首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CD19 and the Src family protein tyrosine kinases (PTKs) are important regulators of intrinsic signaling thresholds in B cells. Regulation is achieved by cross-talk between Src family PTKs and CD19; Lyn is essential for CD19 phosphorylation, while CD19 establishes an Src family PTK activation loop that amplifies kinase activity. However, CD19-deficient (CD19(-/-)) B cells are hyporesponsive to transmembrane signals, while Lyn-deficient (Lyn(-/-)) B cells exhibit a hyper-responsive phenotype resulting in autoimmunity. To identify the outcome of interactions between CD19 and Src family PTKs in vivo, B cell function was examined in mice deficient for CD19 and Lyn (CD19/Lyn(-/-)). Remarkably, CD19 deficiency suppressed the hyper-responsive phenotype of Lyn(-/-) B cells and autoimmunity characterized by serum autoantibodies and immune complex-mediated glomerulonephritis in Lyn(-/-) mice. Consistent with Lyn and CD19 each regulating conventional B cell development, B1 cell development was markedly reduced by Lyn deficiency, with further reductions in the absence of CD19 expression. Tyrosine phosphorylation of Fyn and other cellular proteins induced following B cell Ag receptor ligation was dramatically reduced in CD19/Lyn(-/-) B cells relative to Lyn(-/-) B cells, while Syk phosphorylation was normal. In addition, the enhanced intracellular Ca(2+) responses following B cell Ag receptor ligation that typify Lyn deficiency were delayed by the loss of CD19 expression. BCR-induced proliferation and humoral immune responses were also markedly inhibited by CD19/Lyn deficiency. These findings demonstrate that while the CD19/Lyn amplification loop is a major regulator of signal transduction thresholds in B lymphocytes, CD19 regulation of other Src family PTKs also influences B cell function and the development of autoimmunity.  相似文献   

2.
Fibroblast growth factors (FGFs) play an important regulatory role in skeletal development and bone formation. However, the FGF signaling mechanisms controlling osteoblast function are poorly understood. Here, we identified a role for the Src family members Lyn and Fyn in osteoblast differentiation promoted by constitutive activation of FGF receptor-2 (FGFR2). We show that the overactive FGFR2 S252W mutation induced decreased Src family kinase tyrosine phosphorylation and activity associated with decreased Lyn and Fyn protein expression in human osteoblasts. Pharmacological stimulation of Src family kinases or transfection with Lyn or Fyn vectors repressed alkaline phosphatase (ALP) up-regulation induced by overactive FGFR2. Inhibition of proteasome activity restored normal Lyn and Fyn expression and ALP activity in FGFR2 mutant osteoblasts. Immunoprecipitation studies showed that Lyn, Fyn, and FGFR2 interacted with the ubiquitin ligase c-Cbl and ubiquitin. Transfection with c-Cbl in which the RING finger was disrupted or with c-Cbl with a point mutation that abolishes the binding ability of the Cbl phosphotyrosine-binding domain restored Src kinase activity and Lyn, Fyn, and FGFR2 levels and reduced ALP up-regulation in mutant osteoblasts. Thus, constitutive FGFR2 activation induces c-Cbl-dependent Lyn and Fyn proteasome degradation, resulting in reduced Lyn and Fyn kinase activity, increased ALP expression, and FGFR2 down-regulation. This reveals a common Cbl-mediated negative feedback mechanism controlling Lyn, Fyn, and FGFR2 degradation in response to overactive FGFR2 and indicates a role for Cbl-dependent down-regulation of Lyn and Fyn in osteoblast differentiation induced by constitutive FGFR2 activation.  相似文献   

