引:0,他引:1  
  相似文献   

9.
The interaction of human heat shock protein 70 (HSP70) with human apurinic/apyrimidinic endonuclease (HAP1) was demonstrated by coimmunoprecipitation. A combination of HSP70 and HAP1 also caused a shift in the electrophoretic mobility of a DNA fragment containing an apurinic/apyrimidinic site. The functional consequence of the HSP70/HAP1 interaction was a 10-100-fold enhancement of endonuclease activity at abasic sites. The physical and functional interaction between HSP70 and HAP1 did not require the addition of ATP. The association of HSP70 and a key base excision repair enzyme suggests a role for heat shock proteins in promoting base excision repair. These findings provide a possible mechanism by which HSP70 protects cells against oxidative stress.  相似文献   

10.
L G Dubinina  Z I Kurashova 《Genetika》1986,22(10):2444-2451
The mutagenic effect of mitomycin C (MC) has been shown in the S phase of Crepic capillaris cells. The repair ability of MC-induced DNA lesions proves exceedingly high, due to post-replicative and excision repair processes. In the experiments with MC-pretreatment of Crepic capillaris cells, nonmutagenic concentration of 1 microgram/ml provides inducible repair system--"adaptive response", which considerably decreases the levels of mutagenesis induced by MC at concentrations of 10, 20 and 40 micrograms/ml. Under adaptive response, the action of methyltransferase is possible.  相似文献   

11.
The effect of 8-oxo-2'-deoxyguanosine (8-oxo-dG) (8-hydroxydeoxyguanosine)--a DNA base damage product induced by oxygen radicals and irradiation on survival and mutagenesis in Escherichia coli strains C-600 and P-687 was investigated. Survival and mutagenesis curves, in dependence of 8-oxo-dG concentrations in the medium, ranging from 0.2 through 10 mM, were obtained. Bacterial survival at all 8-oxo-dG concentrations tested was shown to be no lesser than in the control. The mutagenic effect of 8-oxo-dG was tested by frequency of reversions in the absence of leucine and threonine. A non-linear dependence of mutagenesis on the concentration was observed. Linear increase in the amount of revertants took place at concentrations of 8-oxo-dG lower than 1 mM, and being kept constant at higher concentrations. Induction of SOS repair under the action of 8-oxo-dG in E. coli PQ37 strain was estimated according to alteration of activity of beta-galactosidase in the SOS chromotest. Weak induction of the SOS response was observed within the wide range of 8-oxo-dG concentration values, which points to a lack of genotoxicity and independence of mutagenesis on SOS repair.  相似文献   

12.
Class switch recombination, gene conversion, and somatic hypermutation that diversify rearranged Ig genes to produce various classes of high affinity Abs are dependent on the enzyme activation-induced cytosine deaminase (AID). Evidence suggests that somatic hypermutation is due to error-prone DNA repair that is initiated by AID-mediated deamination of cytosine in DNA, whereas the mechanism by which AID controls recombination remains to be elucidated. In this study, using a yeast model system, we have observed AID-dependent recombination. Expression of human AID in wild-type yeast is mutagenic for G-C to A-T transitions, and as expected, this mutagenesis is increased upon inactivation of uracil-DNA glycosylase. AID expression also strongly induces intragenic mitotic recombination, but only in a strain possessing uracil-DNA glycosylase. Thus, the initial step of base excision repair is required for AID-dependent recombination and is a branch point for either hypermutagenesis or recombination.  相似文献   

13.
Retrons are genetic elements that encode multicopy single-stranded DNAs called msONAs. They are clonally distributed in Escherichia coli and retrons in different clones produce DNAs with different nucleotide sequences. msDNAs consist of an RNA molecule covalently linked to a single-stranded DNA molecule. The latter contains an inverted repeat, resulting in a stem-loop structure. In two retrons, Ec83 and Ec78, the DNA is cleaved off from the RNA. All known retrons except Ec78, have one or more mismatched base pairs in the stem-loop structure. We found that two retrons, Ec86 and Ec83, when present in high copy numbers are mutagenic. The ratios of mutation frequencies observed in Lac indicator strains were similar to the ratios observed for a mutant defective in mismatch repair. It is known that some proteins required for mismatch repair bind to mismatched base pairs prior to carrying out repair. The similarity in the mutation frequency ratios suggested that the mutagenesis caused by msDNAs of retrons Ec86 and Ec83 might be due to seqestration of a mismatch repair protein by msDNA. Strong support for this interpretation was obtained from the finding that the msDNA produced by retron Ec78 is not mutagenic.  相似文献   

14.
J Favor 《Mutation research》1999,428(1-2):227-236
Mouse germ cell specific locus mutagenesis data and a molecular characterization of mutant alleles have been reviewed to arrive at an understanding of the mechanism of mutation induction in mammals. (a) The spermatogenic stage specificity for the sensitivity to mutation induction by 20 chemical mutagens is considered. (b) The effects of a saturable repair process and its recovery over time are examined for the mutagenic efficiency of ethylnitrosourea. (c) The mutagenic events following methylnitrosourea and chlorambucil are shown to be mainly deletions. In contrast the mutations recovered after ethylnitrosourea treatment are almost exclusively base pair substitutions. (d) It is emphasized that to date very few specific locus experiments have been designed to test for mutagenic events outside the interval stem cell spermatogonia-mature spermatozoa. A specific locus mutation has recently been shown to be due to loss of heterozygosity via mitotic recombination in an early zygote stage and suggests a broader range of possible mechanisms of mutation when these stages are considered. (e) With the cloning of all 7 marker loci mutation analysis at the molecular level will allow a more direct assessment of the mutation process in future studies.  相似文献   

