首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Male-choice experiments using five isofemale lines of Drosophila ananassae originating from different localities were performed to study sexual isolation within the species. In most of the crosses homogamic matings outnumber heterogamic ones, and deviation from randomness is statistically significant in 11 of 20 crosses. This provides evidence for positive assortative mating within D. ananassae. Isolation indices range from -0.057 to 0.555. Eleven positive isolation indices are significantly greater than zero. Both types of sexual isolation, symmetrical and asymmetrical, have been observed among different strains. Thus the present results clearly indicate that the laboratory strains of D. ananassae have developed behavioural reproductive isolation as a result of genetic divergence.  相似文献   

2.
Mating behaviour of red-eyed (wt) and brown-eyed (sepia) Drosophila melanogaster was studied under light conditions. Mating success was directly observed in mating vials and techniques usually applied in the studies of sexual selection ("female choice" and "multiple choice"). The comparison of sexual activity of mutant and wild types clearly indicates that they are not equally successful in matings. Sepia eye colour mutation decreases sexual activity of Drosophila melanogaster males, influences the preference ability of females and decreases the number of progeny from homogamic mating of the se x se type, as well as from heterogamic copulations in which sepia females take part. Non-random mating of wild type males and sepia females (in "multiple-choice" situation), with genetically and phenotypically different individuals, could be another mechanism for conservation of genetic polymorphism in natural populations.  相似文献   

3.
Nanda P  Singh BN 《Génome》2011,54(10):845-851
Disruptive selection is potentially critical in maintaining variation and initiating speciation and plays an important role in the organization of genetic variability in natural populations. It occurs when extreme phenotypes have a fitness advantage over intermediate phenotypes. Disruptive selection for high and low numbers of sternopleural bristles in Drosophila ananassae was applied for 12 generations to test its effect in induction of behavioural isolation. Pattern of mating between flies of high and low lines was tested in an Elens-Wattiaux mating chamber by using a multiple-choice technique after G(5) and G(12). Data was analyzed by calculating χ(2) under the assumption of random mating to test the difference between homoand heterogamic matings, and sexual isolation was tested by calculating the isolation estimate. The results show that there is no evidence for sexual isolation in G(5) and G(12). The realized heritability, standard error of regression coefficient, and t values suggest that disruptive selection for sternopleural bristle phenotypes was effective, but it does not lead to behavioral isolation in D. ananassae. Rather, it induces differences in mating propensity, which is influenced by sternopleural bristle phenotypes.  相似文献   

4.
Nanda P  Singh BN 《Genetica》2011,139(2):273-279
The mechanisms of speciation that appear in the early stages of reproductive isolation has been of recent interest to evolutionary biologists. Experiments were conducted to study behavioral isolation between karyotypically different homozygous strains derived from natural populations of Drosophila ananassae. Three mass cultures stocks established from flies collected from natural populations were employed and homozygous stocks (ST/ST and AL/AL) were made through selection for homozygosity. By employing male-choice technique, mating success was scored by direct observation in the Elens–Wattiaux mating chamber. There is preference for homogamic matings in all the three populations and the differences between homogamic and heterogamic matings are statistically significant in two populations (Lucknow and Varanasi). These findings provide evidence that there is incipient sexual isolation between karyotypically different strains of D. ananassae derived from natural populations which shows that chromosome arrangements may affect the mate recognition system in D. ananassae.  相似文献   

5.
Drosophila ananassae has a unique status among Drosophila species because of certain peculiarities in its genetic behavior. The most unusual feature of this species is its relatively high frequency of spontaneous male recombination. The results of studies on non-sexual behavior, such as phototactic responses, eclosion rhythm, and preferences for oviposition and pupation sites, lead us to suggest that this behavior is under polygenic control, with a substantial amount of additive genetic variation. Sexual isolation has been reported in D. ananassae with the degree of such isolation being stronger in isofemale lines than in natural populations. The significant variations seen in the mating propensity of several isofemale strains, inversion karyotypes and wild type strains, the diminishing effects of certain mutations on the sexual activity of males, and the positive responses to selection for high and low mating propensity point to a genetic control of sexual behavior in D. ananassae. Males contribute more to variation and thus are more subject to intrasexual selection than females. There is a positive correlation between sternopleural bristle number, mating propensity and fertility in D. ananassae. This correlation between morphometric traits and mating success suggests that larger flies are more successful in mating than smaller ones. There is also evidence for adaptive plasticity and a trade-off between longevity and productivity in D. ananassae. Rare, specific courtship song parameters that provide males with a mating advantage have also been reported in different geographic strains of D. ananassae. The remating behavior of males and females, sperm displacement, and the bi-directional selection for female remating speed indicate that post-mating behavior in this species may also be under genetic control. The occurrence of size assortative mating further indicates that there is size-dependent sexual selection in D. ananassae.  相似文献   

