首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of coherent and non-coherent electromagnetic fields of millimetre range on biophysical and biochemical indices of blood erythrocytes and plasma of the animals totally exposed to radiation at various periods of observation (day 1, 5, 10) was studied. The following structure-functional shifts were revealed: deviations in the content of separate phospholipid fractions of erythrocyte membranes, the changes of lipid peroxidation products in erythrocyte membranes and blood plasma of the irradiated animals, statistically significant increase of K ions out-flow from the erythrocytes, as well as the alteration of the value of membrane potential of erythrocytes.  相似文献   

2.
The molecular mechanisms of phenoxyherbicides action in animals have been insufficiently studied. Now, we have investigated the interaction of sodium salts of phenoxyherbicides, e.g., 2,4-dichlorophenoxyacetic acid (2,4-D-Na), 2,4,5-trichlorophenoxyacetic acid (2,4,5-T-Na) and 4-chloro-2-methylphenoxyacetic acid (MCPA-Na) with human erythrocytes. In this study, we evaluated the effect of these compounds on erythrocyte membrane fluidity as well as changes in membrane proteins content. It was observed that all of the compounds studied altered membrane fluidity, changed the size and shape of the erythrocytes and provoked echinocytes formation. It was also revealed that 2,4-D-Na and 2,4,5-T-Na changed the content of erythrocyte membrane proteins mainly by a decrease in the level of spectrin and low molecular weight proteins. The comparison of the action of phenoxyherbicides examined showed that 2,4,5-T-Na caused the greatest changes in the erythrocytes membrane, whereas MCPA-Na induced the lowest alterations in the incubated cells. It must be noted that changes of the investigated parameters were observed only at presence of significant concentrations of these compounds that may penetrate human organism only as a result of acute poisoning.  相似文献   

3.
The effect of taurine on membrane-associated processes was studied in rat erythrocytes and peritoneal mast cells. EPR with a spin probe 5-DS revealed a significant decrease in the order parameter S of membrane phospholipid acyl chains in vitro after incubation of erythrocytes with taurine (10 mM, 1 h). Increased susceptibility of the erythrocyte membrane to peroxide-induced lysis was also observed. These effects suggested decreased membrane microviscosity resulting from less dense packing of the phospholipids. The differential effects of taurine on stimulated Ca-dependent functional activity of peritoneal mast cells (histamine liberation) upon different ways of administration (oral, intraperitoneal, or intramuscular) suggest an indirect and complex mechanism of taurine action in the organism.  相似文献   

4.
Anti-A IgG antibodies have previously been shown to stimulate Ca(2+) entry into red blood cells. Increased cytosolic free Ca(2+) concentration is known to trigger eryptosis, i.e. suicidal erythrocyte death, characterized by exposure of phosphatidylserine at the erythrocyte surface. As macrophages are equipped with phosphatidylserine receptors, they bind, engulf and degrade phosphatidylserine exposing cells. The present experiments have been performed to explore whether anti-A IgGs trigger phosphatidylserine exposure of erythrocytes. Phosphatidylserine exposure was estimated from annexin-V binding as determined in FACS analysis. Exposure to anti-A IgGs (0.5 microg/ml) indeed significantly increased annexin-V binding in erythrocytes with blood group A, but not in erythrocytes with blood group 0. According to Fluo3 fluorescence, anti-A IgGs increased cytosolic Ca(2+) concentration. Whole cell patch clamp recordings revealed the activation of a Ca(2+)-permeable cation channel following treatment with anti-A-IgGs. Annexin-V binding following anti-A IgG exposure was blunted by Ca(2+) removal while anti-A IgG-stimulated cation channel activity was not dependent on extracellular Ca(2+). Osmotic shock (exposure of erythrocytes to 850 mOsm) increased annexin binding, an effect further enhanced by exposure to anti-A IgGs. In conclusion, anti-A IgGs activate erythrocyte cation channels leading to Ca(2+) entry and subsequent erythrocyte cell membrane scrambling. The effect most likely contributes to the elimination of erythrocytes following an immune reaction against the A antigen.  相似文献   

5.
A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, A comparison of water diffusion in human erythrocytes and ghosts revealed a longer relaxation time in ghosts, corresponding to a decreased exchange rate. However, the diffusional permeability of ghosts was not significantly different from that of erythrocytes . The changes in water diffusion following exposure to p-chloromercuribenzene sulfonate (PCMBS) have been studied on ghosts suspended in isotonic solutions. It was found that a significant inhibitory effect of PCMBS on water diffusion occurred only after several minutes of incubation at 37°C. No inhibition was noticed after short incubation at 0°C as previously used in some labelling experiments. This indicates the location in the membrane interior of the SH groups involved in water diffusion across human erythrocyte membranes. The nuclear magnetic resonance ( n . m . r . ) method appears as a useful tool for studying changes in water diffusiofl in erythrocyte ghosts with the aim of locating the water channel.  相似文献   

