首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
植物种多样性对生态系统功能的影响   总被引:3,自引:0,他引:3  
采用8种1年生植物,利用室外盆栽方法构建的植物群落对物种多样性与群落生产力、杂草入侵性之间的关系及其潜在的作用机理进行了研究.结果表明,各物种单播时其生产力和抗杂草入侵能力都有较大差异.物种多样性与群落生产力之间不存在线性关系,而呈现单峰格局关系,即在一定范围内(本研究为4种),物种多样性对生产力增加有促进作用,超过该范围,物种多样性增加,群落生产力不再增加.但群落生产力和物种多样性均与杂草入侵量之间呈显著负相关关系.相对产量总和(RYT)分析表明,资源互补效应是本研究中所观察到的多样性-生产力、多样性-入侵性及生产力-入侵性关系的主要作用机理.  相似文献   

2.
林窗对格氏栲天然林更新层物种多样性和稳定性的影响   总被引:1,自引:0,他引:1  
采用物种多样性指数和改进的M.Godron稳定性法研究林窗干扰对格氏栲(Castanopsis kawakamii)自然保护区天然林更新层物种多样性和稳定性的影响.结果表明:林窗干扰改善了微环境,表现在林窗和林下乔灌层树种重要值和多样性存在差异.林窗乔木层中丰富度指数R、优势度指数D、Shannon-Wiener指数H、均优多指数Z均高于林下,均匀度指数Js和群落优势度指数C低于林下;灌木层中R、D、H、Js、Z指数均高于林下,群落优势度指数C低于林下,林窗物种多样性更为丰富,生态优势种不明显,群落向复杂化和均匀化方向发展.林窗与林下乔木层Jaccard相似性系数Cj、Sorenson相似性系数CS、Bray-Curtis指数CN相对较低,Morista-Horn指数CmH较高,林窗对树种更新具有促进作用;灌木层相似性系数Cj、Cs、CN、CmH均较高,物种组成基本一致.根据M.Godron稳定性原理拟合出稳定性模型,林窗和林下乔木层分别为对数模型与二次函数模型,林窗和林下灌木层最佳拟合模型均为对数模型.林窗乔木层植物处于稳定状态,林下乔木层植物不稳定;林窗和林下灌木层植物均处于稳定状态.林窗和林下乔木层树种中以桂北木姜子(Litsea subcoriacea)重要值最高,说明其在森林更新中占有重要地位,可能对格氏栲种群更新产生较大影响.林下乔木层中格氏栲重要值较低,格氏栲更新存在困难,而林窗干扰促进了格氏栲的向上生长和重要值的提升,可有效实现格氏栲种群的更新和恢复.  相似文献   

3.
以吉林省长白山金沟岭林场云冷杉天然林为研究对象,定量分析不同择伐强度(对照0%、弱度择伐20.6%、中度择伐29.9%和重度择伐41.6%)下其乔木层树种组成及物种多样性的动态变化规律。结果显示:采伐后经10年恢复,择伐对原有林分结构影响不大,其中弱度和中度择伐仍能保持择伐前以冷杉占优势、红松和云杉占亚优势的物种结构,重度择伐使林分结构略有改变,但不明显;相比择伐前,择伐后经10年恢复的样地α多样性指数均有所增加,优势度指数均有不同程度的降低,其中弱度择伐样地的物种丰富度指数、多样性指数及均匀度指数的增加量和优势度指数的减少量均最大,说明弱度择伐有利于改善林分物种多样性状况,使林分物种更为丰富。本研究结果表明采取弱度择伐的方式更有利于维持林分物种结构及物种多样性,有利于云冷杉天然林的可持续经营和发展。  相似文献   

4.
Anthropogenically increased input of nitrogen (N) and phosphorous (P) have led to a severe reduction of plant species richness in European semi-natural grasslands. Although it is well established that this species loss is not trait neutral, a thorough analysis of the effects of nutrient addition on trait based functional diversity and functional composition, independently of species loss, is lacking so far. We compiled data on the plant species abundance (relevé’s) of 279 Nardus grasslands from nine European countries, across a gradient of soil N and P content. Functional diversity (Petchy and Gaston’s FDc, weighted FDc and quadratic entropy) and mean trait composition were calculated for each relevé, based on 21 functional traits. Differences in functional diversity and functional composition were related to differences in soil N, atmospheric N deposition, soil P and pH, while controlling for geographic location and species richness. All functional diversity measures decreased with increasing soil N, with wFDc also decreased by soil P, independent of species loss. This was accompanied by clear shifts in functional trait composition, associated with shifts from below-ground competition for nutrients to above-ground competition for light. This resulted in a decrease in insect-pollinated therophytes and chamaephytes and an increase in long-lived, clonal graminoids and hemicryptophytes under increasing soil N and P. These functional community changes can be expected to alter both ecosystem functioning and service provisioning of the studied grasslands. Our research emphasizes the importance of a reduction of both N and P emission throughout Europe for sustainable conservation of these communities.  相似文献   