3.
Mast cell responses are influenced by a diverse array of environmental factors, but little is known about the effect of genetic background. In this study, we report that 129/Sv mice had high levels of circulating IgE, increased expression of the high-affinity receptor for IgE (Fc epsilonRI), and greater sensitivity to anaphylaxis when compared with C57BL/6 mice. Bone marrow-derived mast cells (BMMCs) from 129/Sv mice showed more robust degranulation upon the engagement of Fc epsilonRI. Deficiency of the Src family kinase Lyn enhanced degranulation in 129/Sv BMMCs but inhibited this response in C57BL/6 cells. C57BL/6 lyn(-/-) BMMCs had reduced expression of the Src family kinase Fyn, and increasing its expression markedly enhanced degranulation. In human mast cells the silencing of Lyn or Fyn expression resulted in hyperdegranulation or hypodegranulation, respectively. The findings demonstrate a genetic influence on the extent of a mast cell's response and identify Fyn kinase as a contributory determinant.  相似文献   

4.
A role for the receptor-like protein tyrosine phosphatase alpha (PTPalpha) in regulating the kinase activity of Src family members has been proposed because ectopic expression of PTPalpha enhances the dephosphorylation and activation of Src and Fyn [1] [2] [3]. We have generated mice lacking catalytically active PTPalpha to address the question of whether PTPalpha is a physiological activator of Src and Fyn, and to investigate its other potential functions in the context of the whole animal. Mice homozygous for the targeted PTPalpha allele (PTPalpha-/-) and lacking detectable PTPalpha protein exhibited no gross phenotypic defects. The kinase activities of Src and Fyn were significantly reduced in PTPalpha-/- mouse brain and primary embryonic fibroblasts, and this correlated with enhanced phosphorylation of the carboxy-terminal regulatory Tyr527 of Src in PTPalpha-/- mice. Thus, PTPalpha is a physiological positive regulator of the tyrosine kinases Src and Fyn. Increased tyrosine phosphorylation of several unidentified proteins was also apparent in PTPalpha-/- mouse brain lysates. These may be PTPalpha substrates or downstream signaling proteins. Taken together, the results indicate that PTPalpha has a dual function as a positive and negative regulator of tyrosine phosphorylation events, increasing phosphotyrosyl proteins through activation of Src and Fyn, and directly or indirectly removing tyrosine phosphate from other unidentified proteins.  相似文献   

5.
SHP-2, an SH2 domain-containing protein-tyrosine phosphatase, plays an important role in receptor tyrosine kinase-regulated cell proliferation and differentiation. Little is known about the activation mechanisms and the participation of SHP-2 in the activity of G protein-coupled receptors lacking intrinsic tyrosine kinase activity. We show that the activity of SHP-2 (but not SHP-1) is specifically stimulated by the selective alpha2A-adrenergic receptor agonist UK14304 and by lysophosphatidic acid (LPA) in Madin-Darby canine kidney (MDCK) cells. UK14304 and LPA promote the tyrosine phosphorylation of SHP-2 and its association with Grb2. The agonist-induced direct interaction of Grb2 with SHP-2 is mediated by the SH2 domain of Grb2 and the tyrosine phosphorylation of SHP-2. Rapid activation of Src family kinase by UK14304 preceded the SHP-2 activation. Among the Src family members (Src, Fyn, Lck, Yes, and Lyn) present in MDCK cells, Fyn was the only one specifically associated with SHP-2, and the physical interaction between them, which requires the Src family kinase activity, was increased in response to the agonists. Pertussis toxin, PP1 (a selective Src family kinase inhibitor), or overexpression of a catalytically inactive mutant of Fyn blocked the UK14304- or LPA-stimulated activity of SHP-2, SHP-2 tyrosine phosphorylation, and SHP-2 association with Grb2. Therefore, we have demonstrated for the first time that the activation of SHP-2 by these Gi protein-coupled receptors requires Fyn kinase and that there is a specific physical interaction of Fyn kinase with SHP-2 in MDCK cells.  相似文献   

