首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.  相似文献   

2.
We have evaluated the specificity of Cre recombinase activity in transgenic mice expressing Cre under the control of the synatonemal complex protein 1 (Sycp1) gene promoter. Sycp1Cre mice were crossed with the ROSA26 reporter line R26R, to monitor the male germ cell stage-specificity of Cre activity as well as to verify that Cre was not active previously during development of other tissues. X-gal staining detected Cre-mediated recombination only in testis. Detailed histological examination indicated that weak Cre-mediated recombination occurred as early as in zygotene spermatocytes at stage XI of the cycle of the seminiferous epithelium. Robust expression of X-gal was detected in early to mid-late spermatocytes at stages V-VIII. We conclude that this transgenic line is a powerful tool for deleting genes of interest specifically during male meiosis.  相似文献   

3.
Previous reports described the rat synapsin 1 promoter as primarily neuron selective. However, ectopic expression of a transgene under the rat synapsin 1 promoter was also detected in testis from some transgenic mouse lines. Here we investigate which cells within the testis express a transgene consisting of the rat synapsin 1 promoter fused with luciferase. Synapsin 1-luciferase expression vectors were introduced into HeLa cells, into TM3 cells derived from mouse testicular Leydig cells, and into one-cell embryos to make transgenic mice. Indirect immunofluorescence suggests that nontransfected TM3 cells do not express endogenous synapsin 1. TM3 stable transfectants, however, expressed luciferase under the direction of the synapsin 1 promoter, in both promoter orientations. HeLa cells displayed only low levels of activity. Transgenic mice carrying the synapsin 1-luciferase construct displayed high levels of luciferase activity in the brain, spinal cord, and testis. Enriched populations of prepuberal types A and B spermatogonia and adult Leydig cells, pachytene spermatocytes, and round spermatids prepared from transgenic mice all displayed substantial luciferase activity. Thus, the rat synapsin 1 promoter can mediate reporter gene expression in neurons and testicular cell types.  相似文献   

4.
5.
The quality control of sperm is critical for efficient reproduction. In germ cells, cell death involves different processes to those in somatic cells, and in many cases, the trigger to induce cell death in deficient germ cells is still unclear. It is known that the fatty acid composition of sperm is related to fertility. Composition of the fatty acid of germ cells changes dynamically during spermatogenesis, and fatty acid binding protein (FABP) may be involved in these changes. In this study, we developed transgenic mice with a testicular germ-cell-specific FABP (PERF15) transgene, whose expression was controlled by the Cre-LoxP site-specific recombination system. We also developed transgenic mice with the Cre gene under the control of the spermatocyte specific Pgk2 promoter. In double transgenic mice, following Cre-mediated recombination of the PERF15 containing transgene, PERF15 was strongly overexpressed. Its overexpression induced multinucleate symplasts to form, indicating programmed germ cell death occurred at the elongated spermatid stage. As a result, sperm harboring the transgene were significantly decreased, but the surviving sperm demonstrated higher fertility than natural sperm. Therefore, we conclude that PERF15 associate with the direction of germ cell fates and preserve the quality of sperm.  相似文献   

6.
The cytoplasmic β-actin promoter, commonly used as strong promoter in many gene regulation studies, produces a pattern of male germ cell and preimplantation, embryonic gene expression in transgenic mice. In seven of ten expressing transgenic lines, a chicken β-actin-lacZ fusion gene was expressed in adult testes. In addition, five of the ten lines demonstrated transgene expression in the preimplantation mouse embryo. This is the first example of transgene expression at the stages of both gamete and early embryo. Overall, the site or transgene integration appeared to influence transgene expression in adult tissues. © 1993 Wiley-Liss, Inc.  相似文献   