5.
During water stress, stomatal closure occurs as water tension and levels of abscisic acid (ABA) increase in the leaf, but the interaction between these two drivers of stomatal aperture is poorly understood. We investigate the dynamics of water potential, ABA, and stomatal conductance during the imposition of water stress on two drought-tolerant conifer species with contrasting stomatal behavior. Rapid rehydration of excised shoots was used as a means of differentiating the direct influences of ABA and water potential on stomatal closure. Pinus radiata (Pinaceae) was found to exhibit ABA-driven stomatal closure during water stress, resulting in strongly isohydric regulation of water loss. By contrast, stomatal closure in Callitris rhomboidea (Cupressaceae) was initiated by elevated foliar ABA, but sustained water stress saw a marked decline in ABA levels and a shift to water potential-driven stomatal closure. The transition from ABA to water potential as the primary driver of stomatal aperture allowed C. rhomboidea to rapidly recover gas exchange after water-stressed plants were rewatered, and was associated with a strongly anisohydric regulation of water loss. These two contrasting mechanisms of stomatal regulation function in combination with xylem vulnerability to produce highly divergent strategies of water management. Species-specific ABA dynamics are proposed as a central component of drought survival and ecology.By guarding the interface between plant and atmosphere, the stomata of land plants occupy a uniquely important role that connects diverse aspects of plant biology with atmospheric processes. Capitalizing upon the potential for stomata to be used to modify plant growth and survival, or as a tool for interpreting environmental change, requires a mechanistic understanding of how these tiny valves operate. Yet, an integrated understanding of stomatal control remains elusive. Foremost in this uncertainty is an explanation for how complex signals from the environment are translated into guard cell movement. A particularly challenging feature of stomatal behavior is the fact that environmental perturbation induces both physical and chemical responses within the plant and that turgor-regulated stomata are responsive to both signals. Disentangling these distinct contributions to stomatal conductance (gs) has been made more complicated by the limited communication between molecular-scaled disciplines of mutant characterization and membrane transport biology and researchers at the larger scale of plant water relations and xylem transport. As a result, two contrasting views of stomatal control exist. Molecular biologists view stomata as osmotically regulated valves uniquely responsive to plant hormone levels and the resultant movement of ions across the guard cell membranes (Schroeder et al., 2001; Roelfsema and Hedrich, 2005). By contrast, most process-based models assume a direct influence of soil water content on stomatal aperture (Buckley, 2005; Damour et al., 2010).The phytohormone abscisic acid (ABA) is seen as a cornerstone of stomatal function because it has been shown to trigger responses in guard cell membrane channels and transporters that cause a reduction in guard cell turgor, thereby closing stomata. ABA-mediated stomatal closure in seed plants (but not in ferns and lycophytes; Brodribb and McAdam, 2011) is broadly accepted as the explanation for stomatal closure during water stress (Zhang and Davies, 1989; Bauer et al., 2013); yet, there are very few studies that show a good correlation between the level of ABA and gs during water stress in the field. The traditional explanation for this lack of a strong relationship suggests that ABA is a root-derived hormone that is delivered to the leaf in the transpiration stream (Zhang et al., 1987; Davies and Zhang, 1991) and hence that the xylem ABA flux, rather than the leaf level of ABA, should dictate the intensity of the stomatal response to soil drying (Tardieu et al., 1992; Tardieu and Davies, 1993). The flux-based model for ABA action in the leaf remains the most widely used interpretation of how stomata sense and respond to drying soil, despite the fact that there is mounting evidence for significant ABA synthesis in the leaf and guard cells, and short term responses to ABA that cannot be explained by xylem transport (Christmann et al., 2005; Lee et al., 2006; Georgopoulou and Milborrow, 2012). Furthermore, the ABA flux approach has never been successfully applied to explain variation in transpiration in trees (Sperry, 2000; Cochard et al., 2002), suggesting that there may be some benefit in reexamining some of the principles and assumptions used to link water stress, ABA, and transpiration.Here, we examine the dynamics of stomatal closure, leaf ABA levels, and xylem tension during the gradual imposition of water stress upon two conifer species, Pinus radiata and Callitris rhomboidea, known for having contrasting stomatal responses to desiccation. Our primary aim is to separate the interacting effects of ABA and water tension on guard cell turgor pressure and stomatal diffusive conductance and hence to reveal the relative importance of water tension and ABA levels during drought as effectors of stomatal closure. Conifers are particularly suitable for identifying different closing signals because they do not appear to produce hydropassive stomatal movements (McAdam and Brodribb, 2012). This makes them ideal for examining the direct effects of ABA and water tension without the mechanical interactions between subsidiary cells and guard cells (Franks and Farquhar, 2007) that greatly complicate the mechanics of angiosperm stomatal movements. Both conifer species examined grow naturally in low rainfall habitats, but P. radiata is strongly isohydric (meaning that stomata close in a very narrow range of leaf hydration), while C. rhomboidea is anisohydric (meaning that stomata have a relatively low sensitivity to leaf hydration).  相似文献   