6.
Nef is an HIV accessory protein required for high-titer viral replication and AIDS progression. Previous studies have shown that the SH3 domains of Hck and Lyn bind to Nef via proline-rich sequences in vitro, identifying these Src-related kinases as potential targets for Nef in vivo. Association of Nef with Hck causes displacement of the intramolecular interaction between the SH3 domain and the SH2-kinase linker, leading to kinase activation both in vitro and in vivo. In this study, we investigated whether interaction with Nef induces activation of other Src family kinases (Lyn, Fyn, Src, and Lck) following coexpression with Nef in Rat-2 fibroblasts. Coexpression with Nef induced Hck kinase activation and fibroblast transformation, consistent with previous results. In contrast, coexpression of Nef with Lyn was without effect, despite equivalent binding of Nef to full-length Lyn and Hck. Furthermore, Nef was found to suppress the kinase and transforming activities of Fyn, the SH3 domain of which exhibits low affinity for Nef. Coexpression with Nef did not alter c-Src or Lck tyrosine kinase or transforming activity in this system. Differential modulation of Src family members by Nef may produce unique downstream signals depending on the profile of Src kinases expressed in a given cell type.  相似文献   

7.
c‐Src and Lyn are the only Src family kinases (SFKs) with established activity in osteoclasts (OCs). c‐Src promotes function via cytoskeletal organization of the mature resorptive cell while Lyn is a negative regulator of osteoclastogenesis. We establish that Fyn, another SFK, also impacts the OC, but in a manner distinctly different than c‐Src and Lyn. Fyn deficiency principally alters cells throughout the osteoclastogenic process, resulting in diminished numbers of resorptive polykaryons. Arrested OC formation in the face of insufficient Fyn reflects reduced proliferation of precursors, in response to M‐CSF and retarded RANK ligand (RANKL)‐induced differentiation, attended by suppressed activation of the osteoclastogenic signaling molecules, c‐Jun, and NF‐κB. The anti‐apoptotic properties of RANKL are also compromised in cells deleted of Fyn, an event mediated by increased Bim expression and failed activation of Akt. The defective osteoclastogenesis of Fyn?/? OCs dampens bone resorption, in vitro. Finally, while Fyn deficiency does not regulate basal osteoclastogenesis, in vivo, it reduces that stimulated by RANKL by ~2/3. Thus, Fyn is a pro‐resorptive SFK, which exerts its effects by prompting proliferation and differentiation while attenuating apoptosis of OC lineage cells. J. Cell. Biochem. 111: 1107–1113, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

8.
Specific integrins expressed on oligodendrocytes, the myelin-forming cells of the central nervous system, promote either differentiation and survival or proliferation by amplification of growth factor signaling. Here, we report that the Src family kinases (SFKs) Fyn and Lyn regulate each of these distinct integrin-driven behaviors. Fyn associates with alpha6beta1 and is required to amplify platelet-derived growth factor survival signaling, to promote myelin membrane formation, and to switch neuregulin signaling from a phosphatidylinositol 3-kinase to a mitogen-activated protein kinase pathway (thereby changing the response from proliferation to differentiation). However, earlier in the lineage Lyn, not Fyn, is required to drive alphaVbeta3-dependent progenitor proliferation. The two SFKs respond to integrin ligation by different mechanisms: Lyn, by increased autophosphorylation of a catalytic tyrosine; and Fyn, by reduced Csk phosphorylation of the inhibitory COOH-terminal tyrosine. These findings illustrate how different SFKs can act as effectors for specific cell responses during development within a single cell lineage, and, furthermore, provide a molecular mechanism to explain similar region-specific hypomyelination in laminin- and Fyn-deficient mice.  相似文献   

9.
BCR signaling regulates the activities and fates of B cells. BCR signaling encompasses two feedback loops emanating from Lyn and Fyn, which are Src family protein tyrosine kinases (SFKs). Positive feedback arises from SFK-mediated trans phosphorylation of BCR and receptor-bound Lyn and Fyn, which increases the kinase activities of Lyn and Fyn. Negative feedback arises from SFK-mediated cis phosphorylation of the transmembrane adapter protein PAG1, which recruits the cytosolic protein tyrosine kinase Csk to the plasma membrane, where it acts to decrease the kinase activities of Lyn and Fyn. To study the effects of the positive and negative feedback loops on the dynamical stability of BCR signaling and the relative contributions of Lyn and Fyn to BCR signaling, we consider in this study a rule-based model for early events in BCR signaling that encompasses membrane-proximal interactions of six proteins, as follows: BCR, Lyn, Fyn, Csk, PAG1, and Syk, a cytosolic protein tyrosine kinase that is activated as a result of SFK-mediated phosphorylation of BCR. The model is consistent with known effects of Lyn and Fyn deletions. We find that BCR signaling can generate a single pulse or oscillations of Syk activation depending on the strength of Ag signal and the relative levels of Lyn and Fyn. We also show that bistability can arise in Lyn- or Csk-deficient cells.  相似文献   

