首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

There is mounting evidence that the release of haemozoin (β-haematin), which is produced in large amounts during malaria infection and is released into the circulation during schizont rupture, is associated with damage to cell membranes through an oxidative mechanism. The red blood cell membrane is thus oxidised, causing rigidity of the cell. This can contribute to the pathophysiology of severe malaria, since red blood cells will have to deform considerably in order to squeeze through the microcirculation, the patency of which is disturbed by sequestered red blood cells containing the mature forms of the parasite. Rigidity of red blood cells forms a new target for intervention. Since this seems to be caused by oxidative damage to the red blood cell membrane, the anti-oxidant N-acetylcysteine is a promising candidate for adjunctive treatment in severe malaria, which still has a mortality rate as high as 20%.  相似文献   

2.
Multiple glucose-6-phosphate dehydrogenase (G6PD)-deficient alleles have reached polymorphic frequencies because of the protection they confer against malaria infection. A protection mechanism based on enhanced phagocytosis of parasitized G6PD-deficient erythrocytes that are oxidatively damaged is well accepted. Although an association of this phenotype with the impairment of the antioxidant defense in G6PD deficiency has been demonstrated, the dysfunctional pathway leading to membrane damage and modified exposure of the malaria-infected red cell to the host is not known. Thus, in this study, erythrocytes from the common African variant G6PD A- were used to analyze by redox proteomics the major oxidative changes occurring in the host membrane proteins during the intraerythrocytic development of Plasmodium falciparum, the most lethal malaria parasite. Fifteen carbonylated membrane proteins exclusively identified in infected G6PD A- red blood cells revealed selective oxidation of host proteins upon malarial infection. As a result, three pathways in the host erythrocyte were oxidatively damaged in G6PD A-: (1) traffic/assembly of exported parasite proteins in red cell cytoskeleton and surface, (2) oxidative stress defense proteins, and (3) stress response proteins. Additional identification of hemichromes associated with membrane proteins also supports a role for specific oxidative modifications in protection against malaria by G6PD polymorphisms.  相似文献   

3.
Malaria represents a continuing and major global health challenge and our understanding of how the Plasmodium parasite causes severe disease and death remains poor. One serious complication of the infection is cerebral malaria, a clinically complex syndrome of coma and potentially reversible encephalopathy, associated with a high mortality rate and increasingly recognised long-term sequelae in survivors. Research into the pathophysiology of cerebral malaria, using a combination of clinical and pathological studies, animal models and in vitro cell culture work, has focussed attention on the blood-brain barrier (BBB). This represents the key interface between the brain parenchyma and the parasite, which develops within an infected red cell but remains inside the vascular space. Studies of BBB function in cerebral malaria have provided some evidence for parasite-induced changes secondary to sequestration of parasitised red blood cells and host leukocytes within the cerebral microvasculature, such as redistribution of endothelial cell intercellular junction proteins and intracellular signaling. However, the evidence for a generalised increase in BBB permeability, leading to cerebral oedema, is conflicting. As well as direct cell adhesion-dependent effects, local adhesion-independent effects may activate and damage cerebral endothelial cells and perivascular cells, such as decreased blood flow, hypoxia or the effects of parasite toxins such as pigment. Finally, a number of systemic mechanisms could influence the BBB during malaria, such as the metabolic and inflammatory complications of severe disease acting 'at a distance'. This review will summarise evidence for these mechanisms from human studies of cerebral malaria and discuss the possible role for BBB dysfunction in this complex and challenging disease.  相似文献   