6.
Bovine erythrocyte exposure to isometamidium chloride causes increased osmotic fragility. Control cells tolerated up to 1 mg/ml drug with no effects. Carrier erythrocytes were highly susceptible to drug, with increased osmotic fragility and decreased encapsulation potential of sucrose and inulin. Scanning electron micrographs of control and carrier erythrocytes exposed to drug revealed the formation of enkephalocytes with carrier erythrocytes. Control erythrocytes showed greater tolerance to the drug. Apparently, access of the drug to the interior of the erythrocyte membrane allows the drug to be more interactive with the membrane.  相似文献   

7.
The role of biological membranes as a target in biological radiation damage remains unclear. The present study investigates how the biochemical and biophysical properties of a simple biological model, i.e. human erythrocyte membranes, are altered after exposure to relatively low doses of (60)Co gamma rays. Lipid peroxidation increased in the hours after radiation exposure, based on measurements of MDA and on the lipid peroxidation index after parinaric acid incorporation. Protein carbonyl content also increased rapidly after radiation exposure. An imbalance between the radiation-mediated oxidative damages and the antioxidant capacity of the erythrocytes was observed in the hours after radiation exposure. Antioxidant enzyme activities, mainly catalase and glutathione peroxidase, were found to decrease after irradiation. The development of a radiation-induced oxidative stress probably explains the reorganization of the fatty acid pattern 72 h after radiation exposure. The phosphatidylethanolamine (PE) fatty acids of the (n-3) and (n-6) series decreased, while the PE saturated fatty acid content increased. All these modifications may be involved in the variation of the biophysical properties of the membranes that we noted after radiation exposure. Specifically, we observed that the lipid compartment of the membrane became more fluid while the lipid-protein membrane interface became more rigid. Taken together, these findings reinforce our understanding that the cell membrane is a significant biological target of radiation. Thus the role of the biological membrane in the expression and course of cell damage after radiation exposure must be considered.  相似文献   

8.
用化学方法测定了乙酰胆碱脂酶(AchE)活性,阵发性睡眠性血红蛋白尿症(PNH)红细胞远低于正常红细胞。为了进一步研究PNHAchE(—)的红细胞,采用Protein A Sepharose 6MB结合AchE单抗亲和层析法分离出PNHAchE(—)的红细胞。用间接免疫荧光流式细胞术检测,PNH细胞AchE低于正常,而PNHAchE(—)红细胞未能检出AchE。3H-肌醇标记实验证明,正常红细胞膜区带4.1处有较高的放射活性,而PNH红细胞极低,PNHAchE(—)红细胞完全无放射活性。用AchE抗体做免疫印渍实验证明了AchE存在区带4.1部位。DMPC诱导正常和PNH红细胞,检测二者囊泡化的程度,发现PNH病人红细胞远比正常人红细胞易于囊泡化。  相似文献   

9.
Effect of anandamide on erythrocyte survival.   总被引:1,自引:0,他引:1  
The endocannabinoid anandamide (Arachidonylethanolamide, AEA) is known to induce apoptosis in a wide variety of nucleated cells. The present study explored whether anandamide induces suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Eryptotic cells are phagocytosed and thus cleared from circulating blood. Triggers of eryptosis include increase of cytosolic Ca2+ activity, formation of PGE(2), oxidative stress and excessive cell shrinkage. Erythrocyte Ca2+ activity was estimated from Fluo3 fluorescence, phosphatidylserine exposure from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to anandamide (= 2.5 microM) increased cytosolic Ca2+ activity, enhanced the percentage of annexin V binding erythrocytes and decreased erythrocyte forward scatter, effects significantly blunted in the presence of cycloxygenase inhibitors acetylsalicylic acid (50 microM) or ibuprofen (100 microM) and in the nominal absence of extracellular Ca2+. Anandamide further enhanced the stimulating effects of hypertonic (addition of 550 mM sucrose) or isotonic (isosmotic replacement of Cl- with gluconate) cell shrinkage on annexin V binding. The present observations demonstrate that anandamide increases cytosolic Ca2+ activity, thus leading to cell shrinkage and cell membrane scrambling of mature erythrocytes.  相似文献   

