首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Molecular mechanisms of Plasmodium falciparum placental adhesion   总被引:2,自引:0,他引:2  
In natural Plasmodium falciparum infections, parasitized erythrocytes (PEs) circulate in the peripheral blood for a period corresponding roughly to the first part of the erythrocytic life cycle (ring stage). Later, in blood-stage development, parasite-encoded adhesion molecules are inserted into the erythrocyte membrane, preventing the circulation of the PEs. The principal molecule mediating PE adhesion is P. falciparum erythrocyte membrane protein 1 (PfEMP1), encoded by the polymorphic var gene family. The population of parasites is subject to clonal antigenic variation through changes in var expression, and a single PfEMP1 variant is expressed at the PE surface in a mutually exclusive manner. In addition to its role in immune evasion, switches in PfEMP1 expression may be associated with fundamental changes in parasite tissue tropism in malaria patients. A switch from CD36 binding to chondroitin sulphate A (CSA) binding may lead to extensive sequestration of PEs in placenta syncytiotrophoblasts. This is probably a key event in malaria pathogenesis during pregnancy. The CSA-binding phenotype of mature PEs is linked to another distinct adhesive phenotype: the recently described CSA-independent cytoadhesion of ring-stage PEs. Thus, a subpopulation of PEs that sequentially displays these two different phenotypes may bind to an individual endothelial cell or syncytiotrophoblast throughout the asexual blood-stage cycle. This suggests that non-circulating (cryptic) parasite subpopulations are present in malaria patients.  相似文献   

2.
Malaria during pregnancy is associated with poor birth outcomes, particularly low birth weight. Recently, monocyte infiltration into the placental intervillous space has been identified as a key risk factor for low birth weight. However, the malaria-induced chemokines involved in recruiting and activating placental monocytes have not been identified. In this study, we determined which chemokines are elevated during placental malaria infection and the association between chemokine expression and placental monocyte infiltration. Placental malaria infection was associated with elevations in mRNA expression of three beta chemokines, macrophage-inflammatory protein 1 (MIP-1) alpha (CCL3), monocyte chemoattractant protein 1 (MCP-1; CCL2), and I-309 (CCL1), and one alpha chemokine, IL-8 (CXCL8); all correlated with monocyte density in the placental intervillous space. Placental plasma concentrations of MIP-1 alpha and IL-8 were increased in women with placental malaria and were associated with placental monocyte infiltration. By immunohistochemistry, we localized placental chemokine production in malaria-infected placentas: some but not all hemozoin-laden maternal macrophages produced MIP-1 beta and MCP-1, and fetal stromal cells produced MCP-1. In sum, local placental production of chemokines is increased in malaria, and may be an important trigger for monocyte accumulation in the placenta.  相似文献   

3.
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified.  相似文献   

4.
Pregnancy-associated malaria (PAM) is expressed in a range of clinical complications that include increased disease severity in pregnant women, decreased fetal viability, intra-uterine growth retardation, low birth weight and infant mortality. The physiopathology of malaria in pregnancy is difficult to scrutinize and attempts were made in the past to use animal models for pregnancy malaria studies. Here, we describe a comprehensive mouse experimental model that recapitulates many of the pathological and clinical features typical of human severe malaria in pregnancy. We used P. berghei ANKA-GFP infection during pregnancy to evoke a prominent inflammatory response in the placenta that entails CD11b mononuclear infiltration, up-regulation of MIP-1 alpha chemokine and is associated with marked reduction of placental vascular spaces. Placenta pathology was associated with decreased fetal viability, intra-uterine growth retardation, gross post-natal growth impairment and increased disease severity in pregnant females. Moreover, we provide evidence that CSA and HA, known to mediate P. falciparum adhesion to human placenta, are also involved in mouse placental malaria infection. We propose that reduction of maternal blood flow in the placenta is a key pathogenic factor in murine pregnancy malaria and we hypothesize that exacerbated innate inflammatory responses to Plasmodium infected red blood cells trigger severe placenta pathology. This experimental model provides an opportunity to identify cell and molecular components of severe PAM pathogenesis and to investigate the inflammatory response that leads to the observed fetal and placental blood circulation abnormalities.  相似文献   

