首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In view of modern knowledge and concepts about components, function and mechanisms of response of cell molecular structures to damaging effects, response which is generating specialized modules of reactions, it is shown that main components of the mechanism of maintenance of genome constancy at ionizing radiation exposure are checkpoints of cell cycle, DNA repair and apoptosis. They operate under the control of a genetic system at participation of Tp53 gene, corresponding protein and of regulatory networks formed by cascades of mitogen-activated protein kinases (MAPK). At ionizing radiation exposure the MAPK special modules participate in formation of radiation effect: ERK 1/2 (extracellular signal-regulated kinase 1 and 2), JNK/SAPK (c-Jun N-terminal kinase/stress activated protein kinase) and p38 MAPK. Executing physiological functions of maintenance of normal life activity of cells, they do not lose this capacity after exposure to ionizing radiation, participating in formation of radiation effect in a wide range of doses, and are inactivated only by exposure to very high doses. It is concluded that in light of the modern data the main problem is not a problem of mechanisms of biological effect of ionizing radiation but a problem of biological mechanisms of radiation exposure.  相似文献   

2.
To analyse a role of the factor of a genetic fundamentals of cells in formation of radiation-induced genome instability (RIGI) we investigated a condition of DNA pattern, content of superoxide anion-radical O2*- and a sum of reactive oxigen species (ROS) (O2*-, OH*, H2O2), and also catalase activity in bone marrow cells of male and female mice of 101/H strain in the norm and at once after chronic (10 day) exposure to 200 mGy gamma-radiation. Thus we based on conception about a significance of mechanisms of DNA repair and production of reactive oxygen species (ROS) in development of radiation-induced genome instability (RIGI), and also on the data on sex bound differences in efficiency of DNA repair in reply to impact of the genotoxic agents for male and female mice of 101/H strain. Sex connected differences in redox system of bone marrow cells were established. In males lower catalase activity was found in the norm, with considerable increase of the activity and the content of ROS after chronic irradiation with a low dose (200 mGy); at the same time a direct correlation between the ROS content and catalase activity occurred. In female, which have higher DNA repair potential, higher level of catalase activity was found in the norm, with reduction after irradiation and lower, than in male, level of O2*- content; no changes in the general ROS content, or direct correlation between the content of a superoxide anion-radical (O2*-) and the sum of ROS were observed. The detected differences between male and female the studied parameters in the norm and after irradiation indicate a connection of the studied characteristics and their changes with a sex, confirm the literature data about a significance of the factor of a genetic fundamentals of bioobject in formation of radiation-induced genome instability.  相似文献   

3.
The molecular manifestations of radiation-induced genome instability-changes of the DNA structure, the excision DNA repair and the contents of the reactive oxygen forms in bone marrow cells of the repair proficient mice (CBA) and of the repair-defective (101/H) lines in the dynamics up to 185 day after ionizing radiation exposure in the dose of 1.5 Gy were studied. Is was established, that after irradiation in bone marrow cells the descendants with the decreased activity of excision DNA repair and prone to increased changes of DNA structure DHK is arised. The injection of the phenozane in concentrations causing its receptor interaction with cells, did not defend DNA of the bone marrow cells from the radiation injury after the exposure in a sublethal dose, however it exerted influence on long-term changes. Due to the phenosane of the bone marrow cells of the irradiated mice of CBA line exhibited the larger activity in a DNA repair from damages and maintenance of vitality. The bone marrow cells of male mice of repair defective 101/H line, which phenozan was entered before the irradiation, remained unfit to the remuval of DNA damages by the repair, that probably resulted the activations of the program of the maintenance of genome constancy by the apoptosis in the cells--carriers of the structural defects and the cause of animal lethality.  相似文献   

