首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The introduction into commerce of raspberry cultivars with major gene resistance to the large raspberry aphid, Amphorophora idaei, an important pest and virus vector on red raspberry in Europe, has been very effective both in decreasing pest numbers and greatly restricting infection with the viruses it transmits. However, biotypes of the aphid able to overcome these genes have developed in the field in recent years. Additionally, in field and laboratory tests, the response to aphid biotypes and recognised aphid strains of certain raspberry cultivars, such as Glen Prosen and Delight, differ markedly despite the fact that they are reputed to contain the same A. idaei‐resistance gene, A1. In attempts to understand the reasons for this difference in response, analysis was made of the segregation of progeny seedlings from crosses between A. idaei‐resistant and ‐susceptible cultivars to two recognised strains of the aphid. These studies showed that, as expected, cv. Autumn Bliss contained the A. idaei‐resistance gene, A10, and cvs Delight and Glen Prosen each contained the A. idaei‐resistance gene, A1. When progeny seedlings were assayed in a heated glasshouse as young plants and in an unheated Tygan house as 1 m tall plants, the segregation ratios for resistance and susceptibility to A. idaei were largely unchanged. However, when the resistance of individual progeny plants was assessed, c. 37% of the putative gene A1‐containing progeny and 9–23% of the putative gene A10‐containing progeny, behaved differently in these two environments. Experiments involving an A. idaei‐resistant and ‐susceptible parent cultivar showed that shading plants increased their susceptibility to A. idaei colonisation. Whilst this shading effect has implications for experimentally detecting A. idaei‐resistant progeny in segregating raspberry seedlings, it does not explain the difference in field resistance to A. idaei of cvs Delight and Glen Prosen. Such differences in the field seem best explained by the presence in these cultivars of ‘minor’ genes for A. idaei resistance and/or susceptibility that influences the effectiveness of gene A1.  相似文献   

2.
1 The European large raspberry aphid Amphorophora idaei Börner is the most important vector of viral diseases afflicting commercially grown red raspberry ( Rubus idaeus L.) in Northern Europe, with European raspberry production amounting to 416 000 tonnes per annum. This review synthesizes existing knowledge on its biology and interactions with other organisms, including its host plant and the viral pathogens it vectors.
2 Information about trophic interactions with other insect herbivores and natural enemies is reviewed. Vine weevils Otiorhynchus sulcatus compromise aphid resistance in some raspberry cultivars, increasing A.   idaei abundance by 80%. Parasitoids show mixed success in parasitizing A.   idaei , although Aphidius ervi attack rates more than doubled when A.   idaei fed on a partially susceptible raspberry cultivar, compared with a resistant variety. These findings are discussed in the context of potential biological control as part of an integrated pest and disease management framework.
3  Amphorophora idaei transmits four known viruses: Black raspberry necrosis virus, Raspberry leaf mottle virus, Raspberry leaf spot virus and Rubus yellow net virus , with A.   idaei taking as little as 2 min to transmit some viruses.
4 Existing control strategies, including resistant cultivars, insecticides and eradication of disease from parent plants, are described. In particular, strong selection pressures have resulted in A .  idaei overcoming genetic resistance in many raspberry cultivars and most insecticides are now ineffective.
5 Future directions for the sustained control of A.   idaei are suggested, taking into consideration the possible effects of climate change and also changes in agronomic practices in U.K. agriculture.  相似文献   

3.
The rate of spread of viruses transmitted by the aphid Amphorophora idaei into genotypes of raspberry differing in resistance to infestation by A. idaei was studied in a field experiment which exposed plants to large numbers of infective aphids. Under these conditions, genotypes that are readily colonised by A. idaei were totally infected with virus after two to three growing seasons, whereas genotypes with a high degree of resistance were substantially free of virus after four growing seasons but 56% of plants were infected after seven seasons. Genotypes with intermediate resistance were also substantially free of virus after three seasons but 76% of plants were virus infected after seven seasons. The effectiveness of resistance to A. idaei in raspberry in restricting spread of viruses transmitted by this aphid is discussed.  相似文献   

4.
In an approach to understand the mechanism(s) of resistance in raspberry to infestation by the aphid Amphorophora idaei, progeny plants segregating for the A. idaei resistance gene, A10, were bioassayed and dichloromethane extracts from the leaf surface were examined by capillary column gas chromatography (GC). No single GC peak was detected that was present in only the resistant progeny plants. Nevertheless, thirteen compounds present in all samples were quantified and identified by mass spectrometry. They were of four major classes; straight chain hydrocarbons, acetic acid esters of long chain alcohols, tocopherols and triterpenoid compounds, including α and β amyrin. Several of these compounds were not recorded previously in raspberry leaves. Linear discriminant analysis, applied to the standardised chromatographic data in an attempt to relate chemical composition to resistance, successfully partitioned 24 of the 26 plants into resistant and susceptible types as determined by bioassay. These data provide further evidence that resistance in raspberry to A. idaei is related to the chemical composition of the leaf surface.  相似文献   