4.
The malaria parasite causes lysis of red blood cells, resulting in anemia, a major cause of mortality and morbidity. Intuitively, one would expect the production of red blood cells to increase in order to compensate for this loss. However, it has been observed that this response is weaker than would be expected. Furthermore, iron supplementation for iron deficient children in malaria endemic regions can paradoxically adversely affect the clinical outcome of malaria infection. A possible explanation may lie in the preference that some malaria parasites show for infecting immature red blood cells (reticulocytes). In the presence of a parasite preference for immature red cells, a rise in red cell production can ‘fuel the fire’ of infection by increasing the availability of the parasite's preferred target cell.We present a mathematical model of red blood cell production and infection in order to explore this hypothesis. We assess the effect of varying the reticulocyte replacement rate and preference of the parasite for reticulocytes on four key outcome measures assessing anemia and parasitemia.For a given level of parasite preference for reticulocytes we uncover an optimal erythropoietic response which minimizes disease severity. Increasing red blood cell production much above this optimum confers no benefit to the patient, and in fact can increase the degree of anemia and parasitemia. These conclusions are consistent with epidemiological studies demonstrating that both iron deficiency and anemia are protective against severe malaria, whilst iron supplementation in malaria endemic regions is with an increased number of malaria related adverse effects. Thus, suppression of red blood cell production, rather than being an unfortunate side effect of inflammation, may be a host protective effect against severe malarial anemia.  相似文献   

5.
A novel fixative and permeabilization method is described which allows simultaneous flow cytometric detection of red blood cell membrane antigen and intracellular malaria parasites. To illustrate the method, red blood cells from patients with paroxysmal nocturnal hemoglobinuria were infected with Plasmodium falciparum and maintained in synchronous red blood cell culture. The infected red blood cells were immunolabeled with antibodies directed to the complement regulatory protein decay-accelerating factor (DAF) followed by subsequent fixations in paraformaldehyde and then glutaraldehyde in phosphate-buffered saline. Finally, DNA of the intraerythrocytic parasites was stained with propidium iodide. Using this technique, cellular morphology was well preserved, no cell aggregation was observed, and high-quality indirect immunofluorescence and parasite DNA staining were obtained with negligible nonspecific labelling. Simultaneous measurement of parasite DNA and red blood cell membrane determinants makes possible the investigation of alterations of red cell membrane proteins in association with development of intracellular malaria parasites.  相似文献   

6.
There is considerable debate as to the nature of the primary parasite-derived moieties that activate innate pro-inflammatory responses during malaria infection. Microparticles (MPs), which are produced by numerous cell types following vesiculation of the cellular membrane as a consequence of cell death or immune-activation, exert strong pro-inflammatory activity in other disease states. Here we demonstrate that MPs, derived from the plasma of malaria infected mice, but not naive mice, induce potent activation of macrophages in vitro as measured by CD40 up-regulation and TNF production. In vitro, these MPs induced significantly higher levels of macrophage activation than intact infected red blood cells. Immunofluorescence staining revealed that MPs contained significant amounts of parasite material indicating that they are derived primarily from infected red blood cells rather than platelets or endothelial cells. MP driven macrophage activation was completely abolished in the absence of MyD88 and TLR-4 signalling. Similar levels of immunogenic MPs were produced in WT and in TNF−/−, IFN-γ−/−, IL-12−/− and RAG-1−/− malaria-infected mice, but were not produced in mice injected with LPS, showing that inflammation is not required for the production of MPs during malaria infection. This study therefore establishes parasitized red blood cell-derived MPs as a major inducer of systemic inflammation during malaria infection, raising important questions about their role in severe disease and in the generation of adaptive immune responses.  相似文献   

7.
The development of the malaria parasite Plasmodium falciparum in human red blood cells induces parasite-dependent perturbations in the permselectivity properties of the host cell membrane. The changes appear as parasites develop from ring to the trophozoite stage and persist during schizogony. In the present work we assessed the permeability changes of the infected cells to anionic substances by the use of radioactive and fluorescent probes. Our data show that i) covalent binding probes, such as diisothiocyano ditritiostilbene disulfonic acid [3H]H2DIDS, which are virtually impermeant to normal red blood cells, became markedly permeant to trophozoites and schizonts, as evidenced by high labeling of intracellular hemoglobin; ii) permeation of the fluorescent anion transport substrate NBD-taurine, measured in the efflux mode, was very rapid and substantially enhanced in parasitized erythrocytes, as compared with noninfected cells; iii) this efflux could not be blocked by H2DIDS, which is a specific inhibitor of anion transport in normal red blood cells; iv) permeation of anionic probes was temperature dependent (Ea:11 +/- 1 kcal/mole); and v) could be blocked by nonspecific transport inhibitors that are known to interact with membrane lipids. The appearance of a new permeation pathway in the host cell membrane of trophozoites is associated with structural modification of the host cell membrane matrix.  相似文献   