6.
Frequency-dependent mating success was tested for three pairs of wild-type and mutant strains of Drosophila ananassae, MY and yellow body color (y), PN and claret eye color (ca), and TIR and cut wing (ct). The two strains of each pair were chosen for their approximately equal mating propensities. Multiple-choice experiments, using different experimental procedures, were employed. The tests were carried out by direct observation in Elens-Wattiaux mating chambers with five different sex ratios (4:16, 8:12, 10:10, 12:8, and 16:4). There was no assortative mating and sexual isolation between the strains, based on 2 x 2 contingency chi2 analysis and isolation estimate values. One-sided rare male mating advantages were found in two experiments, one for ca males and the other for wild-type males (TIR). However, no advantage was found for rare males in the experiment with MY and y flies. Mating disadvantages for rare females were found for sex-linked mutants (y and ct). Two different observational methods (removal or direct observation of mating pairs) imparted no overall significant effects on the outcome of the frequency-dependent mating tests.  相似文献   

7.
Analysis of the rare male mating advantage in D. subobscura, as a type of frequency dependent selection on maltose and starch media, was done by applying different statistical approaches (χ2, cross-product ratio, variance and regression analysis). They reveal that mating occurs at random when proportions of prospective mates are equal, and that mating success of the males homozygous for Amy-locus genotypes (S/S and F/F) depends on their proportion. Regression analysis showed that the F/F males are sexually more active (have higher vigour) than S/S males. Rare male effect is one-sided and appears in F/F males that partake in more heterogamic matings. Comparison of the number of observed and expected homo- and heterogamic matings shows that homogamic matings are more frequent. Multifactorial analysis of variance shows that the number of matings are different for nine pairs of lines and four possible mating types (SfSm, SfFm, FfSm, FfFm). The rare male phenomenon is not dependent on different food composition, but is associated with variations in individual genotypes.  相似文献   

8.
We conducted the world??s first experiments under semi-field conditions (ACL-2 field house) to assess the mating competitiveness of genetically sterile RIDL male mosquitoes (513A strain). The field house is a state-of-the-art, fully-contained trial facility, simulating the living space for a household of 2?C4 people in Peninsular Malaysia. Ten genetically sterile RIDL male A. aegypti mosquitoes competed with ten wild type males inside this field house to mate with ten wild type females. Hatched larvae from mated females were screened under a fluorescent microscope for genetic markers to determine if they were fathered by RIDL male or wild type male, and all results were cross-checked by PCR. Two such experiments were conducted, each repeated sufficient number of times. All strains were on a Malaysian lab strain background for the first experiment, while the RIDL males alone were on a recently-colonised Mexican strain background for the second experiment. A total of 52 % of the matings were with RIDL males in the first experiment, while 45 % of the matings were with RIDL (Mexican) males in the second experiment. Statistically, this is not significantly different from 50 % of the matings expected to take place with RIDL males if the latter were as competitive as that of the wild type males. This shows that A. aegypti RIDL-513A has excellent mating competitiveness under semi-field conditions, verifying earlier trends obtained in small lab cages. We also observed high mating compatibility between recently-colonised Mexican RIDL males and lab-reared Malaysian wild type females.  相似文献   

9.
Intraspecific sexual isolation was examined among wild strains of Drosophila malerkotliana, D. parabipectinata and D. pseudoananassae by multiple-choice method in Elens-Wattiaux mating chamber. In D. pseudoananassae, mating between two strains tested was random and isolation estimate was close to one. In one out of 6 crosses, involving geographic strains of D. malerkotliana, there was significant deviation from randomness and isolation estimate remained low which shows non-random (preferential or positive assortative) mating. In D. parabipectinata, the deviation from randomness was statistically significant due to higher number of homogamic matings in three crosses involving wild strains derived from geographically distant places and isolation estimate remained low in these crosses. The results provide evidence for incipient sexual isolation within D. malerkotliana and D. parabipectinata as a result of genetic divergence.  相似文献   