5.
The aphid Amphorophora agathonica Hottes (Hemiptera: Aphididae) is an important virus vector in red (Rubus idaeus L.) and black (Rubus occidentalis L.) raspberries in North America. Raspberry resistance to A. agathonica in the form of a single dominant gene named Ag1 has been relied upon to help control aphid-transmitted plant viruses; however, the mechanism of resistance to the insect is poorly understood. Aphid feeding was monitored using an electrical penetration graph on the resistant red raspberry 'Tulameen' and compared with a susceptible control, 'Vintage'. There were no differences in pathway feeding behaviors of aphids as they moved toward the phloem. Once in the phloem, however, aphids feeding on resistant plants spent significantly more time salivating than on susceptible plants, and ingested significantly less phloem sap. This suggests that a mechanism for resistance to A. agathonica is located in the phloem. Reduced ingestion of phloem may result in inefficient acquisition of viruses and is a likely explanation for the lack of aphid-transmitted viruses in plantings of resistant cultivars.  相似文献   

6.
Global climate change, such as elevated atmospheric carbon dioxide (eCO2), may accelerate the breakdown of crop resistance to insect pests by compromising expression of resistance genes. This study investigated how eCO2 (700 μmol/mol) affected the susceptibility of red raspberry (Rubus idaeus) to the European large raspberry aphid (Amphorophora idaei) Börner (Homoptera: Aphididae), using a susceptible cultivar (Malling Jewel) and cultivars containing either the A1 (Glen Lyon) or A10 (Glen Rosa) resistance genes. Compared to plants grown at ambient CO2 (aCO2) (375 μmol/mol), growth rates were significantly increased (ranging from 42–300%) in all cultivars at eCO2. There was some evidence that plants containing the A1 gene were more susceptible to aphids at eCO2, with aphid populations doubling in size compared to the same plants grown at aCO2. Moreover, aphids grew 38% larger (1.36 mg compared with 0.98 mg) on plants with the A1 resistance gene at eCO2 compared with those at aCO2. Aphid performance on plants containing the A1 gene grown at eCO2 was therefore similar to that of aphids reared on entirely susceptible plants under either CO2 treatment. In contrast, aphids did not respond to eCO2 when reared on plants with the A10 resistance gene, suggesting that plants with this resistance gene remained resistant to aphids at eCO2.  相似文献   

7.
The effectiveness of resistance to the aphid Amphorophora rubi in restricting the spread of aphid-borne viruses was assessed in a field experiment using six genotypes of red raspberry. In one block of the experiment, the genotypes alternated with rows of virus-infected Mailing Jewel raspberry, and in the other they alternated with virus-free Mailing Jewel. During 4 years, the numbers of A. rubi and the amount of 52V virus spread in the two blocks were similar, suggesting that this virus was mostly introduced from outside the plots. Lloyd George and Mailing Jewel raspberry became heavily infested with A. rubi and were rapidly infected with raspberry leaf mottle, raspberry leaf spot and 52V viruses. Glen Clova and Norfolk Giant raspberry, which contain minor genes for resistance to A. rubi, were infested with fewer A. rubi and virus spread more slowly in these cultivars. A. rubi were rare on Mailing Orion and an East Mailing raspberry selection (888/49) which have genes A1 and A10 respectively for resistance to A.rubi, and these plants remained largely free of virus. The role of minor and major gene resistance to A. rubi in restricting virus spread is discussed. A few Macrosiphum euphorbiae and Myzus ornatus were recorded on several of the raspberry genotypes.  相似文献   

8.
9.
Thirty-seven wheat cultivars originating from seven European countries were examined by using sequence tagged site (STS) markers for seven Lr (leaf rust = brown rust) resistance genes against the fungal pathogen of wheat Puccinia recondita f. sp. tritici (Lr9, Lr10, Lr19, Lr24, Lr26 and Lr37). Additionally, 22 accessions with various Lr genes from two germplasm collections were tested. A Scar (sequence-characterized amplified region) marker for Lr24 and a CAPS (Cleaved Amplified Polymorphic Sequence) marker for Lr47 were also used to identify those genes in the wheat accessions. Each marker amplified one specific DNA fragment. Three Lr gene markers were identified in wheat cultivars (Lr10, Lr26 and Lr37). Another four markers (Lr9, Lr19, Lr24 and Lr47) were found in breeding lines carrying leaf rust resistance genes. The results were compared with leaf rust resistance gene postulations made in previous studies, based on multipathotype testing. Markers for Lr10, Lr26 and Lr37 may be useful in marker-assisted breeding.  相似文献   