8.
Rational development of adjunct or anti-disease therapy for severe Plasmodium falciparum malaria requires cellular and molecular definition of malarial pathogenesis. Nitric oxide (NO) is a potential target for such therapy but its role during malaria is controversial. It has been proposed that NO is produced at high levels to kill Plasmodium parasites, although the unfortunate consequence of elevated NO levels might be impaired neuronal signaling, oxidant damage and red blood cell damage that leads to anemia. In this case, inhibitors of NO production or NO scavengers might be an effective adjunct therapy. However, increasing amounts of evidence support the alternate hypothesis that NO production is limited during malaria. Furthermore, the well-documented NO scavenging by cell-free plasma hemoglobin and superoxide, the levels of which are elevated during malaria, has not been considered. Low NO bioavailability in the vasculature during malaria might contribute to pathologic activation of the immune system, the endothelium and the coagulation system: factors required for malarial pathogenesis. Therefore, restoring NO bioavailability might represent an effective anti-disease therapy.  相似文献   

9.
Plasmodium falciparum is an obligate intracellular pathogen responsible for worldwide morbidity and mortality. This parasite establishes a parasitophorous vacuole within infected red blood cells wherein it differentiates into multiple daughter cells that must rupture their host cells to continue another infectious cycle. Using atomic force microscopy, we establish that progressive macrostructural changes occur to the host cell cytoskeleton during the last 15 h of the erythrocytic life cycle. We used a comparative proteomics approach to determine changes in the membrane proteome of infected red blood cells during the final steps of parasite development that lead to egress. Mass spectrometry-based analysis comparing the red blood cell membrane proteome in uninfected red blood cells to that of infected red blood cells and postrupture vesicles highlighted two temporally distinct events; (Hay, S. I., et al. (2009). A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med. 6, e1000048) the striking loss of cytoskeletal adaptor proteins that are part of the junctional complex, including α/β-adducin and tropomyosin, correlating temporally with the emergence of large holes in the cytoskeleton seen by AFM as early ~35 h postinvasion, and (Maier, A. G., et al. (2008) Exported proteins required for virulence and rigidity of Plasmodium falciparum-infected human erythrocytes. Cell 134, 48-61) large-scale proteolysis of the cytoskeleton during rupture ~48 h postinvasion, mediated by host calpain-1. We thus propose a sequential mechanism whereby parasites first remove a selected set of cytoskeletal adaptor proteins to weaken the host membrane and then use host calpain-1 to dismantle the remaining cytoskeleton, leading to red blood cell membrane collapse and parasite release.  相似文献   

10.
Erythrocyte aging in neurodegenerative disorders.   总被引:1,自引:0,他引:1  
In the present paper, we have reviewed the principal studies on red cell membrane abnormalities associated with neurodegenerative disorders. In the literature, two lines of investigation may be recognized: one based on the hypothesis of the presence of an oxidative environment responsible for red cell oxidative damage in Alzheimer's disease (AD), Alzheimer's dementia type (DAT) and Parkinson' disease (PD); the other one based on the identification of structural and/or functional abnormalities in red cell membrane band 3 and/or in red cell membrane lipid composition in "neuroacanthocytosis". In AD, DAT and PD patients, an increased red cell membrane lipid peroxidation suggests an increase red cell oxidative damages and precocious red cell aging. In "neuroacanthocytosis", grouping chorea-acanthocytosis, Mcleod syndrome and abetalipoproteinemia, the red cells are characterized by thorn or spur-like protrusions, known as "acanthocytes". The presence of circulating acanthocytes, characterized by abnormalities in red cell band 3 structure and/or function, is associated with increase levels of anti-band 3 antibodies which are physiologically produced against aged red cells and are known to mediate red cell removal from the peripheral circulation by macrophages. We have reviewed the mechanism(s) of the loss of red cell membrane stability and of the precocious red cell aging in neurodegenerative disorders.  相似文献   