5.
Plasmodium falciparum parasites that sequester in the placenta bind to the molecule chondroitin sulfate A (CSA). Women become resistant to malaria during pregnancy as they acquire antibodies that inhibit parasite adhesion to CSA, suggesting that a vaccine against placental malaria is feasible. Hyaluronic acid (HA) and non-immune IgG have also been proposed as receptors for P. falciparum adhesion in the placenta, but evidence for their roles is inconclusive. In this study, CSA, HA, and IgG were simultaneously assessed for their relative contributions to placental adhesion. Placental parasites collected in Tanzania uniformly adhered to the molecule CSA, and soluble CSA completely inhibited adhesion of most samples to placental cryosections. Three of 46 placental parasite samples also adhered to immobilized HA, but HA failed to inhibit adhesion of any placental parasites to placental cryosections. Similarly, non-immune IgG and protein A failed to inhibit adhesion of parasite samples to placental cryosection. P. falciparum adhesion in the placenta appears to be a non-redundant process that requires CSA as a receptor. Vaccines that elicit functional antibodies against CSA-binding parasites may confer resistance to pregnancy malaria.  相似文献   

6.
Infection with Plasmodium falciparum during pregnancy is one of the major causes of malaria related morbidity and mortality in newborn and mothers. The complications of pregnancy-associated malaria result mainly from massive adhesion of Plasmodium falciparum-infected erythrocytes (IE) to chondroitin sulfate A (CSA) present in the placental intervillous blood spaces. Var2CSA, a member of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family is the predominant parasite ligand mediating CSA binding. However, experimental evidence suggests that other host receptors, such as hyaluronic acid (HA) and the neonatal Fc receptor, may also support placental binding. Here we used parasites in which var2csa was genetically disrupted to evaluate the contribution of these receptors to placental sequestration and to identify additional adhesion receptors that may be involved in pregnancy-associated malaria. By comparison to the wild-type parasites, the FCR3delta var2csa mutants could not be selected for HA adhesion, indicating that var2csa is not only essential for IE cytoadhesion to the placental receptor CSA, but also to HA. However, further studies using different pure sources of HA revealed that the previously observed binding results from CSA contamination in the bovine vitreous humor HA preparation. To identify CSA-independent placental interactions, FCR3delta var2csa mutant parasites were selected for adhesion to the human placental trophoblastic BeWo cell line. BeWo selected parasites revealed a multi-phenotypic adhesion population expressing multiple var genes. However, these parasites did not cytoadhere specifically to the syncytiotrophoblast lining of placental cryosections and were not recognized by sera from malaria-exposed women in a parity dependent manner, indicating that the surface molecules present on the surface of the BeWo selected population are not specifically expressed during the course of pregnancy-associated malaria. Taken together, these results demonstrate that the placental malaria associated phenotype can not be restored in FCR3delta var2csa mutant parasites and highlight the key role of var2CSA in pregnancy malaria pathogenesis and for vaccine development.  相似文献   

7.
Chondroitin sulfate (CS) A is a key receptor for adhesion of Plasmodium falciparum-infected erythrocytes (IEs) in the placenta and can also mediate adhesion to microvascular endothelial cells. IEs that adhere to CSA express var2csa-type genes, which encode specific variants of the IE surface antigen P. falciparum erythrocyte membrane protein 1 (PfEMP1). We report direct binding of native PfEMP1, isolated from IEs and encoded by var2csa, to immobilized CSA. Binding of PfEMP1 was dependent on 4-O-sulfated disaccharides and glucuronic acid rather than iduronic acid, consistent with the specificity of intact IEs. Using immobilized CS oligosaccharides as neoglycolipid probes, the minimum chain length for direct binding of PfEMP1 was eight monosaccharide units. Similarly for IE adhesion to placental tissue there was a requirement for 4-O-sulfated GalNAc and glucuronic acid mixed with non-sulfated disaccharides; 6-O-sulfation interfered with the interaction between placental CSA and IEs. The minimum chain length for maximal inhibition of adhesion was 10 monosaccharide residues. Partially 4-O-sulfated CS oligosaccharides (45-55% sulfation) were highly effective inhibitors of placental adhesion (IC(50), 0.15 microg/ml) and may have potential for therapeutic development. We used defined P. falciparum isolates expressing different variants of var2csa in adhesion assays and found that there were isolate-specific differences in the preferred structural motifs for adhesion to CSA that correlated with polymorphisms in PfEMP1 encoded by var2csa-type genes. This may influence sites of IE sequestration or parasite virulence. These findings have significant implications for understanding the pathogenesis and biology of malaria, particularly during pregnancy, and the development of targeted interventions.  相似文献   