10.
The glycoprotein VI (GPVI)-Fc receptor (FcR) gamma-chain complex, a key activatory receptor for collagen on platelet surface membranes, is constitutively associated with the Src family kinases Fyn and Lyn. Molecular cloning of GPVI has revealed the presence of a proline-rich domain in the sequence of GPVI cytoplasmic tail which has the consensus for interaction with the Src homology 3 (SH3) domains of Fyn and Lyn. A series of in vitro experiments demonstrated the ability of the SH3 domains of both Src kinases to bind the proline-rich domain of GPVI. Furthermore, depletion of the proline-rich domain in GPVI (Pro(-)-GPVI) prevented binding of Fyn and Lyn and markedly reduced phosphorylation of FcR gamma-chain in transiently transfected COS-7 cells, but did not affect the association of the gamma-chain with GPVI. Jurkat cells stably transfected with wild type GPVI show robust increases in tyrosine phosphorylation and intracellular Ca2+ in response to the snake venom convulxin that targets GPVI. Importantly, convulxin is not able to activate cells transfected with Pro(-)-GPVI, even though the association with the immunoreceptor tyrosine-based activation motif-containing chains is maintained. These findings demonstrate that the proline-rich domain of GPVI mediates the association with Fyn/Lyn via their SH3 domain and that this interaction initiates activation signals through GPVI.  相似文献   

11.
Mast cells are critical for various allergic disorders. Mast cells express Src family kinases, which relay positive and negative regulatory signals by Ag. Lyn, for example, initiates activating signaling events, but it also induces inhibitory signals. Fyn and Hck are reported to be positive regulators, but little is known about the roles of other Src kinases, including Fgr, in mast cells. In this study, we define the role of Fgr. Endogenous Fgr associates with FcεRI and promotes phosphorylation of Syk, Syk substrates, which include linkers for activation of T cells, SLP76, and Gab2, and downstream targets such as Akt and the MAPKs in Ag-stimulated mast cells. As a consequence, Fgr positively regulates degranulation, production of eicosanoids, and cytokines. Fgr and Fyn appeared to act in concert, as phosphorylation of Syk and degranulation are enhanced by overexpression of Fgr and further augmented by overexpression of Fyn but are suppressed by overexpression of Lyn. Moreover, knockdown of Fgr by small interfering RNAs (siRNAs) further suppressed degranulation in Fyn-deficient bone marrow-derived mast cells. Overexpression of Fyn or Fgr restored phosphorylation of Syk and partially restored degranulation in Fyn-deficient cells. Additionally, knockdown of Fgr by siRNAs inhibited association of Syk with FcεRIγ as well as the tyrosine phosphorylation of FcεRIγ. Of note, the injection of Fgr siRNAs diminished the protein level of Fgr in mice and simultaneously inhibited IgE-mediated anaphylaxis. In conclusion, Fgr positively regulates mast cell through activation of Syk. These findings help clarify the interplay among Src family kinases and identify Fgr as a potential therapeutic target for allergic diseases.  相似文献   

