首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A UV-resistant revertant (XP129) of a xeroderma pigmentosum group A cell line has been reported to be totally deficient in repair of cyclobutane pyrimidine dimers (CPDs) but proficient in repair of 6-4 photoproducts. This finding has been interpreted to mean that CPDs play no role in cell killing by UV. We have analyzed the fine structure of repair of CPDs in the dihydrofolate reductase gene in the revertant. In this essential, active gene, we observe that repair of the transcribed strand is as efficient as that in normal, repair-proficient human cells, but repair of the nontranscribed strand is not. Within 4 h after UV at 7.5 J/m2, over 50% of the CPDs were removed, and by 8 h, 80% of the CPDs were removed. In contrast, there was essentially no removal from the nontranscribed strand even by 24 h. Our results demonstrate that overall repair measurements can be misleading, and they support the hypothesis that removal of CPDs from the transcribed strands of expressed genes is essential for UV resistance.  相似文献   

3.
4.
5.
6.
7.
DNA excision repair modulates the mutagenic effect of many genotoxic agents. The recently observed strand specificity for removal of UV-induced cyclobutane dimers from actively transcribed genes in mammalian cells could influence the nature and distribution of mutations in a particular gene. To investigate this, we have analyzed UV-induced DNA repair and mutagenesis in the same gene, i.e. the hypoxanthine phosphoribosyl-transferase (hprt) gene. In 23 hprt mutants from V79 Chinese hamster cells induced by 2 J/m2 UV we found a strong strand bias for mutation induction: assuming that pre-mutagenic lesions occur at dipyrimidine sequences, 85% of the mutations could be attributed to lesions in the nontranscribed strand. Analysis of DNA repair in the hprt gene revealed that more than 90% of the cyclobutane dimers were removed from the transcribed strand within 8 hours after irradiation with 10 J/m2 UV, whereas virtually no dimer removal could be detected from the nontranscribed strand even up to 24 hr after UV. These data present the first proof that strand specific repair of DNA lesions in an expressed mammalian gene is associated with a strand specificity for mutation induction.  相似文献   

8.
9.
10.
An approach utilizing fluorescence-activated DNA sequencing technology was used to study the position and frequency of UV-induced lesions in the lacI gene of Escherichia coli. The spectrum of sites of UV damage in the NC+ region of the gene was compared with a published spectrum of UV-induced mutation in lacI (Schaaper, R.M., Dunn, R.L., and Glickman, B.W. (1987) J. Mol. Biol. 198, 187-202). On average, the frequency of UV-induced lesions in the nontranscribed strand was higher than that in the transcribed strand in the region analyzed. A large fraction of mutations occurs at sites of UV-induced lesions in the nontranscribed strand, but not in the transcribed strand. This bias is reduced in an excision repair deficient (UvrB-) strain. In addition, mutations occur overwhelmingly at sites where a dipyrimidine sequence is present in the nontranscribed strand. This bias is also markedly reduced in the UvrB- strain. In light of recent work Mellon and Hanawalt (Mellon, I., and Hanawalt, P.C. (1989) Nature 342, 95-98) describing the preferential removal of cyclobutane dimers from the transcribed strand of the expressed lacZ gene in E. coli, our data suggest that preferential strand repair may have a significant effect on mutagenesis.  相似文献   

11.
12.
13.
The excision repair of UV-induced pyrimidine dimers was investigated in three genes: Gart, Notch and white in a permanent Drosophila cell line Kc, derived from wild type Drosophila melanogaster embryonic cells. In this cell line Gart and Notch are actively transcribed, whereas white is not expressed. In all three genes UV-induced pyrimidine dimers were removed with the same rate and to the same extent: 60% removal within 16 hours, up to 80-100% in 24 hours after irradiation with 10 or 15 J/m2 UV. These kinetics are similar to the time course of dimer removal measured in the genome overall. No difference in repair of the inactive white locus compared to the active Gart and Notch genes was found. Similar results were obtained using a different wild type cell line, SL2, although repair appeared to be somewhat slower in this cell line. The results are discussed with respect to the data found for gene specific repair in other eukaryotic systems.  相似文献   

14.
Removal of ultraviolet light induced cyclobutane pyrimidine dimers (CPD) from active and inactive genes was analyzed in cells derived from patients suffering from the hereditary disease Cockayne's syndrome (CS) using strand specific probes. The results indicate that the defect in CS cells affects two levels of repair of lesions in active genes. Firstly, CS cells are deficient in selective repair of the transcribed strand of active genes. In these cells the rate and efficiency of repair of CPD are equal for the transcribed and the nontranscribed strand of the active ADA and DHFR genes. In normal cells on the other hand, the transcribed strand of these genes is repaired faster than the nontranscribed strand. However, the nontranscribed strand is still repaired more efficiently than the inactive 754 gene and the gene coding for coagulation factor IX. Secondly, the repair level of active genes in CS cells exceeds that of inactive loci but is slower than the nontranscribed strand of active genes in normal cells. Our results support the model that CS cells lack a factor which is involved in targeting repair enzymes specifically towards DNA damage located in (potentially) active DNA.  相似文献   

15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号