10.
In Drosophila ananassae, male remating was studied using ten mass culture stocks which were initiated from flies collected from different geographic localities. Male remating occurs at a high frequency and varies within narrow limits (84-96 percent) in different strains. Interestingly, male remating time (in min) varies from 7.41 (Bhutan) to 21.59 (PAT) in different strains and the variation is highly significant. Further, the results also show that males copulate for shorter duration during second mating. This is the first report in the genus Drosophila which provides evidence for interstrain variations for male remating time as well as for shorter duration of copulation during second mating as compared to first mating in D. ananassae.  相似文献   

11.
Variation among males and females in reproductive success is a major determinant of effective population size. Most studies of male mating success in Drosophila, however, have been done under conditions very different from those in typical cultures. We determined the distribution of male mating success in five laboratory populations of D. melanogaster maintained on a 14 d, discrete generation cycle fairly representative of standard Drosophila cultures. Mating success was measured as the number of matings a male could achieve under conditions closely approximating a regular culture vial of these populations. Preliminary studies determined that most mating in these populations occurred within 14 h of the flies attaining sexual maturity. Consequently, individual virgin males were marked with white paint on their thorax, put into vials with varying numbers of unmarked virgin flies of both sexes, and monitored continuously for matings over a period of up to 14 h. At various times during the assay, virgin males and females were added to these vials in proportions simulating the pattern of eclosion in culture vials. The observed variation in the number of matings per male in the five populations was, by and large, consistent with a Poisson distribution, suggesting that male mating success in short-generation-time, discrete-generation laboratory cultures of D. melanogaster may fulfil a fundamental assumption of the Wright-Fisher model of genetic drift in finite populations.  相似文献   

12.
In the fly Dryomyza anilis females have two kinds of sperm storage organs: one bursa copulatrix and three spermathecae (two spermathecae with a common duct form the doublet, and the third is a singlet spermathecal unit). At the beginning of a mating the male deposits his sperm in the bursa copulatrix. After sperm transfer the male taps the female''s abdomen with his claspers. This behaviour has been shown to increase the male''s fertilization success. After mating, the female discharges large quantities of sperm before oviposition. To find out where the sperm remaining in the female are stored, I counted the number of sperm in the droplet and in the female''s sperm storage organs after different types of mating. I carried out three mating experiments. In experiment 1, virgin females were mated with one male and the matings were interrupted either immediately after sperm transfer or after several tapping sequences. The results show that during male tapping more sperm moved into the singlet spermatheca. In addition, the total number of sperm correlated with sperm numbers in all sperm storage organs, and male size was positively related to the number of sperm remaining in the bursa. In experiment 2, females mated with several males. The number of sperm increased with increasing number of matings only in the doublet spermatheca. No increase in the number of sperm in the singlet spermatheca during consecutive matings suggests that sperm were replaced or did not reach this sperm storage organ. In experiment 3, virgin females were mated with a single male and half of them were allowed to lay eggs. The experiment showed that during egglaying, females primarily used sperm from their singlet spermatheca. The results from the three experiments suggest that sperm stored in the singlet spermatheca is central for male fertilization success and male tapping is related to sperm storage in the singlet spermatheca. The different female''s sperm storage organs in D. anilis may have separate functions during sperm storage as well as during sperm usage.  相似文献   

13.
In many insects, both sexes mate multiple times and females use stored sperm for fertilizations. While males frequently engage in two distinct behaviours, multiple mating (with different females) and repeated copulations (with the same female), the reproductive consequences of these behaviours for males have been quantified for only a few species. In this study, males of the red flour beetle, Tribolium castaneum, were found to be capable of mating with as many as seven different virgin females within 15 min. Across sequential copulations with virgin females, there was no decline in either male insemination success or average female progeny production over 48 h. However, when males copulated with previously mated females, there was a significant decline in male paternity success across sequential copulations, possibly due to male sperm depletion. In separate experiments, T. castaneum males were found to engage in two to six repeated copulations with the same, individually marked female. These repeated copulations did not increase male insemination success, short-term female fecundity, or male paternity success. Repeated copulations may possibly play a role in sperm defence. This study indicates that males may frequently engage in multiple matings, but these additional matings may lead to diminishing male reproductive returns.  相似文献   