8.
Vascular endothelial dysfunction is thought to play a prominent role in systemic anthrax pathogenesis. We examined the effect of anthrax lethal toxin (LTx), a key virulence factor of Bacillus anthracis, on the expression of vascular cell adhesion molecule-1 (VCAM-1) on normal and cytokine-stimulated human lung microvascular endothelial cells. Confluent endothelial monolayers were treated with lethal factor (LF), protective antigen (PA), or both (LTx) in the presence or absence of tumor necrosis factor-alpha (TNFalpha). LTx enhanced cytokine-induced VCAM-1 expression and monocyte adhesion. LTx alone had no effect on VCAM-1 expression. LF, PA or the combination of a catalytically inactive mutant LF and PA failed to enhance cytokine-induced VCAM-1 expression. Treatment with inhibitors of mitogen-activated protein kinase kinases (MEKs) and mitogen-activated protein kinases did not reproduce the VCAM-1 enhancement effect of LTx, a known MEK metalloprotease, suggesting LTx-mediated MEK cleavage may not be a contributing factor.  相似文献   

9.
Sex remains a key biological variable affecting human innate and adaptive immune responses to infection and in pathogenesis of diseases. In malaria, females demonstrate higher concentrations of antibodies and rates of severe adverse events and mortality following malaria vaccination. Although monocytes/macrophages play a crucial role in disease and protection in malaria, no studies have investigated sex differences in their functions in production of proinflammatory cytokines and chemokines in malaria-infected subjects. Here, we show significant sex differences in serum concentrations of HMGB1, a non-histone chromatin-associated protein, and numbers of pigmented monocytes, which are both markers of severe malaria, in infants and young children <5 years old from a malaria endemic region in Northern Uganda. Female infants and young children with clinical malaria had significantly higher HMGB1 concentrations than males, and female infants and young children with asymptomatic malaria had significantly lower numbers of pigmented monocytes than males with asymptomatic malaria. There was (1) a significant correlation between HMGB1 concentrations and pigmented monocyte numbers in female but not male infants; and (2) a significant correlation between HMGB1 concentrations and parasite densities in female but not male infants. These findings suggest that female infants and young children with clinical malaria might be at a greater risk of morbidity characterized by higher serum HMGB1 levels.  相似文献   

10.
Rheumatoid arthritis (RA) is a chronic symmetric polyarticular joint disease that primarily affects the small joints of the hands and feet. The inflammatory process is characterized by infiltration of inflammatory cells into the joints, leading to proliferation of synoviocytes and destruction of cartilage and bone. In RA synovial tissue, the infiltrating cells such as macrophages, T cells, B cells and dendritic cells play important role in the pathogenesis of RA. Migration of leukocytes into the synovium is a regulated multi-step process, involving interactions between leukocytes and endothelial cells, cellular adhesion molecules, as well as chemokines and chemokine receptors. Chemokines are small, chemoattractant cytokines which play key roles in the accumulation of inflammatory cells at the site of inflammation. It is known that synovial tissue and synovial fluid from RA patients contain increased concentrations of several chemokines, such as monocyte chemoattractant protein-4 (MCP-4)/CCL13, pulmonary and activation-regulated chemokine (PARC)/CCL18, monokine induced by interferon-gamma (Mig)/CXCL9, stromal cell-derived factor 1 (SDF-1)/CXCL12, monocyte chemotactic protein 1 (MCP-1)/CCL2, macrophage inflammatory protein 1alpha (MIP-1alpha)/CCL3, and Fractalkine/CXC3CL1. Therefore, chemokines and chemokine-receptors are considered to be important molecules in RA pathology.  相似文献   