7.
8.
9.
10.
In the present study, we describe a novel mouse model for inducible germ cell ablation. The mice express herpes simplex virus thymidine kinase (HSV-TK) under the inhibin-alpha subunit promoter (Inhalpha). When adult transgenic (TG) mice were treated with famciclovir (FCV) for 4 wk, their spermatogenesis was totally abolished, with only Sertoli cells and few spermatids remaining in the seminiferous tubules. However, testicular steroidogenesis was not affected. Shorter treatment periods allowed us to follow up the progression of germ cell death: After 3 days, spermatogonia and preleptotene spermatocytes were no longer present. After a 1-wk treatment, spermatogonia, preleptotene, and zygotene spermatocytes were missing and the amount of pachytene spermatocytes was decreased. After a 2-wk treatment, round and elongating spermatids were present. During the third week, round spermatids were lost and, finally, after a 4-wk treatment, only Sertoli cells and few spermatids were present. Interestingly, the transgene is detected in Leydig and Sertoli cells but not in spermatogonia. This suggests that FCV is phosphorylated in Sertoli cells, and thereafter, leaks to neighboring spermatogonia, apparently through cell-cell junctions present, enabling trafficking of phosphorylated FCV. Because of the many mitotic divisions they pass through, the spermatogonia are very sensitive to toxins interfering with DNA replication, while nondividing Sertoli cells are protected. Using transillumination-assisted microdissection of the seminiferous tubules, the gene-expression patterns analyzed corresponded closely to the histologically observed progression of cell death. Thus, the model offers a new tool for studies on germ cell-Sertoli cell interactions by accurate alteration of the germ cell composition in seminiferous tubules.  相似文献   

11.
We have generated a transgenic mouse line that expresses improved Cre recombinase (iCre) under the control of the testis‐expressed gene 101 (Tex101) promoter. This transgenic mouse line was named Tex101‐iCre. Using the floxed ROSA reporter mice, we found that robust Cre recombinase activity was detected in postnatal testes with weak or no activity in other tissues. Within the testis, Cre recombinase was active in spermatogenic cells as early as the prospermatogonia stage at day 1 after birth. In 30‐ and 60‐day‐old mice, positive Cre recombinase activity was detected not only in prospermatogonia but also in spermatogenic cells at later stages of spermatogenesis. There was little or no Cre activity in interstitial cells. Breeding wild‐type females with homozygous floxed fibroblast growth factor receptor 2 (Fgfr2) males carrying the Tex101‐iCre transgene did not produce any progeny with the floxed Fgfr2 allele. All the progeny inherited a recombined Fgfr2 allele, indicating that complete deletion of the floxed Fgfr2 allele by Tex101‐iCre can be achieved in the male germline. Furthermore, FGFR2 protein was not detected in spermatocytes and spermatids of adult Fgfr2fl/fl;Tex101‐iCre mice. Taken together, our results suggest that the Tex101‐iCre mouse line allows the inactivation of a floxed gene in spermatogenic cells in adult mice, which will facilitate the functional characterization of genes in normal spermatogenesis and male fertility. genesis 48:717–722, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Sry (sex-determining region on Y chromosome) is expressed in the undifferentiated, bipotential genital ridges of mammalian XY fetuses. The expression of Sry initiates testis development, but the lineage of Sry-expressing cells is unclear. In this study, double-transgenic mice were analyzed using the Cre/loxP system. Cre under the control of the Sry promoter was expressed in the fetal gonads of transgenic mice similarly to endogenous Sry. The Sry/Cre-transgenic mice were crossed with CAG(cytomegalovirus immediate-early enhancer, chicken beta-actin promoter and fusion intron of chicken beta-actin and rabbit beta-globin)/loxP/CAT/loxP/LacZ-transgenic mice, in which the transgene expressed beta-galactosidase after a Cre-mediated recombination event. Sertoli cells, germ cells of testes and granulosa cells of ovaries of double-transgenic mice stained positive with X-gal. Cre expression was detected in germ cells and peritubular/Sertoli cells in adult testes. It is not clear whether beta-galactosidase expression in the Sertoli cells of the testes occurred as a result of Cre expression in the adult or in the fetal gonads. These analyses indicate that cells expressing Sry-inducing factors in female fetal gonads become granulosa cells.  相似文献   