6.
通过样地调查,利用多样性和复杂性指数分别研究了佛坪国家自然保护区植物群落物种多样性、复杂性沿海拔的变化规律,并对比分析了复杂性与物种多样性之间的关系.结果表明:(1)随着海拔升高,群落结构总复杂性与物种多样性表现出相似的变化规律,均呈现出“低-高-低”的偏正态分布格局,且海拔1 300~1 500 m是植物群落总复杂性和多样性最大区域;植物群落无序结构复杂性与总复杂性沿海拔变化规律相似,而群落有序结构复杂性却没有随海拔升高呈规律性变化.(2)研究区域植物群落物种多样性不仅与海拔变化有关,还与巴山木竹(Bashania fargesii)、秦岭箭竹(Fargesia qinlingensis)分布密度有着密切关系;在2个竹林交汇区域,物种多样性及物种数量都有着明显升高.(3)群落总复杂性、无序结构复杂性分别与多样性各个指数具有极显著的线性关系,物种多样的变化能够完全表达植物群落总复杂性的变化,但植物群落有序结构复杂性与物种多样性之间无显著相关性.因此,物种多样性不能用作植物群落结构复杂性测度方法.  相似文献   

7.
In 2001–03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3−year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100−km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these conditions.  相似文献   

8.
In 2000–03, continuous eddy covariance measurements of carbon dioxide (CO2) flux were made above mature boreal aspen, black spruce, and jack pine forests in Saskatchewan, Canada, prior to and during a 3-year drought. During the 1st drought year, ecosystem respiration (R) was reduced at the aspen site due to the drying of surface soil layers. Gross ecosystem photosynthesis (GEP) increased as a result of a warm spring and a slow decrease of deep soil moisture. These conditions resulted in the highest annual net ecosystem productivity (NEP) in the 9 years of flux measurements at this site. During 2002 and 2003, a reduction of 6% and 34% in NEP, respectively, compared to 2000 was observed as the result of reductions in both R and GEP, indicating a conservative response to the drought. Although the drought affected most of western Canada, there was considerable spatial variability in summer rainfall over the 100-km extent of the study area; summer rainfalls in 2001 and 2002 at the two conifer sites minimized the impact of the drought. In 2003, however, precipitation was similarly low at all three sites. Due to low topographic position and consequent poor drainage at the black spruce site and the coarse soil with low water-holding capacity at the jack pine site almost no reduction in R, GEP, and NEP was observed at these two sites. This study shows that the impact of drought on carbon sequestration by boreal forest ecosystems strongly depends on rainfall distribution, soil characteristics, topography, and the presence of vegetation that is well adapted to these conditions. The online version of the original article can be found under doi:  相似文献   