11.
Elastic laminae are extracellular matrix constituents that not only contribute to the stability and elasticity of arteries but also play a role in regulating arterial morphogenesis and pathogenesis. We demonstrate here that an important function of arterial elastic laminae is to prevent monocyte adhesion, which is mediated by the inhibitory receptor signal regulatory protein (SIRP) alpha and Src homology 2 domain-containing protein-tyrosine phosphatase (SHP)-1. In a matrix-based arterial reconstruction model in vivo, elastic laminae were resistant to leukocyte adhesion and transmigration compared with the collagen-dominant arterial adventitia. The density of leukocytes within the elastic lamina-dominant media was about 58-70-fold lower than that within the adventitia from 1 to 30 days. An in vitro assay confirmed the inhibitory effect of elastic laminae on monocyte adhesion. The exposure of monocytes to elastic laminae induced activation of SIRP alpha, which in turn activated SHP-1. Elastic lamina degradation peptides extracted from arterial specimens could also activate SIRP alpha and SHP-1. The knockdown of SIRP alpha and SHP-1 by specific small interfering RNA diminished the inhibitory effect of elastic laminae, resulting in a significant increase in monocyte adhesion. These observations suggest that SIRP alpha and SHP-1 potentially mediate the inhibitory effect of elastic laminae on monocyte adhesion.  相似文献   

12.
During development inside red blood cells (RBCs), Plasmodium falciparum malaria parasites export proteins that associate with the RBC membrane skeleton. These interactions cause profound changes to the biophysical properties of RBCs that underpin the often severe and fatal clinical manifestations of falciparum malaria. P. falciparum erythrocyte membrane protein 1 (PfEMP1) is one such exported parasite protein that plays a major role in malaria pathogenesis since its exposure on the parasitised RBC surface mediates their adhesion to vascular endothelium and placental syncytioblasts. En route to the RBC membrane skeleton, PfEMP1 transiently associates with Maurer's clefts (MCs), parasite-derived membranous structures in the RBC cytoplasm. We have previously shown that a resident MC protein, skeleton-binding protein 1 (SBP1), is essential for the placement of PfEMP1 onto the RBC surface and hypothesised that the function of SBP1 may be to target MCs to the RBC membrane. Since this would require additional protein interactions, we set out to identify binding partners for SBP1. Using a combination of approaches, we have defined the region of SBP1 that binds specifically to defined sub-domains of two major components of the RBC membrane skeleton, protein 4.1R and spectrin. We show that these interactions serve as one mechanism to anchor MCs to the RBC membrane skeleton, however, while they appear to be necessary, they are not sufficient for the translocation of PfEMP1 onto the RBC surface. The N-terminal domain of SBP1 that resides within the lumen of MCs clearly plays an essential, but presently unknown role in this process.  相似文献   

13.
The adhesion of Plasmodium falciparum-infected erythrocytes (IEs) to chondroitin-4-sulfate (CSA) via the PfEMP1-CSA parasite ligand domain is correlated with placental malaria in primigravidae. The recent identification of parasite genes encoding CSA adhesion molecules and the development of pan-reactive monoclonal antibodies against the Pf(CSA) ligand have opened up new avenues for the development of anti-IE sequestration therapies for the prevention of placental malaria. A model closely mimicking placental sequestration of IEs during pregnancy is needed for the preclinical and clinical evaluation of candidate molecules for the induction of antibodies that could protect pregnant women from placental malaria. We found that normal placenta cryosections were a specific and highly consistent support for the binding of IEs to CSA in flow conditions under physiological conditions. This model makes possible the quantitative and qualitative analysis of IE adhesion. We identified distinct CSA-binding phenotypes within the FCR3(CSA)-selected parasites in flow analyses, but not in static analyses. We also analyzed inhibitors of placental parasite binding such as soluble CSA and antibodies directed against the Pf(CSA) ligand. Our data demonstrate that placenta cryosections could be used to standardize assays between laboratories, potentially advancing the development of therapies against placental malaria.  相似文献   