10.
Sachar S  Saxena RK 《PloS one》2011,6(7):e22032
Single wall Carbon Nanotubes (SWCNTs) are hydrophobic and do not disperse in aqueous solvents. Acid functionalization of SWCNTs results in attachment of carboxy and sulfonate groups to carbon atoms and the resulting acid functionalized product (AF-SWCNTs) is negatively charged and disperses easily in water and buffers. In the present study, effect of AF-SWCNTs on blood erythrocytes was examined. Incubation of mouse erythrocytes with AF-SWCNTs and not with control SWCNTs, resulted in a dose and time dependent lysis of erythrocyte. Using fluorescence tagged AF-SWCNTs, binding of AF-SWCNTs with erythrocytes could be demonstrated. Confocal microscopy results indicated that AF-SWCNTs could enter the erythrocytes. Treatment with AF-SWCNTs resulted in exposure of hydrophobic patches on erythrocyte membrane that is indicative of membrane damage. A time and dose dependent increase in externalization of phosphatidylserine on erythrocyte membrane bilayer was also found. Administration of AF-SWCNTs through intravenous route resulted in a transient anemia as seen by a sharp decline in blood erythrocyte count accompanied with a significant drop in blood haemoglobin level. Administration of AF-SWCNTs through intratracheal administration also showed significant decline in RBC count while administration through other routes (gavage and intra-peritoneal) was not effective. By using a recently developed technique of a two step in vivo biotinylation of erythrocytes that enables simultaneous enumeration of young (age <10 days) and old (age>40 days) erythrocytes in mouse blood, it was found that the in vivo toxic effect of AF-SWCNTs was more pronounced on older subpopulation of erythrocytes. Subpopulation of old erythrocytes fell after treatment with AF-SWCNTs but recovered by third day after the intravenous administration of AF-SWCNTs. Taken together our results indicate that treatment with AF-SWCNTs results in acute membrane damage and eventual lysis of erythrocytes. Intravenous administration of AF-SWCNTs resulted in a transient anemia in which older erythrocytes are preferably lysed.  相似文献   

11.
Previous studies on the distribution of circulating ciclosporin have shown that the majority of the drug is associated with erythrocytes. In order to investigate the nature of ciclosporin-erythrocyte binding, binding studies were performed on isolated erythrocytes. At therapeutic concentrations (approx. 0.5 microgram/ml in whole blood) greater than 90% of the erythrocyte associated ciclosporin was found in the cytosol. The cytosolic binding capacity was approximately (2-2.5).10(5) molecules of ciclosporin per cell. A lower affinity binding of the drug to the plasma membrane occurred only at higher ciclosporin concentrations. The ciclosporin-binding species was purified from erythrocyte cytosol using ciclosporin-Affigel affinity chromatography. This revealed a 16 kDa protein, similar in size to the ciclosporin-binding protein, cyclophilin, previously identified in lymphocyte cytosol. Immunochemical analysis using rabbit anti-bovine spleen cyclophilin antisera revealed that the erythrocyte ciclosporin-binding protein was either cyclophilin or a closely related protein. It is concluded that intracellular ciclosporin-binding within erythrocytes is mostly attributable to the presence of a single protein or protein family represented by cyclophilin. The presence of (2-2.5).10(5) copies of this binding protein within each erythrocyte is responsible for the ciclosporin found associated with erythrocytes.  相似文献   

12.
Preliminary experiments revealed that ferrylmyoglobin decayed more slowly in the absence than in the presence of intact erythrocytes and erythrocyte membranes. This suggested the existence of interactions between FerrylMb and the erythrocyte membrane. Subsequent studies examined the influence of FerrylMb on the membrane of intact erythrocytes and on isolated erythrocyte membranes. The incubation of intact erythrocytes with FerrylMb did not influence their osmotic fragility or the fluidity of their membranes; the level of peroxidation of the membrane lipids increased only slightly (there was only a slight increase in the level of membrane lipid peroxidation). The activity of acetylcholinesterase significantly increased after 15 minutes of incubation, whereas longer incubation did not lead to any changes in the activity of this enzyme. The incubation of isolated erythrocyte membranes with FerrylMb resulted in an increase in their fluidity and a significant rise in the level of lipid peroxidation.  相似文献   