4.
5.
The information significance of the immunological indexes for the prognosis of gravity of course and of outcome of an acute radiation disease for the people after the exposure of ionizing radiation in clinically significant doses is studied. The value of indexes of the C-reactive protein contents, of the complement contents and of the titer of haemagglutinins in serum of a blood of 147 patients damaged at Chernobyl NPP accident as a result of external radiation gamma-exposure in combination with internal irradiation from the incorporation in an organism predominantly beta-emitting radionuclides were compared to the weight of acute radiation disease and its outcome (survival or loss). Was determined, that indexes of the contents of C-reactive protein in a peripheral blood during primary reactions on the irradiation (1-2 day after irradiation) and in latent period of disease (3-9 day after irradiation), and also titer of a complement on 3-9 day after irradiation can serve a source of information for the prognosis of probable gravity of a radiation injury and its outcome at irradiation of the man in clinically significant doses.  相似文献   

6.
Several recent studies have suggested that the reactive oxygen species (ROS) generated from mitochondria contribute to genomic instability after exposure of the cells to ionizing radiation, but the mechanism of this process is not yet fully understood. We examined the hypothesis that irradiation induces mitochondrial dysfunction to cause persistent oxidative stress, which contributes to genomic instability. After the exposure of cells to 5 Gy gamma-ray irradiation, we found that the irradiation induced the following changes in a clear pattern of time courses. First, a robust increase of intracellular ROS levels occurred within minutes, but the intracellular ROS disappeared within 30 min. Then the mitochondrial dysfunction was detected at 12 h after irradiation, as indicated by the decreased activity of NADH dehydrogenase (Complex I), the most important enzyme in regulating the release of ROS from the mitochondrial electron transport chain (ETC). Finally, a significant increase of ROS levels in the mitochondria and the oxidation of mitochondrial DNA were observed in cells at 24 h or later after irradiation. Although further experiments are required, results in this study support the hypothesis that mitochondrial dysfunction causes persistent oxidative stress that may contribute to promote radiation-induced genomic instability.  相似文献   

7.
Poly(ADP-ribose) polymerase 1 (PARP1), an enzyme activated by DNA strand breaks, synthesizes polymers of poly(ADP-ribose) (PAR) that modify chromatin and other proteins and play a role in DNA repair. Inhibition of PARP1 activity is considered a potentially important strategy in clinical practice, especially to sensitize tumor cells to chemo- and radio-therapy. Here we examined the influence of inhibition of PARP1 on formation of reactive oxygen species (ROS) and on DNA repair in cells exposed to ionizing radiation (IR). K562 (human myelogenous leukaemia) cells were grown and exposed to 4 or 12Gy of ionizing radiation in presence or absence of the PARP inhibitor NU1025 (100μM). Intracellular ROS were assayed using the probe 2,7-dichlorofluorescein with detection by flow cytometry and the rejoining of DNA strand breaks were followed by alkaline single cell gel electrophoresis (comet) assays. In untreated cells a significant increase in PAR formation occurred during the first 5min after IR, followed by a gradual decrease up to 30min. Addition of a PARP inhibitor arrested the production of PAR almost completely and decreased the rate of rejoining of DNA strand breaks significantly; however, 3h after irradiation we observed no difference in the amount of DNA strand breaks between PARP inhibitor-treated and untreated cells. Twelve to 48h after irradiation, an increase of ROS concentration was observed in irradiated cells and ROS levels in PARP inhibitor-treated cells were significantly higher than in cells without inhibitor. Irradiated cells grown in the presence or absence of PARP inhibitor did not differ in the frequencies of apoptotic and necrotic cells or in the activity of caspases at 24, 48 and 72h after irradiation. Poly(ADP-ribosylation) and inhibition of PARP1 appeared to modulate DNA strand break rejoining and influence the concentration of ROS in irradiated cells.  相似文献   

8.
Lee JH  Park JW 《Free radical research》2005,39(12):1325-1333
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. alpha-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of gamma-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP+ +NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