11.
《Free radical research》2013,47(1):639-643
Oxidative stress has been incriminated as a deleterious factor in the development of malaria parasites. Various chemical reductones which can undergo cyclic oxidation and reduction, such as ascorbate have been shown to cause oxidative stress to red blood cells. This, naturally-occurring and redox-active compound, can induce the formation of active oxygen derived species, such as superoxide radicals (.O?2), hydrogen peroxide (H2O2) and hydroxyl radical (OH.), The formation of the hydroxyl radical, the ultimate deleterious species, is mediated by the redox-active and available transition metals iron and copper in the Haber-Weiss reaction.

During the development of the parasite, hemoglobin is progressively digested and a concurrent release of high levels of iron-containing breakdown products takes place within the red blood cell. Indications for the progressive increase in redox-active iron during the growth of P. falciparum have been recently found in our lab: a) adventitious ascorbatc proved highly detrimental to the parasite when added to the mature forms. In contrast, if the parasitized erythrocytes were in the early phase following invasion, and only low levels of iron-containing structures had been liberated. then the observed effect was a small promotion of parasite development. b) erythrocytes containing mature parasites were more potent than erythrocytes containing ring forms as a source for redox-active iron in the acerbate-driven metal-mediated degradation of DNA. The addition of extracts from parasitized erythrocytes and ascorbate to DNA causcd a dose and time dependent DNA degradation. Non-infected erythrocytes had no effect. These findings could also propose that the parasite-dependent accumulation of redox-active forms of iron within the erythrocytes serve as a biological clock triggering the rupture of the red blood cell membrane at the right moment, when the parasite reaches its maturity.  相似文献   

12.
The human malaria parasite, Plasmodium falciparum, ages the red blood cell during its intracellular development. During this process of erythrocyte senescence the parasitized cell becomes less dense and deformable, its biconcave disc shape becomes more spherical and is covered with microscopic protuberances (knobs); the amounts of membrane cholesterol and phospholipids are altered and phosphatidylserine (PS) is externalized. The malaria-infected cell is osmotically fragile, more permeable to a wide variety of molecules via new permeation pathways (NPP), and there is surface deposition of immunoglobulins and complement. There are declines in sialic acid, reduced glutathione, tocopherol and ATP. Hemichromes are deposited on the inner surface of the red cell membrane and there is clustering of the anion transporter, band 3 protein, as well as exposure of neoantigens which contribute to antigenic variation and adhesivity of the parasitized erythrocyte. These time-dependent changes result from oxidative assault and a combination of factors, including a decline in levels of anti-oxidants and ATP coupled with an enhanced flux of ions especially calcium. Despite these parasite-induced age effects P. falciparum is able to avoid destruction by splenic removal through microvessel sequestration in the deep tissues via PS, clustered band 3 protein and adhesive neoantigens.  相似文献   

13.
Heterozygosity for the mutant sickle hemoglobin confers protection from severe Plasmodium falciparum malaria. It is here proposed that this protection derives from the instability of sickle hemoglobin, which clusters red cell membrane protein band 3 and triggers accelerated removal by phagocytic cells. This explanation requires that sickle trait cells manifest greater hemoglobin instability than normal red cells, something that could derive from their content of sickle hemoglobin. The mechanism also implicates splenic function as a determinant of the protective effect.  相似文献   