9.
The concept of ecosystem services – the benefits that nature provides to human''s society – has gained increasing attention over the past decade. Increasing global abiotic and biotic change, including species invasions, is threatening the secure delivery of these ecosystem services. Efficient evaluation methods of ecosystem services are urgently needed to improve our ability to determine management strategies and restoration goals in face of these new emerging ecosystems. Considering a range of multiple ecosystem functions may be a useful way to determine such strategies. We tested this framework experimentally in California grasslands, where large shifts in species composition have occurred since the late 1700''s. We compared a suite of ecosystem functions within one historic native and two non-native species assemblages under different grazing intensities to address how different species assemblages vary in provisioning, regulatory and supporting ecosystem services. Forage production was reduced in one non-native assemblage (medusahead). Cultural ecosystem services, such as native species diversity, were inherently lower in both non-native assemblages, whereas most other services were maintained across grazing intensities. All systems provided similar ecosystem services under the highest grazing intensity treatment, which simulated unsustainable grazing intensity. We suggest that applying a more comprehensive ecosystem framework that considers multiple ecosystem services to evaluate new emerging ecosystems is a valuable tool to determine management goals and how to intervene in a changing ecosystem.  相似文献   

10.
Plant Functional Diversity and Species Diversity in the Mongolian Steppe   总被引:1,自引:0,他引:1  

Background

The Mongolian steppe is one of the most important grasslands in the world but suffers from aridization and damage from anthropogenic activities. Understanding structure and function of this community is important for the ecological conservation, but has seldom been investigated.

Methodology/Principal Findings

In this study, a total of 324 quadrats located on the three main types of Mongolian steppes were surveyed. Early-season perennial forbs (37% of total importance value), late-season annual forbs (33%) and late-season perennial forbs (44%) were dominant in meadow, typical and desert steppes, respectively. Species richness, diversity and plant functional type (PFT) richness decreased from the meadow, via typical to desert steppes, but evenness increased; PFT diversity in the desert and meadow steppes was higher than that in typical steppe. However, above-ground net primary productivity (ANPP) was far lower in desert steppe than in the other two steppes. In addition, the slope of the relationship between species richness and PFT richness increased from the meadow, via typical to desert steppes. Similarly, with an increase in species diversity, PFT diversity increased more quickly in both the desert and typical steppes than that in meadow steppe. Random resampling suggested that this coordination was partly due to a sampling effect of diversity.

Conclusions/Significance

These results indicate that desert steppe should be strictly protected because of its limited functional redundancy, which its ecological functioning is sensitive to species loss. In contrast, despite high potential forage production shared by the meadow and typical steppes, management of these two types of steppes should be different: meadow steppe should be preserved due to its higher conservation value characterized by more species redundancy and higher spatial heterogeneity, while typical steppe could be utilized moderately because its dominant grass genus Stipa is resistant to herbivory and drought.  相似文献   

11.
植物在生长发育过程中会遇到各种生物胁迫,根据响应过程的不同,可将之分为基于蛋白质的生物胁迫和基于RNA的生物胁迫。miR482是一种植物特有的、已在23个物种中被证实存在的小RNA。miR482参与指导植物次级phasiRNA的合成,其主要靶标为植物庞大的Ⅳ=日§三R尺类家族抗病基因。本文通过整理近年来ETI(effector-triggeredimmunity)相关的NBS-LRR类抗病基因和抗RNA沉默抑制相关miR482级联调控的研究成果,总结出了miR482介导植物两类生物胁迫响应的调控机制。  相似文献   

12.
在野外样方调查和室内实验分析的基础上,采用相关性分析和多元逐步回归方法,分析了黄土高原子午岭地区不同演替阶段群落物种多样性、土壤理化特性以及二者的相互关系.结果表明:群落物种多样性随演替进展呈增长趋势,但其增长并非完全线性,主要表现为草本群落演替阶段物种多样性指数高于灌木演替阶段.0~20 cm和20~40 cm土层土壤的全氮、有效氮和有机质等土壤养分指标随着植被演替不断增大.在演替过程中,土壤含水量变化虽有波动,但总体上升,土壤容重波动下降,说明演替过程中土壤环境在不断得到改善.40~60 cm土层土壤理化性质变化未表现出一定规律,说明其与植被演替没有必然联系.物种多样性指数与土壤因子的相关性分析表明,群落演替过程中物种多样性变化与土壤因子存在一定相关性,其中0~20 cm土层土壤的全氮和有机质与物种的多样性指数呈显著正相关.随着土层加深,物种多样性对土壤理化性质影响表现出减弱趋势.  相似文献   

13.

Background

Environmental gradients caused by altitudinal gradients may affect genetic variation within and among plant populations and inbreeding within populations. Populations in the upper range periphery of a species may be important source populations for range shifts to higher altitude in response to climate change. In this study we investigate patterns of population genetic variation at upper peripheral and lower more central altitudes in three common plant species of semi-dry grasslands in montane landscapes.