12.
13.
EL mice have been used as a model of epilepsy, whereas ASK mice are an epilepsy-resistant variant originating from a colony of EL mice. Mast cell-dependent anaphylaxis is easily inducible by stimulation with IgE and Ag in ASK mice, whereas EL mice are resistant to such stimuli. In this study we have characterized mast cells derived from these two strains. ASK mast cells proliferated more vigorously than EL cells in response to IL-3 and stem cell factor. Although ASK mast cells degranulated less vigorously than EL mast cells upon stimulation with IgE and Ag, ASK cells produced and secreted several-fold more TNF-alpha and IL-2 than EL cells. Consistent with the similarities of these ASK and EL mast cell responses with phenotypes of lyn(-/-) and wild-type mast cells, respectively, Lyn activity was reduced in ASK cells. In addition to the impaired Lyn activity, ASK cells just like lyn(-/-) cells exhibited reduced Syk activity, prolonged activation of ERK and JNK, and enhanced activation of Akt. Furthermore, the lipid raft-resident transmembrane adaptor protein Cbp/PAG that associates with Lyn was hypophosphorylated in ASK cells. Importantly, similar to lyn(-/-) cells, Fyn was hyperactivated in ASK cells. Therefore, these results are consistent with the notion that Lyn-dependent phosphorylation of Cbp/PAG negatively regulates Src family kinases. This study also suggests that reduced activity of Lyn, a negative regulator of mast cell activation, underlies the susceptibility of ASK mice to anaphylaxis and implies that dysregulation of Lyn and other Src family kinases contributes to epileptogenesis.  相似文献   

14.
Platelet endothelial cell adhesion molecule-1 (CD31) is a 130-kDa glycoprotein receptor present on the surface of platelets, neutrophils, monocytes, certain T-lymphocytes, and vascular endothelial cells. CD31 is involved in adhesion and signal transduction and is implicated in the regulation of a number of cellular processes. These include transendothelial migration of leukocytes, integrin regulation, and T-cell function, although its function in platelets remains unclear. In this study, we demonstrate the ability of the platelet agonists collagen, convulxin, and thrombin to induce tyrosine phosphorylation of CD31. Furthermore, we show that this event is independent of platelet aggregation and secretion and is accompanied by an increase in surface expression of CD31. A kinase capable of phosphorylating CD31 was detected in CD31 immunoprecipitates, and its activity was increased following activation of platelets. CD31 tyrosine phosphorylation was reduced or abolished by the Src family kinase inhibitor PP2, suggesting a role for these enzymes. In accordance with this, each of the Src family members expressed in platelets, namely Fyn, Lyn, Src, Yes, and Hck, was shown to co-immunoprecipitate with CD31. The involvement of Src family kinases in this process was confirmed through the study of mouse platelets deficient in Fyn.  相似文献   

15.
《Current biology : CB》1999,9(10):535-S1
A role for the receptor-like protein tyrosine phosphatase α (PTPα) in regulating the kinase activity of Src family members has been proposed because ectopic expression of PTPα enhances the dephosphorylation and activation of Src and Fyn [1], [2], [3]. We have generated mice lacking catalytically active PTPα to address the question of whether PTPα is a physiological activator of Src and Fyn, and to investigate its other potential functions in the context of the whole animal. Mice homozygous for the targeted PTPα allele (PTPα−/−) and lacking detectable PTPα protein exhibited no gross phenotypic defects. The kinase activities of Src and Fyn were significantly reduced in PTPα−/− mouse brain and primary embryonic fibroblasts, and this correlated with enhanced phosphorylation of the carboxy-terminal regulatory Tyr527 of Src in PTPα−/− mice. Thus, PTPα is a physiological positive regulator of the tyrosine kinases Src and Fyn. Increased tyrosine phosphorylation of several unidentified proteins was also apparent in PTPα−/− mouse brain lysates. These may be PTPα substrates or downstream signaling proteins. Taken together, the results indicate that PTPα has a dual function as a positive and negative regulator of tyrosine phosphorylation events, increasing phosphotyrosyl proteins through activation of Src and Fyn, and directly or indirectly removing tyrosine phosphate from other unidentified proteins.  相似文献   