10.
The agent of raspberry yellows disease is transmitted by grafting but not by aphids and is resistant to thermotherapy. Further studies showed that it is transmitted by inoculation of sap through seed; it is probably transmitted to plants by pollination. Raspberry bushy dwarf virus (RBDV) shares all these attributes and is known to infect all yellows-sensitive raspberry cultivars except Puyallup and Sumner; however, neither of these cultivars has been tested by graft inoculation with RBDV. RBDV commonly infects plants symptomiessly, even those of yellows-sensitive cultivars, but it induced yellows when inoculated either manually to Norfolk Giant raspberry or by grafting to a yellows-sensitive raspberry selection. The evidence suggests that RBDV is the causal agent of yellows disease but that symptom expression is greatiy dependent on genetic and environmental factors. Many red raspberry cultivars are resistant, probably immune, to the type culture of RBDV and this character was shown to be conferred by a single dominant gene designated Bu.  相似文献   

11.
该研究通过分析甜荞10个品种在4个不同海拔栽培的种子蛋白质组分(清蛋白、球蛋白、醇溶蛋白和谷蛋白)的含量变异,以揭示不同荞麦品种之间以及不同栽培地点甜荞种子蛋白组分的变异规律。结果表明:在所有甜荞品种种子蛋白组分含量中清蛋白谷蛋白球蛋白醇溶蛋白。其中,种植于海拔最低的内蒙古通辽的甜荞种子平均球蛋白含量最高(1.081%),而种植于海拔1 450 m的河北甜荞谷蛋白平均含量最高(2.805%);海拔2 620 m的青海甜荞清蛋白平均含量为4.750%,而在海拔最高的西藏日喀则收获的甜荞种子的醇溶蛋白最高(平均为0.393%)。另外,蒙0530在4个地区的平均种子清蛋白和谷蛋白含量都最高,而球蛋白含量最高的品种是赤甜荞1号,定甜荞2号的种子醇溶蛋白含量最高。双因素方差分析表明,种子清蛋白含量品种间变异达极显著水平,不同地点间的种子醇溶蛋白含量达极显著水平,而地点和品种两个因素对种子球蛋白含量和谷蛋白含量的变异都有极显著影响。相关性分析表明,赤甜荞1号的醇溶蛋白含量与海拔呈显著正相关,蒙0530的球蛋白含量与海拔呈显著负相关,其他品种蛋白组分与海拔的相关性不显著。该研究结果对于甜荞优质品种培育和栽培以及推广都有一定的指导意义。  相似文献   

12.
The number of genes controlling slow rusting resistance to leaf rust (Puccinia triticina) was estimated in five spring wheat (Triticum aestivum) cultivars using quantitative formulae. Parents and F6 families were evaluated in replicated field trials under epidemics initiated by artificial inoculation. The F6 families resulted from a diallel cross involving the fast-rusting cultivar Yecora 70 and five slow-rusting wheat cultivars: Sonoita 81, Tanager ‘S’, Galvez 87, Ures 81, and Moncho ‘S’. The area under the disease progress curve (AUDPC) was used to measure leaf rust severity over time. Results indicate that cultivar Sonoita 81 has three or four genes, Tanager ‘S’ has two or three genes, Galvez 87 has three genes, and both Ures 81 and Moncho ‘S’ have two genes for slow rusting resistance to leaf rust. Based on this result and previously reported moderate to high narrow-sense heritability estimates for slow rusting resistance in these materials, early-generation selection for slow leaf rusting would be effective.  相似文献   

13.
Plants of Lloyd George and Seedling M raspberry (Rubus idaeus L.) were found in eastern Scotland infected with raspberry ringspot (RRV), a virus to which these varieties were previously considered immune. Most RRV isolates from affected plants caused milder symptoms in herbaceous test plants than did the type isolates of the common Scottish and English strains. In graft-transmission tests the Lloyd George strain of RRV infected all the raspberry cultivars tested, including those immune to the common Scottish strain. No consistent differences were found between isolates of the two strains in in vitro properties or serological behaviour. Both strains were transmitted in seed of Stellaria media and in soil containing Longidorus elongatus. Possible reasons why the new strain is uncommon in Scotland are discussed.  相似文献   

14.
The soybean aphid [Aphis glycines Matsumura] is an important pest of soybean [Glycine max (L.) Merr.] in North America. Single dominant genes in the cultivars ‘Dowling’ and ‘Jackson’ control resistance to the soybean aphid. The gene in Dowling was named Rag1, and the genetic relationship between Rag1 and the gene in Jackson is not known. The objectives of this study were to map the locations of Rag1 and the Jackson gene onto the soybean genetic map. Segregation of aphid resistance and simple sequence repeat (SSR) markers in F 2:3 populations developed from crosses between Dowling and the two susceptible soybean cultivars ‘Loda’ and ‘Williams 82’, and between Jackson and Loda, were analyzed. Both Rag1 and the Jackson gene segregated 1:2:1 in the F 2:3 populations and mapped to soybean linkage group M between the markers Satt435 and Satt463. Rag1 mapped 4.2 cM from Satt435 and 7.9 cM from Satt463. The Jackson gene mapped 2.1 cM from Satt435 and 8.2 cM from Satt463. Further tests to determine genetic allelism between Rag1 and the Jackson gene are in progress. The SSR markers flanking these resistance genes are being used in marker-assisted selection for aphid resistance in soybean breeding programs. Trade and manufacturers’ names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