14.
Free heme is very toxic because it generates highly reactive hydroxyl radicals ((.)OH) to cause oxidative damage. Detoxification of free heme by the heme oxygenase (HO) system is a very common phenomenon by which free heme is catabolized to form bilirubin as an end product. Interestingly, the malaria parasite, Plasmodium falciparum, lacks an HO system, but it forms hemozoin, mainly to detoxify free heme. Here, we report that bilirubin significantly induces oxidative stress in the parasite as evident from the increased formation of lipid peroxide, decrease in glutathione content, and increased formation of H(2)O(2) and (.)OH. Bilirubin can effectively inhibit hemozoin formation also. Furthermore, results indicate that bilirubin inhibits parasite growth and induces caspase-like protease activity, up-regulates the expression of apoptosis-related protein (Gene ID PFI0450c), and reduces the mitochondrial membrane potential. (.)OH scavengers such as mannitol, as well as the spin trap alpha-phenyl-n-tert-butylnitrone, effectively protect the parasite from bilirubin-induced oxidative stress and growth inhibition. These findings suggest that bilirubin, through the development of oxidative stress, induces P. falciparum cell death and that the malaria parasite lacks an HO system probably to protect itself from bilirubin-induced cell death as a second line of defense.  相似文献   

15.
Oxidative stress is a pathological condition characterized by an overload of oxidant products, named free radicals, which are not well counteracted by antioxidant systems. Free radicals induce oxidative damage to many body organs and systems. In neonatal red blood cells, free-radical mediated-oxidative stress leads to eryptosis, a suicidal death process of erythrocytes consequent to alteration of cell integrity. Neonatal red blood cells are targets and at the same time generators of free radicals through the Fenton and Haber-Weiss reactions. Enhanced eryptosis in case of oxidative stress damage may cause anemia if the increased loss of erythrocytes is not enough compensated by enhanced new erythrocytes synthesis. The oxidative disruption of the red cells may cause unconjugated idiopathic hyperbilirubinemia in neonates. High levels of bilirubin are recognized to be dangerous for the central nervous system in newborns, however, many studies have highlighted the antioxidant function of bilirubin. Recently, it has been suggested that physiologic concentration of bilirubin correlates with higher antioxidant status while high pathological bilirubin levels are associated with pro-oxidants effects. The aim of this educational review is to provide an updated understanding of the molecular mechanisms underlying erythrocyte oxidant injury and its reversal in neonatal idiopathic hyperbilirubinemia.  相似文献   

16.
Abstract

Heterozygosity for the mutant sickle hemoglobin confers protection from severe Plasmodium falciparum malaria. It is here proposed that this protection derives from the instability of sickle hemoglobin, which clusters red cell membrane protein band 3 and triggers accelerated removal by phagocytic cells. This explanation requires that sickle trait cells manifest greater hemoglobin instability than normal red cells, something that could derive from their content of sickle hemoglobin. The mechanism also implicates splenic function as a determinant of the protective effect.  相似文献   

17.
Plasmodium falciparum (human malaria) infections are characterized by the attachment of erythrocytes infected with mature stage parasites to endothelial cells lining the post-capillary venules, a phenomenon known as sequestration. In the human body, the microvessels of the heart, lungs, kidneys, small intestine, and liver are the principal sites of sequestration. Sequestered cells that clog the brain capillaries may reduce blood flow sufficiently so that there is confusion, lethargy, and unarousable coma--cerebral malaria. This review considers what is known about the molecular characteristics of the surface proteins, that is, the red cell receptors and the endothelial cell ligands, involved in sequestration. Recent work from our laboratory on the characterization of the adhesive proteins on the surface of the P falciparum-infected red cell, and the ligands to which they bind on human brain endothelial cells is also discussed. Finally, consideration is given to the multifactor processes involved in sequestration and cerebral malaria, as well as the possible role of 'anti-adhesion therapy' in the management of severe malaria.  相似文献   