16.
Mast cell activation via FcεRI involves activation of the Src family kinases (SFKs) Lyn, Fyn, and Hck that positively or, in the case of Lyn, negatively regulate cellular responses. Little is known of upstream activators of these SFKs in FcεRI-dependent signaling. We investigated the role of receptor protein tyrosine phosphatase (PTP)α, a well-known activator of SFKs in diverse signaling systems, FcεRI-mediated mast cell activation, and IgE-dependent allergic responses in mice. PTPα(-/-) bone marrow-derived mast cells hyperdegranulate and exhibit increased cytokine and cysteinyl leukotriene secretion, and PTPα(-/-) mice display enhanced IgE-dependent anaphylaxis. At or proximal to FcεRI, PTPα(-/-) cells have reduced IgE-dependent activation of Lyn and Fyn, as well as reduced FcεRI and SHIP phosphorylation. In contrast, Hck and Syk activation is enhanced. Syk hyperactivation correlated with its increased phosphorylation at positive regulatory sites and defective phosphorylation at a negative regulatory site. Distal to FcεRI, we observed increased activation of PI3K and MAPK pathways. These findings demonstrate that PTPα activates the FcεRI-coupled kinases Lyn and Fyn and suppresses Hck activity. Furthermore, the findings indicate that hyperactivation of PTPα(-/-) mast cells and enhanced IgE-dependent allergic responses of PTPα(-/-) mice are due to the ablated function of PTPα as a critical regulator of Lyn negative signaling.  相似文献   

17.
Rat cerebellar granule cells differentiated in culture were fed [1-(3)H]sphingosine, allowing the metabolic radiolabelling of all cell sphingolipids and phosphatidylethanolamine. A detergent-insoluble sphingolipid-enriched membrane fraction, containing about 60% of cell sphingolipids, but only trace amounts of phosphatidylethanolamine, was prepared from [1-(3)H]sphingosine-fed cells by sucrose gradient centrifugation. This fraction was enriched in the Src family protein tyrosine kinases c-Src, Lyn and Fyn and in the GPI-anchored neuronal adhesion molecule TAG-1. The cell lysate and the sphingolipid-enriched membrane fraction were subjected to immunoprecipitation with anti-GD3 ganglioside monoclonal antibody R24, under experimental conditions designed to preserve the integrity of the domain. The radioactive lipid composition of the immunoprecipitates obtained from the cell lysate and from the sphingolipid-enriched fraction were very similar, and closely resembled the sphingolipid composition of the whole sphingolipid-enriched membrane fraction. In fact, the immunoprecipitates contained, together with GD3 ganglioside, all cell glycosphingolipids and sphingomyelin, whereas they did not contain phosphatidylethanolamine. Moreover, cholesterol and phosphatidylcholine were detected in the immunoprecipitates by qualitative TLC analysis followed by colourimetric visualization. c-Src, Lyn, Fyn and TAG-1 were associated with the anti-GD3 antibody immunoprecipitate. These proteins were not detected in the immunoprecipitates obtained under experimental conditions different from those designed to preserve the integrity of the domain. These data suggest that a membrane domain containing cholesterol, phosphatidylcholine, sphingolipids and proteins can be separated from the total cell membranes by anti-GD3 antibody immunoprecipitation, and that the association of c-Src, Fyn, Lyn, and TAG-1 with the sphingolipid-enriched domain is mediated by the interaction with a complex lipid environment, rather than by specific interactions with a single sphingolipid species.  相似文献   

18.
Aggregation of the high-affinity IgE receptors (FcepsilonRIs) on the surface of granulated mast cells initiates a chain of signaling events culminating in the release of allergy mediators. Although microtubules are involved in mast cell degranulation, the molecular mechanism that controls microtubule rearrangement after FcepsilonRI triggering is poorly understood. In this study, we show that the activation of bone marrow-derived mast cells (BMMCs) induced by FcepsilonRI aggregation or treatment with pervanadate leads to a rapid polymerization of microtubules. This polymerization was not dependent on the presence of Lyn kinase as determined by experiments with BMMCs isolated from Lyn-negative mice. One of the key regulators of microtubule polymerization is gamma-tubulin. Immunoprecipitation experiments revealed that gamma-tubulin from activated cells formed complexes with Fyn and Syk protein tyrosine kinases and several tyrosine phosphorylated proteins from both wild-type and Lyn(-/-) BMMCs. Pretreatment of the cells with Src-family or Syk-family selective tyrosine kinase inhibitors, PP2 or piceatannol, respectively, inhibited the formation of microtubules and reduced the amount of tyrosine phosphorylated proteins in gamma-tubulin complexes, suggesting that Src and Syk family kinases are involved in the initial stages of microtubule formation. This notion was corroborated by pull-down experiments in which gamma-tubulin complex bounds to the recombinant Src homology 2 and Src homology 3 domains of Fyn kinase. We propose that Fyn and Syk kinases are involved in the regulation of binding properties of gamma-tubulin and/or its associated proteins, and thus modulate the microtubule nucleation in activated mast cells.  相似文献   