14.
Heterosexual relationships during one mating season were examined in a wild troop of Japanese macaques (Macaca fuscata yakui) on Yakushima Island, Japan. Validation tests of putative mate choice behaviors demonstrated that female initiation and maintenance of proximity, female lookback at the male, and sexual presents to the male, were associated with increased mating. Male grooming the female was also associated with increased mating. Ten dyadic social behaviors were subject to principal components analysis to empirically define behavioral dimensions of male-female relationships. The analysis yielded four relationship dimensions: ‘Mutual Choice and Male Coercion,’ ‘Female Choice’ (two types), and ‘Mutual Choice’ Dyads tended to be characterized by more than one dimension. The results suggested that females sought matings with multiple males of various dominance ranks. Female relationships with high ranking males contained elements of male coercion and mate guarding, however, because these males attempted to inhibit females from mating with lower ranking males. The correlation between each relationship dimension and mating success depended, in part, on the dominance rank of males. Relationships involving high ranking males, which were most likely to contain elements of male coercion and mate guarding, were associated with mating success. Relationships involving low ranking males, which usually lacked such coercive elements. were less strongly correlated with mating success. These results, obtained from a wild troop, are compared to those previously obtained in captive and provisioned groups of Japanese macaques.  相似文献   

15.
Some of the genetic benefit hypotheses put forward to explain multiple male mating (polyandry) predict that sons of polyandrous females will have an increased competitive ability under precopulatory or post‐copulatory competition via paternally inherited traits, such as attractiveness or fertilization efficiency. Here, we tested these predictions by comparing the competitive ability of sons of experimentally monandrous and polyandrous female bank voles (Myodes glareolus), while controlling for potential material and maternal effects. In female choice experiments, we found no clear preference for sons of either monandrous or polyandrous mothers. Moreover, neither male type was dominant over the other, indicating no advantage in precopulatory male contest competition. However, in competitive matings, sons of polyandrous mothers significantly increased their mating efforts (mating duration, intromission number). In line with this, paternity success was biased towards sons of polyandrous mothers. Because there was no evidence for maternal effects, our results suggest that female bank voles gain genetic benefits from polyandry.  相似文献   

16.
A potential benefit to females mating with multiple males is the increased probability that their sons will inherit traits enhancing their pre‐ or post‐mating ability to obtain fertilizations. We allowed red flour beetle (Tribolium castaneum) females to mate on three consecutive days either repeatedly to the same male or to three different males. This procedure was carried out in 20 replicate lines, 10 established with wild‐type, and 10 with the Chicago black morph, a partially dominant phenotypic marker. The paternity achieved by the sons of females from polyandrous vs. monandrous lines of contrasting morph was assessed in the F1, F2 and F3 generation by mating wild‐type stock females to two experimental males and assigning the progeny to either sire based on phenotype. The sons of polyandrous wild‐type females achieved significantly higher paternity when mating in the second male role than the sons of monandrous wild‐type females. By contrast, when mating in the first male role, males produced by females from polyandrous lines tended to have lower paternity than males from monandrous lines. Both effects were independent of the number of mates of the black competitor’s mother, and interacted significantly with the number of progeny laid by the female. These results provide the first evidence that manipulating the number of mates of a female can influence her sons’ mating success and suggest a potential trade‐off between offence and defence in this species.  相似文献   

17.
Polyandrous females are expected to discriminate among males through postcopulatory cryptic mate choice. Yet, there is surprisingly little unequivocal evidence for female-mediated cryptic sperm choice. In species in which nuptial gifts facilitate mating, females may gain indirect benefits through preferential storage of sperm from gift-giving males if the gift signals male quality. We tested this hypothesis in the spider Pisaura mirabilis by quantifying the number of sperm stored in response to copulation with males with or without a nuptial gift, while experimentally controlling copulation duration. We further assessed the effect of gift presence and copulation duration on egg-hatching success in matings with uninterrupted copulations with gift-giving males. We show that females mated to gift-giving males stored more sperm and experienced 17% higher egg-hatching success, compared with those mated to no-gift males, despite matched copulation durations. Uninterrupted copulations resulted in both increased sperm storage and egg-hatching success. Our study confirms the prediction that the nuptial gift as a male signal is under positive sexual selection by females through cryptic sperm storage. In addition, the gift facilitates longer copulations and increased sperm transfer providing two different types of advantage to gift-giving in males.  相似文献   