9.
Unrepaired DNA double-strand breaks (DSBs) cause genetic instability that leads to malignant transformation or cell death. Cells respond to DSBs with the ordered recruitment of signalling and repair proteins to the site of lesion. Protein modification with ubiquitin is crucial for the signalling cascade, but how ubiquitylation coordinates the dynamic assembly of these complexes is poorly understood. Here, we show that the human ubiquitin-selective protein segregase p97 (also known as VCP; valosin-containing protein) cooperates with the ubiquitin ligase RNF8 to orchestrate assembly of signalling complexes and efficient DSB repair after exposure to ionizing radiation. p97 is recruited to DNA lesions by its ubiquitin adaptor UFD1-NPL4 and Lys-48-linked ubiquitin (K48-Ub) chains, whose formation is regulated by RNF8. p97 subsequently removes K48-Ub conjugates from sites of DNA damage to orchestrate proper association of 53BP1, BRCA1 and RAD51, three factors critical for DNA repair and genome surveillance mechanisms. Impairment of p97 activity decreases the level of DSB repair and cell survival after exposure to ionizing radiation. These findings identify the p97-UFD1-NPL4 complex as an essential factor in ubiquitin-governed DNA-damage response, highlighting its importance in guarding genome stability.  相似文献   

10.
The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis.  相似文献   

11.
Ionizing radiation (IR) can cause various lesions in DNA, which induce the increase of p53 expression levels in order to repair radiation induced damage. Thus, the correlation between the increase of p53 expression and an irradiation may constitute a fast and powerful method of individual monitoring in cases of accidental or suspected exposures to IR. In this context, the aim of this research was to evaluate changes in lymphocyte p53 expression levels, based on flow cytometry, after in vitro irradiation of peripheral blood samples. For the measurement of such expression levels of p53 protein, an investigation was carried out in order to establish a methodology of analysis based on flow cytometry. Hence, relationships among levels of expression of p53 protein with the absorbed dose have been verified. The results presented in this report emphasized flow cytometry as an important tool for the fast evaluation of p53 protein expression levels as bioindicator of individual exposure to acute ionizing radiation.  相似文献   

12.
Our recent study showed that quiescent G0 cells are more resistant to ionizing radiation than G1 cells; however, the underlying mechanism for this increased radioresistance is unknown. Based on the relatively lower DNA damage induced in G0 cells, we hypothesize that these cells are exposed to less oxidative stress during exposure. As a catalytic subunit of NADPH oxidase, Ras-related C3 botulinum toxin substrate 2 (RAC2) may be involved in the cellular response to ionizing radiation. Here, we show that RAC2 was expressed at low levels in G0 cells but increased substantially in G1 cells. Relative to G1 cells, the total antioxidant capacity in G0 phase cells increased upon exposure to X-ray radiation, whereas the intracellular concentration of ROS and malondialdehyde increased only slightly. The induction of DNA single- and double-stranded breaks in G1 cells by X-ray radiation was inhibited by knockdown of RAC2. P38 MAPK interaction with RAC2 resulted in a decrease of functional RAC2. Increased phosphorylation of P38 MAPK in G0 cells also increased cellular radioresistance; however, excessive production of ROS caused P38 MAPK dephosphorylation. P38 MAPK, phosphorylated P38 MAPK, and RAC2 regulated in mutual feedback and negative feedback regulatory pathways, resulting in the radioresistance of G0 cells.  相似文献   

13.
14.
We report the functional and temporal relationship between cellular phenotypes such as oxidative stress, p38MAPK-dependent responses and genomic instability persisting in the progeny of cells exposed to sparsely ionizing low-Linear Energy Transfer (LET) radiation such as X-rays or high-charge and high-energy (HZE) particle high-LET radiation such as 56Fe ions. We found that exposure to low and high-LET radiation increased reactive oxygen species (ROS) levels as a threshold-like response induced independently of radiation quality and dose. This response was sustained for two weeks, which is the period of time when genomic instability is evidenced by increased micronucleus formation frequency and DNA damage associated foci. Indicators for another persisting response sharing phenotypes with stress-induced senescence, including beta galactosidase induction, increased nuclear size, p38MAPK activation and IL-8 production, were induced in the absence of cell proliferation arrest during the first, but not the second week following exposure to high-LET radiation. This response was driven by a p38MAPK-dependent mechanism and was affected by radiation quality and dose. This stress response and elevation of ROS affected genomic instability by distinct pathways. Through interference with p38MAPK activity, we show that radiation-induced stress phenotypes promote genomic instability. In contrast, exposure to physiologically relevant doses of hydrogen peroxide or increasing endogenous ROS levels with a catalase inhibitor reduced the level of genomic instability. Our results implicate persistently elevated ROS following exposure to radiation as a factor contributing to genome stabilization.  相似文献   