19.
Huang R  Fang P  Kay BK 《New biotechnology》2012,29(5):526-533
Fyn is a nonreceptor protein tyrosine kinase that belongs to a highly conserved kinase family, Src family kinases. Fyn plays an important role in inflammatory processes and neuronal functions. To generate a synthetic affinity reagent that can be used to probe Fyn, a phage-display library of fibronectin type III monobodies was affinity selected with the Src Homology 3 (SH3) domain of Fyn and three binders were isolated. One of the three binders, G9, is specific in binding to the SH3 domain of Fyn, but not to the other members of the Src family (i.e. Blk, Fgr, Hck, Lck, Lyn, Src and Yes), even though they share 51-81% amino acid identity. The other two bind principally to the Fyn SH3 domain, with some cross-reactivity to the Yes SH3 domain. The G9 binder has a dissociation constant of 166±6nM, as measured by isothermal titration calorimetry, and binds only to the Fyn SH3 domain out of 150 human SH3 domains examined in an array. Interestingly, although the G9 monobody lacks proline in its randomized BC and FG loops, it binds at the same site on the SH3 domain as proline-rich ligands, as revealed by competition assays. The G9 monobody, identified in this study, may be used as a highly selective probe for detecting and purifying cellular Fyn kinase.  相似文献   

20.
Enhanced expression of both integrin alpha v beta 3 and platelet-derived growth factor receptor (PDGFr) has been described in glioblastoma tumors. We therefore explored the possibility that integrin alpha v beta 3 cooperates with PDGFr to promote cell migration in glioblastoma cells, and extended the study to identify the Src family members that are activated on PDGF stimulation. Glioblastoma cells utilize integrins alpha v beta 3 and alpha v beta 5 to mediate vitronectin attachment. We found that physiologic PDGF stimulation (83 pm, 10 min) of vitronectin-adherent cells promoted the specific recruitment of integrin alpha v beta 3-containing focal adhesions to the cell cortex and alpha v beta 3-mediated cell motility. Analysis of PDGFr immunoprecipitates indicated an association of the PDGFr beta with integrin alpha v beta 3, but not integrin alpha v beta 5. Cells plated onto collagen or laminin, which engage different integrins, exhibited significantly less migration on PDGF stimulation, indicating a cooperation of alpha v beta 3 and the PDGFr beta in glioblastoma cells that promotes migration. Further analysis of the cells plated onto vitronectin indicated that PDGF stimulation caused an increase in Src kinase activity, which was associated with integrin alpha v beta 3. In the vitronectin-adherent cells, Lyn was associated preferentially with alpha v beta 3 both in the presence and absence of PDGF stimulation. In contrast, Fyn was associated with both alpha v beta 3 and alpha v beta 5. Moreover, PDGF stimulation increased the activity of Lyn, but not Fyn, in vitronectin-adherent cells, and the activity of Fyn, but not Lyn, in laminin-adherent cells. Using cells attached to mAb anti-alpha v beta 3 or mAb anti-integrin alpha 6, we confirmed the activation of specific members of the Src kinase family with PDGF stimulation. Down-regulation of Lyn expression by siRNA significantly inhibited the cell migration mediated by integrin alpha v beta 3 in PDGF-stimulated cells, demonstrating the PDGFr beta cooperates with integrin alpha v beta 3 in promoting the motility of vitronectin-adherent glioblastoma cells through a Lyn kinase-mediated pathway. Notably, the data indicate that engagement of different integrins alters the identity of the Src family members that are activated on stimulation with PDGF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号