18.
The red blood cell membrane skeleton is an elaborate and organized network of structural proteins that interacts with the lipid bilayer and transmembrane proteins to maintain red blood cell morphology, membrane deformability and mechanical stability. A crucial component of red blood cell membrane skeleton is the erythroid specific protein 4.1R, which anchors the spectrin-actin based cytoskeleton to the plasma membrane. Qualitative and quantitative defects in protein 4.1R result in congenital red cell membrane disorders characterized by reduced cellular deformability and abnormal cell morphology. The zebrafish mutants merlot (mot) and chablis (cha) exhibit severe hemolytic anemia characterized by abnormal cell morphology and increased osmotic fragility. The phenotypic analysis of merlot indicates severe hemolysis of mutant red blood cells, consistent with the observed cardiomegaly, splenomegaly, elevated bilirubin levels and erythroid hyperplasia in the kidneys. The result of electron microscopic analysis demonstrates that mot red blood cells have membrane abnormalities and exhibit a severe loss of cortical membrane organization. Using positional cloning techniques and a candidate gene approach, we demonstrate that merlot and chablis are allelic and encode the zebrafish erythroid specific protein 4.1R. We show that mutant cDNAs from both alleles harbor nonsense point mutations, resulting in premature stop codons. This work presents merlot/chablis as the first characterized non-mammalian vertebrate models of hereditary anemia due to a defect in protein 4.1R integrity.  相似文献   

19.
The primary clinical symptom of Japanese bovine theileriosis, caused by the intraerythrocytic protozoan Theileria sergenti, is anemia, but the underlying mechanism of this anemia remains unknown. To elucidate the pathogenesis of anemia developing in bovine theileriosis, we investigated the relationship between oxidative bursts of peripheral blood phagocytes (neutrophils and monocytes) and the oxidation of red blood cells (RBC) to the development of anemia in cattle experimentally infected with T. sergenti. The levels of methemoglobin (MetHb) and malondialdehyde (MDA), as a parameter of intracellular and membrane oxidative damage in RBC and of production of hydrogen peroxide (H2O2) in phagocytes, were low before the onset of anemia; these parameters began to increase remarkably with decreasing packed cell volume and increasing parasitemia during the course of the anemia, which returned to initial levels during convalescence from anemia. A positive correlation between H2O2 production of phagocytes and each of the oxidative indices of MetHb and MDA was also noted during the onset of anemia. The levels of antioxidants, namely reduced glutathione and glucose-6-phosphate dehydrogenase, in RBC also decreased during the progression of anemia. These results suggest that oxidative damage of RBC has a close relationship with the onset of anemia in bovine theileriosis, and that oxidative bursts of phagocytes may play a part in the pathogenesis of anemia in infected cattle.  相似文献   

20.
The erythrocyte is a good model for investigation of the mechanisms of cell damage induced by oxidizing agents. Oxidative damage to cell components and cellular metabolism results in impaired rheological properties of circulating red blood cells and is involved in the development of some pathologies. The aim of the present study was to elucidate further the oxidative processes induced by tert-butyl hydroperoxide (tBOOH) in erythrocytes, identify cellular targets damaged by the oxidant, as well as estimate the energy and stoichiometry of the reactions that occur. The generation of free radicals in the cell was registered using the chemiluminescence technique. The products of oxyhemoglobin (oxyHb) oxidation, changes in intracellular glutathione (GSH) pool, and accumulation of the stable products of membrane lipid peroxidation were concurrently measured. The oxidative processes induced by tBOOH in red blood cells can be described as follows: 1) rapid GSH oxidation (30-60 sec) by glutathione peroxidase; 2) formation of radicals in the reaction between tBOOH and cellular Hb, which are then immediately consumed in lipid peroxidation reactions; 3) generation of chemiluminescence by the radicals formed. Several stages of the oxidative processes can be revealed. The order of the chemiluminescence reaction (n) with respect to oxidant was estimated to be equal to 2.5 at oxidant concentrations less than 0.5 mM and equal to 1.0 at higher oxidant concentrations. The order of the reaction of membrane lipid peroxidation was found to be n = 2.2 at 0.25-0.6 mM tBOOH and n = 0.5 at higher oxidant concentrations. The apparent activation energy of membrane lipid peroxidation was 55.8 +/- 6.4 kJ/mol, and that of oxyHb oxidation was 108 +/- 16 kJ/mol. It is shown that the interaction of tBOOH and HOCl in erythrocytes is accompanied by changes in both the total number of radicals generated in the cell and the time corresponding to the maximal rate of radical generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号