13.
Suicidal death of erythrocytes, or eryptosis, is characterized by cell shrinkage and cell membrane scrambling leading to phosphatidylserine exposure at the cell surface. Eryptosis is triggered by increase of cytosolic Ca2+ activity, which may result from treatment with the Ca2+ ionophore ionomycin or from energy depletion by removal of glucose. The present study tested the hypothesis that phosphatidylserine exposure at the erythrocyte surface fosters adherence to endothelial cells of the vascular wall under flow conditions at arterial shear rates and that binding of eryptotic cells to endothelial cells is mediated by the transmembrane CXC chemokine ligand 16 (CXCL16). To this end, human erythrocytes were exposed to energy depletion (for 48 h) or treated with the Ca2+ ionophore ionomycin (1 μM for 30 min). Phosphatidylserine exposure was quantified utilizing annexin-V binding, cell volume was estimated from forward scatter in FACS analysis, and erythrocyte adhesion to human vascular endothelial cells (HUVEC) was determined in a flow chamber model. As a result, both, ionomycin and glucose depletion, triggered eryptosis and enhanced the percentage of erythrocytes adhering to HUVEC under flow conditions at arterial shear rates. The adhesion was significantly blunted in the presence of erythrocyte phosphatidylserine-coating annexin-V (5 μl/ml), of a neutralizing antibody against endothelial CXCL16 (4 μg/ml), and following silencing of endothelial CXCL16 with small interfering RNA. The present observations demonstrate that eryptotic erythrocytes adhere to endothelial cells of the vascular wall in part by interaction of phosphatidylserine exposed at the erythrocyte surface with endothelial CXCL16.  相似文献   

14.
Binding of doxorubicin (DOX) immobilized on nanodispersed magnetite (DOX-M conjugates with loading in the range of 0.16-25.1 mg DOX/g carrier) to intact human erythrocytes in concurrence with free DOX was investigated. Two specific binding sites for doxorubicin were revealed at the plasma membrane of human erythrocytes. Changes in the ordering of the DOX-M nanoparticles according to small angle scattering data are consistent with their specific binding at the plasma membrane upon incubation with erythrocytes. Free and conjugated doxorubicin modulated signal transduction in erythrocytes in a similar way. Both up-regulate nitric oxide and cyclic GMP and down-regulate cyclic AMP production and stabilize the membranes of oxidatively damaged erythrocytes.  相似文献   

15.
Investigation into structural, metabolic, and functional conditions of red blood cells was performed in 24 patients with a neurosis (neurasthenia, disturbance of asaptation) with the aid of electrophoretic division of proteins of the erythrocyte membrane, thin-layer chromatography, fluorescent probing of membranes, evaluation of peroxidative oxidation process, scanning and transmission electron microscopy, laser diphractometry, photometry. The patients with neurotic disorders at the early period after the influence of psychogenic factors (up to 3 months) revealed disorganization of lipid and protein composition of the red cell membrane, increase in microviscosity of its lipid phase, impairment of surface architectonics and ultrastructure of red cells, decrease of a deformation ability and increase of aggregate properties of erythrocytes. The authors treat stability of erythrocytes' homeostasis under the long-term influence of psychogenic factors from a viewpoint of adaptive changes in organism under the influence of neurogenic factors.  相似文献   

16.
The aim of the study was to examine and compare the effects of methemoglobin (metHb) and ferrylhemoglobin (ferrylHb) on the erythrocyte membrane. Kinetic studies of the decay of ferrylhemoglobin (*HbFe(IV)=O denotes ferryl derivative of hemoglobin present 5 min after initiation of the reaction of metHb with H(2)O(2); ferrylHb) showed that autoredecay of this derivative is slower than its decay in the presence of whole erythrocytes and erythrocyte membranes. It provides evidence for interactions between ferrylHb and the erythrocyte membrane. Both hemoglobin derivatives induced small changes in the structure and function of the erythrocyte membrane which were more pronounced for ferrylHb. The amount of ferrylHb bound to erythrocyte membranes increased with incubation time and, after 2 h, was twice that of membrane-bound metHb. The incubation of erythrocytes with metHb or ferrylHb did not influence osmotic fragility and did not initiate peroxidation of membrane lipids in whole erythrocytes as well as in isolated erythrocyte membranes. Membrane acetylcholinesterase activity increased by about 10% after treatment of whole erythrocytes with both metHb and ferrylHb. ESR spectra of membrane-bound maleimide spin label demonstrated minor changes in the conformation of label-binding proteins in ferrylHb-treated erythrocyte membranes. The fluidity of the membrane surface layer decreased slightly after incubation of erythrocytes and isolated erythrocyte membranes with ferrylHb and metHb. In whole erythrocytes, these changes were not stable and disappeared during longer incubation.  相似文献   