14.
Human cytomegalovirus (HCMV) pathogenesis is dependent on the hematogenous spread of the virus to host tissue. While data suggest that infected monocytes are required for viral dissemination from the blood to the host organs, infected endothelial cells are also thought to contribute to this key step in viral pathogenesis. We show here that HCMV infection of endothelial cells increased the recruitment and transendothelial migration of monocytes. Infection of endothelial cells promoted the increased surface expression of cell adhesion molecules (intercellular cell adhesion molecule 1, vascular cell adhesion molecule 1, E-selectin, and platelet endothelial cell adhesion molecule 1), which were necessary for the recruitment of na?ve monocytes to the apical surface of the endothelium and for the migration of these monocytes through the endothelial cell layer. As a mechanism to account for the increased monocyte migration, we showed that HCMV infection of endothelial cells increased the permeability of the endothelium. The cellular changes contributing to the increased permeability and increased na?ve monocyte transendothelial migration include the disruption of actin stress fiber formation and the decreased expression of lateral junction proteins (occludin and vascular endothelial cadherin). Finally, we showed that the migrating monocytes were productively infected with the virus, documenting that the virus was transferred to the migrating monocyte during passage through the lateral junctions. Together, our results provide evidence for an active role of the infected endothelium in HCMV dissemination and pathogenesis.  相似文献   

15.
Antibody-mediated rejection (AMR) is a key limiting factor for long-term graft survival in solid organ transplantation. Human leukocyte antigen (HLA) class I (HLA I) antibodies (Abs) play a major role in the pathogenesis of AMR via their interactions with HLA molecules on vascular endothelial cells (ECs). The antioxidant enzyme heme oxygenase (HO)-1 has anti-inflammatory functions in the endothelium. As complement-independent effects of HLA I Abs can activate ECs, it was the goal of the current study to investigate the role of HO-1 on activation of human ECs by HLA I Abs. In cell cultures of various primary human macro- and microvascular ECs treatment with monoclonal pan- and allele-specific HLA I Abs up-regulated the expression of inducible proinflammatory adhesion molecules and chemokines (vascular cell adhesion molecule-1 [VCAM-1], intercellular cell adhesion molecule-1 [ICAM-1], interleukin-8 [IL-8] and monocyte chemotactic protein 1 [MCP-1]). Pharmacological induction of HO-1 with cobalt-protoporphyrin IX reduced, whereas inhibition of HO-1 with either zinc-protoporphyrin IX or siRNA-mediated knockdown increased HLA I Ab-dependent up-regulation of VCAM-1. Treatment with two carbon monoxide (CO)-releasing molecules, which liberate the gaseous HO product CO, blocked HLA I Ab-dependent EC activation. Finally, in an in vitro adhesion assay exposure of ECs to HLA I Abs led to increased monocyte binding, which was counteracted by up-regulation of HO-1. In conclusion, HLA I Ab-dependent EC activation is modulated by endothelial HO-1 and targeted induction of this enzyme may be a novel therapeutic approach for the treatment of AMR in solid organ transplantation.  相似文献   

16.
The ability of Plasmodium falciparum-infected red blood cells (IRBCs) to bind to vascular endothelium, thus enabling sequestration in vital host organs, is an important pathogenic mechanism in malaria. Adhesion of P. falciparum IRBCs to platelets, which results in the formation of IRBC clumps, is another cytoadherence phenomenon that is associated with severe disease. Here, we have used in vitro cytoadherence assays to demonstrate, to our knowledge for the first time, that P. falciparum IRBCs use the 32-kDa human protein gC1qR/HABP1/p32 as a receptor to bind to human brain microvascular endothelial cells. In addition, we show that P. falciparum IRBCs can also bind to gC1qR/HABP1/p32 on platelets to form clumps. Our study has thus identified a novel host receptor that is used for both adhesion to vascular endothelium and platelet-mediated clumping. Given the association of adhesion to vascular endothelium and platelet-mediated clumping with severe disease, adhesion to gC1qR/HABP1/p32 by P. falciparum IRBCs may play an important role in malaria pathogenesis.  相似文献   