15.
The adaptive response is an inducible DNA-repair system which diminishes the mutagenic and toxic effects of alkylating agents. A mutant of E. coli constitutive for adaptative repair, BS21, has been isolated. A spontaneous revertant of this strain, BS23, lacks the adaptive response. When compared to its wild-type parent, mutant BS21 showed an increased resistance to the killing and mutagenic effects of a compound which is not a classical alkylating agent, the antitumor drug cis-diamminedichloroplatinum(II) (cis-DDP). However, this resistance to cis-DDP was also found in strain BS23 which lacks the adaptive response. cis-DDP bound to the DNA of all 3 strains with the same efficiency. In addition, we have investigated the effect of UV radiation and we failed to observe a significant difference in the survival and mutagenesis of these strains. This evidence suggests that the resistance of BS21 and BS23 strains to cis-DDP is not a consequence of the adaptive response or increased excision repair.  相似文献   

16.
We used the LYS2 gene mutational system to study mutation specificity of the base analog 6-N-hydroxylaminopurine (HAP) in yeast. We characterized phenotypes of mutations using codon-specific nonsense suppressors and the test employing inactivation of the release factor Sup35 due to overexpression and formation of prion-like derivative [PSI]. We have shown that HAP induces predominantly nonsense mutations. While the tests using codon-specific nonsense-suppressors allowed to identify only about 50% of nonsense-mutations, all the nonsense-mutations were identified in the test with defective Sup35. We determined and analyzed the spectrum of HAP-induced nucleotide changes in two regions of the gene. HAP induces predominantly GC-->AT transitions in a hotspots of a central position of trinucleotide GGA or AGG. Directionality of these transitions is consistent with the idea that initial dHAPMP incorporation in the leading strand is more genetically dangerous than in lagging DNA strand. We revealed a specific context inhibitory for HAP mutagenesis, a "T" in -1 position to mutation site.  相似文献   

17.
2-Aminopurine, 2-amino-N6-hydroxyadenine and N6-hydroxyaminopurine were compared in suspension test with growing and non-growing cells for their mutagenic and recombinogenic (reciprocal and nonreciprocal) activities in Saccharomyces cerevisiae strain D7. Ethyl methanesulfonate was used as a positive control. No increases above spontaneous frequencies were observed when non- growing cells were treated with the base analogues although EMS induced concentration- dependent responses at all 3 genetic end-points. When growing cells were treated, HAP was recombinogenic and mutagenic and AHA was mutagenic, but only weakly recombinogenic. HAP induced comparable numbers of revertants at much lower concentrations than AHA. 2AP failed to induce any detectable response even at concentrations as high as 2400 μg/ml.  相似文献   

18.
The molecular mechanism of induction of mutations by 2-aminopurine (AP) was studied by an ab initio molecular orbital method. Cytosine (C) is converted to its disfavored imino tautomer more easily than AP, judging from the calculated total energies of the bases and the base analogue. This suggests that a stable AP:C base mispair via two hydrogen bonds can be formed with the imino tautomer of C. These results stress the importance of the imino form of C in AP-induced mutagenesis and support the 'trigger mechanism', in which formation of one hydrogen bond between AP and C is considered to stimulate the tautomeric shift of AP or C. The calculated relative stabilities of various base pairs and mispairs were in good agreement with experimental findings.  相似文献   

19.
Acrolein is produced extensively in the environment by incomplete combustion of organic materials, and it arises endogenously in humans as a metabolic by-product. Acrolein reacts with DNA at guanine residues to form the exocyclic adduct, 8-hydroxypropanodeoxyguanosine (HOPdG). Acrolein is mutagenic, and a correlation exists between HOPdG levels in Salmonella typhimurium treated with acrolein and a resultant increase in mutation frequency. Site-specifically modified oligonucleotides were used to explore the mutagenic potential of HOPdG in Escherichia coli strains that were either wild-type for repair or deficient in nucleotide excision repair or base excision repair. Oligonucleotides modified with HOPdG were inserted into double-stranded bacteriophage vectors using the gapped-duplex method or into single-stranded bacteriophage vectors and transformed into SOS-induced E. coli strains. Progeny phage were analyzed by oligonucleotide hybridization to establish the mutation frequency and the spectrum of mutations produced by HOPdG. The correct base, dCMP, was incorporated opposite HOPdG in all circumstances tested. In contrast, in vitro lesion bypass studies showed that HOPdG causes misincorporation opposite the modified base and is a block to replication. The combination of these studies showed that HOPdG is not miscoding in vivo at the level of sensitivity of these site-specific mutagenesis assays.  相似文献   

20.
The genotoxicity of N-nitrosodipropylamine, 8 of its oxidized derivatives and N-nitroso-2,6-dimethylmorpholine was examined in the hepatocyte primary culture (HPC)/DNA repair test. Nine N-nitrosamines which are known to be carcinogenic and mutagenic were clearly positive in the HPC/DNA-repair test. N-Nitroso(2,3-dihydroxypropyl) (2-hydroxypropyl)amine did not elicit DNA repair, but showed a borderline mutagenic response in the Salmonella/microsome test. Thus, the HPC/DNA-repair test displays a comparable capacity to the bacterial mutagenesis test for detecting the genotoxic effects of this class of carcinogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号