15.
16.
Six blackberry or hybrid berry cultivars and 19 raspberry cultivars were assessed for their infectibility with, and sensitivity to, graft inoculation with 10 distinct viruses found infecting Rubus in the UK. Cultivars were grafted with each of, two isolates of the pollen borne raspberry bushy dwarf virus (RBDV), five aphid borne viruses: black raspberry necrosis, raspberry leaf mottle (RLMV), raspberry leaf spot (RLSV), rubus yellow net and raspberry vein chlorosis (RVCV); and isolates of the nematode transmitted nepoviruses, arabis mosaic, raspberry ringspot, strawberry latent ringspot and tomato black ring. All tested cultivars were infectible with a resistance breaking isolate of RBDV but only about half of that number with the Scottish type isolate of the virus. The raspberry cvs Autumn Bliss, and occasionally Glen Garry and Glen Prosen, developed leaf yellowing symptoms following infection with RBDV, but none of the other infected cultivars showed obvious leaf symptoms when kept in a heated glasshouse during the growing season. All tested cultivars were infectible with each of the four viruses transmitted in nature by the aphid, Amphorophora idaei. Most were infected symptomlessly, but seven cultivars developed severe leaf spotting symptoms due to infection with RLMV or RLSV. All but one of the raspberry cultivars were infectible with RVCV, which is transmitted in nature by the aphid Aphis idaei, and almost all infected plants developed leaf symptoms; only one of the hybrid berry or blackberry cultivars tested was infected with RVCV. In tests with the four nepoviruses, all tested cultivars, except Tummelberry, were infectible with at least one or more of these viruses. However, cultivars responded differently to challenge inoculation with different isolates of individual nepoviruses. Several cultivars developed chlorotic leaf mottling following infection with some nepovirus isolates. The implications of these results for virus control are discussed in the light of the changing pattern of virus and virus vector incidence in the UK.  相似文献   

17.
【目的】了解抗感品种香蕉植株中内生细菌与香蕉枯萎病间的关系,从而为香蕉枯萎病的发生与防控提供一定的理论基础。【方法】通过基于16S rRNA的末端标记限制性片段长度多态性技术(Terminal restriction fragment length polymorphism,T-RFLP)分析健康和感枯萎病香蕉植株不同品种各组织,以及香蕉植株不同发病时间根组织中内生细菌的多样性和群落结构。【结果】抗病品种"农科一号"植株根、假茎、叶片各组织中内生细菌的种类基本都比感病品种"巴西蕉"的相应组织中的要丰富。感枯萎病香蕉植株根、假茎、叶片各组织中内生细菌种类基本都比健康植株各组织的丰富。在植株发病前、发病初期、再到发病后一个月的不同时期,对于抗病品种而言,其内生细菌的多样性都基本保持稳定,而感病品种则变化幅度较大。同时发现不同品种不同组织的内生细菌的优势种群有所不同,且不同品种健康和发病植株都存在一些特有优势种群。【结论】香蕉抗病品种比感病品种植株中内生细菌的多样性更丰富且更稳定;感枯萎病植株中的内生细菌种类比健康的丰富;而且不同抗性品种中健康和感病植株内的优势种群存在明显差异。  相似文献   

18.
19.
A strain of raspberry bushy dwarf virus (RBDV-RB), discovered in England in 1981, readily infects by grafting many raspberry cvs that have gene Bu, which confers strong resistance or immunity to isolates of the common strain. Haida is one of two cultivars that are highly resistant or immune from RBDV-RB, but both its parents, cvs Creston and Malling Promise, are infectible. Studies of the segregation of resistance to both RBDV-RB and a common strain of RBDV (D200) in four progenies related to cv. Haida or its two parents, showed that resistance to RBDV-RB was heritable and occurred when gene Bu was present with a second resistance component whose inheritance is probably multigenic. There was some indication that the second component might be a form of partial resistance to graft inoculation of varying expression, and that cv. Haida possesses this resistance at a high level that has not been distinguished from immunity in the graft inoculations used. Cultivars Creston and Malling Promise possibly have this resistance to a lesser degree, while resistance in cv. Heritage has been distinguished from immunity only by extensive graft tests. Some possible implications for breeding RBDV-RB resistant cultivars are discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号