18.
In many species, the order in which males mate with a female explains much of the variation in paternity arising from post-copulatory sexual selection. Research in Drosophila suggests that mating order may account for the majority of the variance in male reproductive success. However, the effects of mating order on paternity bias might not be static but could potentially vary with social or environmental factors. To test this idea, we used an existing dataset, collated from an experiment we previously published (Morimoto et al., PLoS One, 11, 2016, e0154468), with the addition of unpublished data from the same experiment. These previous experiments manipulated larval density in Drosophila melanogaster which generated variation in male and female body size, assembled groups of individuals of different sizes, and measured the mating success and paternity share of focal males. The data presented here provides information on each focal male's mating order and the frequency in which focal males remated with same females (‘repetitive matings’). We combined this information with our previously reported focal male reproductive success to partition variance in paternity into male mating order and repetitive matings across groups that differed in the body size composition of males and females. We found, as expected, that male mating order explained a considerable portion of the variance in male paternity. However, we also found that the impact of male mating order on male paternity was influenced by the body size composition of groups. Specifically, males that tended to mate last had a greater paternity advantage, and displayed lower variance, in groups containing a heterogenous mixture male body sizes than in groups with a single male body size. Repetitive mating only had a minor contribution to the variance in male paternity share across all experiments. Overall, our findings contribute to the growing body of research showing that post-copulatory sexual selection is subject to socio-ecological influences.  相似文献   

19.
Male mating success as a function of genotype is an important fitness component. It can be studied in wild populations, in species for which a given group of progeny has exactly one father, by determining genotypes of wildcaught mothers and of sufficient numbers of their progeny. Here, we study male mating success as a function of allozyme genotype at two glycolytic loci in Colias butterflies, in which sperm precedence is complete, so that the most recent male to mate fathers all of a female's subsequent progeny.--For the phosphoglucose isomerase, PGI, polymorphism, we predict mating advantage and disadvantage of male genotypes based on evaluation of their biochemical functional differences in the context of thermal-physiological-ecological constraints on the insects' flight activity. As predicted, we find major, significant advantage in mating success for kinetically favored genotypes, compared to the genotype distribution of males active with the sampled females in the wild. These effects are repeatable among samples and on different semispecies' genetic backgrounds.--Initial study of the phosphoglucomutase, PGM, polymorphism in the same samples reveals heterozygote advantage in male-mating success, compared to males active with the females sampled. This contrasts with a lack of correspondence between PGI and PGM genotypes in other fitness index or component differences.--Epistatic interactions in mating success between the two loci are absent.--There is no evidence for segregation distortion associated with the alleles of either primary locus studied, nor is there significant assortative mating.--These results extend our understanding of the specific variation studied and suggest that even loci closely related in function may have distinctive experience of evolutionary forces. Implications of the specificity of the effects seen are briefly discussed.  相似文献   

20.
Many organisms with complex life cycles show considerable variation in size and timing at metamorphosis. Adult males of Megarcyssignata (Plecoptera: Perlodidae) are significantly smaller than females and emerge before females (protandry) from two western Colorado streams. During summer 1992 stoneflies from a trout stream emerged earlier in the season and at larger sizes than those from a colder fishless stream, and size at metamorphosis did not change over the emergence period in either stream. We performed two experiments to determine whether variation in size at metamorphosis affected the fecundity, reproductive success and longevity of individuals of this stonefly species and if total lifetime fecundity was affected by the number of matings. In the first experiment, total lifetime fecundity (eggs oviposited) was determined for adult females held in small plastic cages in the field. Males were removed after one copulation, or pairs were left together for life and allowed to multiply mate. Most copulations occurred in the first few days of the experiment. Females in treatments allowing multiple matings had significantly lower total lifetime fecundity and shorter adult longevity than females that only mated once. Multiple matings also reduced longevity of males. Fecundity increased significantly with female body mass at emergence, but only for females that mated once. While multiple matings eliminated the fecundity advantage of large female body size, number of matings did not affect the significant positive relationship between body mass at metamorphosis and longevity of males or females. In a second experiment designed to determine if body mass at emergence affected male mating success, we placed one large and one small male Megarcys in an observation arena containing one female and recorded which male obtained the first mating. The large and the small male had equal probabilities of copulating with the female. Copulations usually lasted all night, and the unmated male made frequent, but unsuccessful attempts to take over the copulating female. Our data suggest that selection pressures determining body size at metamorphosis may operate independently on males and females, resulting in evolution of sexual size dimorphism, protandry, and mating early in the adult stage. We emphasize the importance of interpreting the fitness consequences of larval growth and development on the timing of and size at metamorphosis in the context of the complete life cycle. Received: 1 July 1997 / Accepted: 12 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号