13.
The male germ line in mammals is composed of self-renewing cells, spermatogonia, the meiotic spermatocytes and spermiogenic spermatids. Identification of these cell stages in vitro has been problematic. Transgenic animals expressing a marker gene with a promoter specific to certain cell stages in the testis would be a useful approach to identifying these cells in a viable state. Towards this end, we have produced transgenic pigs expressing mitochondrial localized enhanced yellow fluorescent protein (EYFP-mito) under control of the germ cell specific Stimulated by Retinoic Acid 8 (Stra8) promoter. Stra8 has been shown to be expressed in pre-meiotic germ cells of mice. Twelve clones harboring the Stra8-EYFP-mito transgene were produced. Analysis by Western blot indicated that expression of the transgene was limited to testicular tissue in the transgenic pigs. Single cells and seminiferous tubules were cultured in vitro and subsequently examined with epifluorescent microscopy. Expression of EYFP was noted in cells cultured for up to 5 days. Both EYFP-mito and STRA8 antibodies were shown to bind and co-localize in seminiferous tubule cells in whole mounts and in histological sections. EYFP-mito in the transgenic pigs co-localized with the endogenous stem cell marker, NANOG. Expression of the Stra8-EYFP transgene in spermatogenic cells indicates that these pigs will be useful by providing labelled cells for use in such technologies such as germ cell transplantation and in vitro spermatogenic studies.  相似文献   

14.
The success of Cre-mediated conditional gene targeting depends on the specificity of Cre recombinase expression in Cre-transgenic mouse lines. As a tool to evaluate the specificity of Cre expression, we developed a reporter transgenic mouse strain that expresses enhanced green fluorescent protein (EGFP) upon Cre-mediated recombination. We demonstrate that the progeny resulting from a cross between this reporter strain and a transgenic strain expressing Cre in zygotes show ubiquitous EGFP fluorescence. This reporter strain should be useful to monitor the Cre expression directed by various promoters in transgenic mice, including mice in which Cre is expressed transiently during embryogenesis under a developmentally regulated promoter.  相似文献   

15.
With the intention to modulate gene expression in vascular mural cells of remodeling vessels, we generated and characterized transgenic mouse lines with Cre recombinase under the control of the platelet-derived growth factor receptor-β promoter, referred to as Tg(Pdgfrb-Cre)(35Vli) . Transgenic mice were crossed with the Gt(ROSA)26Sor(tm1Sor) strain and examined for Cre activation by β-galactosidase activity, which was compared with endogenous Pdgfrb expression. In addition, Pdgfrb-Cre mice were used to drive expression of a conditional myc-tagged Cthrc1 transgene. There was good overlap of β-galactosidase activity with endogenous Pdgfrb immunoreactivity. However, dedifferentiation of vascular mural cells induced by carotid artery ligation revealed a dramatic discrepancy between ROSA26 reporter activity and Pdgfrb promoter driven Cre dependent myc-tagged Cthrc1 transgene expression. Our studies demonstrate the capability of the Pdgfrb-Cre mouse to drive conditional transgene expression as a result of prior Cre-mediated recombination in tissues known to express endogenous Pdgfrb. In addition, the study shows that ROSA26 promoter driven reporter mice are not suitable for lineage marking of smooth muscle in remodeling blood vessels.  相似文献   

16.
Cre-mediated gene deletion in the mammary gland.   总被引:22,自引:1,他引:21       下载免费PDF全文
To delete genes specifically from mammary tissue using the Cre-lox system, we have established transgenic mice expressing Cre recombinase under control of the WAP gene promoter and the MMTV LTR. Cre activity in these mice was evaluated by three criteria. First, the tissue distribution of Cre mRNA was analyzed. Second, an adenovirus carrying a reporter gene was used to determine expression at the level of single cells. Third, tissue specificity of Cre activity was determined in a mouse strain carrying a reporter gene. In adult MMTV-Cre mice expression of the transgene was confined to striated ductal cells of the salivary gland and mammary epithelial cells in virgin and lactating mice. Expression of WAP-Cre was only detected in alveolar epithelial cells of mammary tissue during lactation. Analysis of transgenic mice carrying both the MMTV-Cre and the reporter transgenes revealed recombination in every tissue. In contrast, recombination mediated by Cre under control of the WAP gene promoter was largely restricted to the mammary gland but occasionally observed in the brain. These results show that transgenic mice with WAP-Cre but not MMTV-Cre can be used as a powerful tool to study gene function in development and tumorigenesis in the mammary gland.  相似文献   