17.
The natural nutrient component Curcumin with anti-inflammatory and antitumor activity has previously been shown to stimulate apoptosis of several nucleated cell types. The present study has been performed to explore whether Curcumin could similarly induce suicidal death of erythrocytes or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the erythrocyte surface. Phosphatidylserine exposing cells are phagocytosed and thus rapidly cleared from circulating blood. Erythrocyte membrane scrambling may be triggered by increase of cytosolic Ca(2+) activity or formation of ceramide. To test for eryptosis, erythrocyte phosphatidylserine exposure has been estimated from annexin V binding, and erythrocyte volume from forward scatter in FACS analysis. Exposure of erythrocytes to Curcumin (= 1 microM) increased annexin V binding and decreased forward scatter, pointing to phosphatidylserine exposure at the cell surface and cell shrinkage. According to Fluo3 fluorescence Curcumin increased cytosolic Ca(2+) activity and according to immunofluorescence Curcumin increased ceramide formation. As shown previously, hypertonic shock (addition of 550mM sucrose), chloride removal and glucose depletion decreased the forward scatter and increased annexin V binding. The effects on annexin binding were enhanced in the presence of Curcumin. Exposure to Curcumin did, however, not significantly enhance the shrinking effect of hypertonic shock or Cl(-) removal and reversed the shrinking effect of glucose withdrawal. The present observations disclose a proeryptotic effect of Curcumin which may affect the life span of circulating erythrocytes.  相似文献   

18.
By use of fluorescence probes 1-anilinonaphthalene-8-sulfonic acid, 2-toluidinylnaphthalene-6-sulfonate, pyrene, perylene and chemical label phosphatidylethanolamine 2,4,6-trinitrobenzele sulfonic acid, the effect of microwave radiation on the erythrocyte membrane was studied. The studies with the fluorescence probes were carried out on erythrocyte ghosts and with 2,4,6-trinitrobenzene sulfonic acid on whole erythrocytes. The fluorescence was measured during irradiation of the membranes with 340-MHz microwaves at an SAR of 100 W/kg. Trinitrophenylation of phosphatidylethanolamine from whole erythrocytes was performed simultaneously with microwave irradiation at 900 MHz (10 mW/cm2). It was shown that the microwave field decreased lipid viscosity, altered the structural state of lipid-protein contact regions, and decreased the protein shielding of lipids. These changes corresponded to those produced by thermal action of microwaves.  相似文献   

19.
Based primarily on studies of human erythrocytes, current theories of the structure and organization of erythrocyte membrane localize spectrin to the membrane cytoplasmic surface. Affinity purified anti-sheep spectrin antibodies were used in indirect immunofluorescence studies of intact erythrocytes from various vertebrate species and inside-out and right-side-out impermeable sheep erythrocyte vesicles. This investigation detected immunologically reactive external and potentially transmembranal determinant(s) of the sheep erythrocyte spectrin "assembly." Parallel studies using anti-sheep and anti-human spectrin antibodies, as well as 125I surface-labelling studies of intact sheep and human erythrocytes, indicated that this particular membrane orientation of spectrin was evident in sheep but not in human erythrocytes. Antisera containing antibodies to the external portion of this spectrin "assembly" demonstrated external fluorescence to a variable degree on some, but not all, vertebrate erythrocytes surveyed, confirming that the sheep erythrocyte was not the only exception. It is suggested that there may be subtle species variability in the intermolecular associations of the spectrin "assembly" with(in) the erythrocyte membrane not requiring alterations of the spectrin molecule itself.  相似文献   

20.
Microwave exposure (2450 MHz, 60 mW/g, CW) of rabbit erythrocytes increases Na passive transport only at membrane phase transition temperatures (Tc) of 17–19°C. This permeability effect is enhanced for relative hypoxia which is characteristic of intracellular oxygen tension (pO2 ? 5 mm Hg). Neither the permeability nor the pO2 effects are observed in temperature-matched (± 0.05°C), sham-exposed controls. In addition, at Tc, microwave exposure is observed to induce the shedding or release of two erythrocyte proteins not seen in sham-exposed controls. Moreover, the enhanced shedding of at least seven other proteins all of molecular weight ? 28,000 D was detected in the microwave-treated samples. Using sensitive silver staining we estimate that approximately 450 fg of protein were shed per erythrocyte. These results demonstrate that temperature and pO2 are important influences on both functional and structural responses of cell membranes to microwave radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号