Methodology/Principal Findings

In Briza media, Trifolium montanum and Ranunculus bulbosus genetic diversity, inbreeding and genetic relatedness of individuals within populations and genetic differentiation among populations was characterized using AFLP markers. Populations were sampled in the Swiss Alps at 1800 (upper periphery of the study organisms) and at 1200 m a.s.l. Genetic diversity was not affected by altitude and only in B. media inbreeding was greater at higher altitudes. Genetic differentiation was slightly greater among populations at higher altitudes in B. media and individuals within populations were more related to each other compared to individuals in lower altitude populations. A similar but less strong pattern of differentiation and relatedness was observed in T. montanum, while in R. bulbosus there was no effect of altitude. Estimations of population size and isolation of populations were similar, both at higher and lower altitudes.

Conclusions/Significance

Our results suggest that altitude does not affect genetic diversity in the grassland species under study. Genetic differentiation of populations increased only slightly at higher elevation, probably due to extensive (historic) gene flow among altitudes. Potentially pre-adapted genes might therefore spread easily across altitudes. Our study indicates that populations at the upper periphery are not genetically depauperate or isolated and thus may be important source populations for migration under climate change.  相似文献   

14.
植物表皮是植物与外部环境直接接触的部位,包括具有立体网状结构的角质和填充其间并覆盖其上的蜡质。植物在适应外界环境的过程中,表皮蜡质形成了特殊的结构和复杂的化学组成。植物表皮蜡质最重要的功能是参与阻止植物非气孔性失水,提高植物对水分的利用效率,以实现对干旱环境的适应。干旱环境会导致植物表皮蜡质代谢的变化,这种变化最终通过调控基因表达来实现。目前已经发现了多个蜡质代谢相关基因参与了植物对干旱环境的适应,部分基因已经成功克隆并且用于改良农作物的抗旱性。但这些基因参与干旱响应的分子机制及其与ABA的关系并不很清楚。就植物适应水分胁迫而发生的包括蜡质组成和含量在内的代谢变化,以及该过程中所涉及的主要基因及其分子生物学研究进行综述。探讨表皮蜡质在植物适应干旱中的重要作用及其分子机制,可为农作物的抗旱育种提供新型的分子标记和重要靶基因,最终服务于农业生产实践。  相似文献   

15.
The silver-leaf nightshade nenmtode, Nothanguina phyllobia, is a promising biological control agent for its only reported host, Solanum elaeagnifolium Cav. When infective larvae of N. phyllobia and stem tissue of 39 econmnically important plant species were suspended in 0.5% water agar, nematodes aggregated about S. elaeagnifolium, Solanum carolinense L., Solanum melongena L., Solanum tuberosum L., and Prunus caroliniana (Mill.) Ait. Nematodes responded to Solanum spp. via positive chemotaxis and/or klinokinesis, but aggregated near tissue of P. caroliniana as a result of orthokinetic effects. Nematodes aggregated away from tissue of Hibiscus esculentus L., Triticum aestivum L., Santolina sp., Rosa sp., and Kochia scoparia (L.) Schrad. in the absence of orthokinetic effects. Experiments that excluded light and maintained relative humidity at 100% showed N. phyllobia to ascend the stems of 35 plant species to a height of > 9 cm within 12 h. Differences in stem ascension were not attributable to stem surface characteristics.  相似文献   

16.
The tolerance to salt spray of 29 species, mainly from New Zealandsand dunes, was investigated. Plants were grown in water culturein a glasshouse and subjected to overhead salt spraying at intervals.Growth rates in many species were reduced by salt spray buta significant decrease occurred only in six native herbs. However,many species showed sensitivity in leaf necrosis. Tolerant speciesincluded Scirpoides nodosa, Elymus farctus and Desmoschoenusspiralis. Ammophila arenaria, tolerant of spray as an adult,was less so when younger. There was little correlation between tolerance to salt sprayand tolerance to root salinity. Some species were tolerant toboth, e.g. S. nodosa and E. farctus, and some intolerant toboth, e.g. Wahlenbergia congesta. One species, Lupinus arboreus,was glycophytic in respect to root salt but tolerant of aerialsalt. Other species, such as Senecio elegans L. and Austrofestucalittoralis, were intolerant of salt spray but tolerant of mediumroot salinities. For some species salt spray tolerance correlated well with fielddistribution, e.g. D. spiralis and Bromus diandrus. However,some species present in semi-fixed dunes close to the sea havemuch lower tolerance than would be expected from their fieldsituation, e.g. W. congesta. This apparent inconsistency couldbe explained by the ameliorating high rainfall on the West Coast,or protection by ridges. One environmental variable alone, suchas salt spray, could not explain the field distribution formany species. Salt spray, growth rate, live leaf area, New Zealand, dune species, root salinity  相似文献   