17.
Tissue-specific gene ablation is accomplished by combining conventional gene targeting approaches with site-specific recombinases such as the Cre/loxP system. Despite the use of a cardiac-specific rat myosin light chain II promoter, our transgenic line (CRE3) had little or no Cre expression in the heart; however, strong Cre activity was detected in the brain as early as gestation day E11.5. This was determined by several methods including crossing our mouse line with a lacZ indicator line (ROSA26). Transgenic Cre, in this mouse line, mediated DNA recombination of loxP-flanked genes selectively in neurons throughout the gray matter of the brain, cerebellum, spinal cord, as well as retina, dorsal, and sympathetic ganglia. Cre protein was also detected by immunohistochemistry exclusively in neurons, but not in other types of cells or tissues. Thus, our transgenic CRE3 mice provide pan-neuronal expression of CRE for carrying out conditional deletion of genes in neurons and their progenitors.  相似文献   

18.
Summary: The neuron‐specific rat enolase (NSE) promoter was employed to establish transgenic mice expressing Cre recombinase in the central nervous system. Founders were crossed with dormant lacZ indicator mice and specificity as well as efficiency of Cre‐mediated transgene activation was determined by PCR and/or X‐gal staining. Whereas most transgenic lines exhibited Cre activity in early development resulting in widespread Cre activity, one line (NSE‐Cre26) expressed high levels of Cre in the developing and adult brain. With the exception of kidney, which showed occasionally low level of Cre activity, Cre recombination in double transgenics was restricted to the nervous system. Whole‐mount X‐gal staining of 9.5 dpc embryos indicated Cre‐mediated lacZ expression in forebrain, hindbrain, and along the midbrain flexure. A similar expression pattern was observed during later stages of embryogenesis (11.5–13.5 dpc). In adult mice, Cre recombinase was expressed in cerebral cortex and cerebellum and high levels of Cre‐mediated lacZ expression were observed in hippocampus, cortex, and septum. The NSE‐Cre26 transgenic mouse line thus provides a useful tool to specifically overexpress and/or inactivate genes in the developing and adult brain. genesis 31:118–125, 2001. © 2001 Wiley‐Liss, Inc.  相似文献   

19.
角质细胞特异性表达Cre重组酶转基因小鼠的建立   总被引:9,自引:2,他引:9  
构建了含有角质细胞特异性角质素5启动子、Cre重组酶基因和人生长激素基因plyA的转基因载体pK5-Cre-hGH。以显微注射的方法将4.2kb的转基因片段K5-Cre-hGH引入小鼠基因组,共注射720枚受精卵,其中龄5枚移植至29只假孕母鼠的输卵管中发育,获得子代小鼠48只,经基因型鉴定有12只小鼠在其基因组上整合有Cre基因,整合率为25%。将带有cre重组酶基因的小鼠与基因组上携带loxP位点的smad4条件基因打靶小鼠杂交以检测Cre重组酶组织特异性表达情况以及介导重组的功能。结果表明,K5-Cre转基因小鼠只在皮肤组织中表达Cre重组酶并能在体内成功地介导loxP位点的重组。  相似文献   

20.
We have generated a transgenic mouse that expresses Cre recombinase only in skeletal muscle and only following tetracycline treatment. This spatiotemporal specificity is achieved using two transgenes. The first transgene uses the human skeletal actin (HSA) promoter to drive expression of the reverse tetracycline‐controlled transactivator (rtTA). The second transgene uses a tetracycline responsive promoter to drive the expression of Cre recombinase. We monitored transgene expression in these mice by crossing them with ROSA26 loxP‐LacZ reporter mice, which express β‐galactosidase when activated by Cre. We find that the expression of this transgene is only detectable within skeletal muscle and that Cre expression in the absence of tetracycline is negligible. Cre is readily induced in this model with tetracycline analogs at a range of embryonic and postnatal ages and in a pattern consistent with other HSA transgenic mice. This mouse improves upon existing transgenic mice in which skeletal muscle Cre is expressed throughout development by allowing Cre expression to begin at later developmental stages. This temporal control of transgene expression has several applications, including overcoming embryonic or perinatal lethality due to transgene expression. This mouse is especially suited for studies of steroid hormone action, as it uses tetracycline, rather than tamoxifen, to activate Cre expression. In summary, we find that this transgenic induction system is suitable for studies of gene function in the context of hormonal regulation of skeletal muscle or interactions between muscle and motoneurons in mice. © 2009 Wiley Periodicals, Inc. Develop Neurobiol, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号