17.
18.
Interactions between monocytes and endothelial cells play an important role in the pathogenesis of atherosclerosis, and monocyte adhesion to arterial endothelium is one of the earliest events in atherogenesis. Work presented in this study examined human monocyte adherence to primary human aortic endothelial cells following monocyte infection with Chlamydia pneumoniae, an intracellular pathogen associated with atherosclerosis by a variety of sero-epidemiological, pathological and functional studies. Infected monocytes exhibited enhanced adhesion to aortic endothelial cells in a time- and dose-dependent manner. Pre-treatment of C. pneumoniae with heat did not effect the organism's capacity to enhance monocyte adhesion, suggesting that heat-stable chlamydial antigens such as chlamydial lipopolysaccharide (cLPS) mediated monocyte adherence. Indeed, treatment of monocytes with cLPS was sufficient to increase monocyte adherence to endothelial cells, and increased adherence of infected or cLPS-treated monocytes could be inhibited by the LPS antagonist lipid X. Moreover, C. pneumoniae-induced adherence could be inhibited by incubating monocytes with a mAb specific to the human beta 2-integrin chain, suggesting that enhanced adherence resulted from increased expression of these adhesion molecules. These data show that C. pneumoniae can enhance the capacity of monocytes to adhere to primary human aortic endothelial cells. The enhanced adherence exhibited by infected monocytes may increase monocyte residence time in vascular sites with reduced wall shear stress and promote entry of infected cells into lesion-prone locations.  相似文献   

19.
Toll-like receptor 4 (TLR4) is known to mediate monocyte adhesion to endothelial cells, however, its role on the expression of monocyte adhesion molecules is unclear. In the present study, we investigated the role of TLR4 on the expression of monocyte adhesion molecules, and determined the functional role of TLR4-induced adhesion molecules on monocyte adhesion to endothelial cells. When THP-1 monocytes were stimulated with Kdo2-Lipid A (KLA), a specific TLR4 agonist, Mac-1 expression was markedly increased in association with an increased adhesion of monocytes to endothelial cells. These were attenuated by anti-Mac-1 antibody, suggesting a functional role of TLR4-induced Mac-1 on monocyte adhesion to endothelial cells. In monocytes treated with MK886, a 5-lipoxygenase (LO) inhibitor, both Mac-1 expression and monocyte adhesion to endothelial cells induced by KLA were markedly attenuated. Moreover, KLA increased the expression of mRNA and protein of 5-LO, suggesting a pivotal role of 5-LO on these processes. In in vivo studies, KLA increased monocyte adhesion to aortic endothelium of wild-type (WT) mice, which was attenuated in WT mice treated with anti-Mac-1 antibody as well as in TLR4-deficient mice. Taken together, TLR4-mediated expression of Mac-1 in monocytes plays a pivotal role on monocyte adhesion to vascular endothelium, leading to increased foam cell formation in the development of atherosclerosis.  相似文献   

20.
Maternal Abs generated as a result of prior exposure to infectious agents such as the malaria parasite are transferred from the mother through the placenta to the fetus. Numerous studies have attributed the resistance to malaria infection observed in neonates and infants up to 6 mo of age to the presence of maternally derived Abs. However, recent studies have produced conflicting results suggesting that alternative protective mechanisms may be responsible. Although the presence of maternally derived Abs in the infant is not disputed, their exact role in the infant is unknown. Even less clear is the effect that maternally derived Abs, if generated in response to vaccination, may have on the infant's ability to respond to malaria infection. Studies on mouse pups were performed to determine the role of the 19-kDa region of merozoite surface protein 1 (MSP1(19)) and Plasmodium yoelii-specific Abs in neonatal malaria infection and to examine their effect on the development of a specific immune response in the pup. It was shown that P. yoelii- and MSP1(19)-specific Abs transferred to the pup from the mother act to suppress the growth of the parasite in the pup. However, the maternally derived Abs interfered with the development of the pups' own Ab response to the parasite by altering the fine specificity of the response. These results suggest that immunizing women of child-bearing age with a malaria vaccine candidate such as MSP1(19) would not prevent the infant from producing Abs in response to malaria infection, but it may affect the region of the Ag to which it responds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号