17.
Gao  Wenlan  Li  Linfeng  Munson  Seth M.  Cui  Xiaoyong  Wang  Yanfen  Hao  Yanbin 《Ecosystems》2022,25(5):1150-1165
Ecosystems - Extreme climatic events are likely to intensify under climate change and can have different effects on ecosystems depending on their timing and magnitude. Understanding how...  相似文献   

18.
Plant species richness in rural landscapes of northern Europe has been positively influenced by traditional management for millennia. Owing to abandonment of these practices, the number of species‐rich semi‐natural grasslands has decreased, and remaining habitats suffer from deterioration, fragmentation, and plant species decline. To prevent further extinctions, restoration efforts have increased during the last decades, by reintroducing grazing in former semi‐natural grasslands. To assess the ecological factors that might influence the outcome of such restorations, we made a survey of semi‐natural grasslands in Sweden that have been restored during the last decade. We investigated how plant species richness, species density, species composition, and abundance of 10 species that are indicators of grazing are affected by (1) the size of the restored site, (2) the time between abandonment of grazing and restoration, (3) the time elapsed since restoration, and (4) the abundance of trees and shrubs at the restored site. Only two factors, abundance of trees and shrubs and time since restoration, were positively associated with total species richness and species density per meter square at restored sites. Variation in species composition among restored sites was not related to any of the investigated factors. Species composition was relatively similar among sites, except in mesic/wet grasslands. The investigated factors had small effects on the abundance of the grazing‐indicator species. Only Campanula rotundifolia responded to restoration with increasing abundance and may thus be a suitable indicator of improved habitat quality. In conclusion, positive effects on species richness may appear relatively soon after restoration, but rare, short‐lived species are still absent. Therefore, remnant populations in surrounding areas may be important in fully recreating former species richness and composition.  相似文献   

19.
The strength of linkages between riparian plants and stream communities can be expected to be influenced by invading plants. While most studies so far have been focussed on the effects of the leaf litter quality of the invader, this study addresses the impact of detritivores on the pool of detritus. In a natural setting, we found that species richness of shredding macroinvertebrates significantly influenced the breakdown rate of an invasive weed species, the Japanese knotweed (Fallopia japonica), which has become a major plant invader along streams and rivers in Europe and North America. Our findings imply that a reduction of the diversity of shredder species, which may be the result of disturbances, could negatively influence stream ecosystems' capacity of processing knotweed leaves. Although the knotweed showed breakdown rates similar to those of common native tree and shrub species, other exotic leaf species might show considerably slower rates and hence have greater consequences for the ecosystems. We have, in this study, indicated a technique by which the effects of other non-indigenous plants on ecosystem functioning might be considered.  相似文献   

20.
Understanding how invasive plants may alter predator avoidance behaviors is important for granivorous rodents because their foraging can trigger ripple effects in trophic webs. Previous research has shown that European beach grass Ammophila arenaria, an invasive species in coastal California, affects the predation of other seeds by the rodents Microtus californicus, Peromyscus maniculatus, and Reithrodontomys megalotis. This may be due to lower perceived predation risk by rodents foraging in close proximity to the cover provided by Ammophila, but this mechanism has not yet been tested. We examined the perceived predation risk of rodents by measuring the ‘giving up density’ of food left behind in experimental patches of food in areas with and without abundant cover from Ammophila and under varying amount of moonlight. We found strong evidence that giving up density was lower in the thick uniform vegetation on Ammophila-dominated habitat than it was in the more sparsely and diversely vegetated restored habitat. There was also evidence that moonlight affected giving up density and that it mediated the effects of habitat, although with our design we were unable to distinguish the effects of lunar illumination and moon phase. Our findings illustrate that foraging rodents, well known to be risk-averse during moonlit nights, are also affected by the presence of an invasive plant. This result has implications for granivory and perhaps plant demography in invaded and restored coastal habitats. Future research in this system should work to unravel the complex trophic links formed by a non-native invasive plant (i.e., Ammophila) providing cover favored by native rodents, which likely forage on and potentially limit the recruitment of native and non-native plants, some of which have ecosystem consequences of their own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号