15.
Ionizing radiation induces the production of reactive oxygen species (ROS), which play an important causative role in apoptotic cell death. α-Phenyl-N-t-butylnitrone (PBN) is one of the most widely used spin-trapping compounds for investigating the existence of free radicals in biological systems. We investigated the effects of PBN on ionizing radiation-induced apoptosis in U937 cells. Upon exposure to 2 Gy of γ-irradiation, there was a distinct difference between the control cells and the cells pre-treated with 2 mM PBN for 2 h in regard to apoptotic parameters, cellular redox status, mitochondria function and oxidative damage to cells. PBN effectively suppressed morphological evidence of apoptosis and DNA fragmentation in U937 cells exposed to ionizing radiation. The [GSSG]/[GSH+GSSG] ratio and the generation of intracellular ROS were higher and the [NADPH]/[NADP++NADPH] ratio was lower in control cells compared to PBN-treated cells. The ionizing radiation-induced mitochondrial damage reflected by the altered mitochondrial permeability transition, the increase in the accumulation of ROS, and the reduction of ATP production were significantly higher in control cells compared to PBN-treated cells. PBN pre-treated cells showed significant inhibition of apoptotic features such as activation of caspase-3, up-regulation of Bax and p53, and down-regulation of Bcl-2 compared to control cells upon exposure to ionizing radiation. This study indicates that PBN may play an important role in regulating the apoptosis induced by ionizing radiation presumably through scavenging of ROS.  相似文献   

16.
The frequency of lymphocytes with mutations at genes of T-cell receptor (TCR) is determined in 165 persons exposed to ionizing radiation 16-40 years after the influence. Depending on a type of irradiation and time, elapsed from the moment of exposure, all inspected persons were divided into 3 groups: 1) the analysis performed 16-40 years after acute irradiation; 2) the analysis--9-13 years after acute irradiation; 3) the analysis--9-13 years after prolonged irradiation. The persons with elevated frequencies of TCR-mutant cells were detected in all three groups. In the first group they have compounded 36% of persons inspected, in the second--25%, in the third--15%. The percentage of persons with elevated frequencies of mutant cells in all groups was significantly higher than in control groups. Taking into account fast enough elimination of radiation-induced TCR-mutant cells it is possible to suspect, that the cause of elevated frequency of mutant cells in the part of the persons can be genome instability.  相似文献   

17.
The dichlorofluorescein method has become a standard technique for measuring reactive oxygen species (ROS) formed in cells by ionizing radiation. A recent report (Korystov et al., Radiat. Res. 168, 226-232, 2007) has suggested that the method is subject to an artifact in that it erroneously reports hydrogen peroxides generated in the extracellular medium as ROS formed intracellularly by ionizing radiation. It was hypothesized that radiation-induced extracellular peroxides enter cells in the minutes after radiation exposure and subsequently oxidize the intracellular dichlorofluorescin probe and that dichlorofluorescein fluorescence is not due to ROS formed intracellularly by ionizing radiation. We tested this hypothesis by measuring the contribution of long-lived radicals formed in medium by ionizing radiation on intracellular dichlorofluorescein fluorescence. We found no evidence that this artifact contributes significantly to intracellular dichlorofluorescein fluorescence. These results and those of Korystov et al. are discussed in view of cellular dichlorofluorescin leakage and radiation chemistry. We conclude that the dichlorofluorescein method is effective for quantifying intracellular ROS induced by ionizing radiation.  相似文献   

18.
Exposure to ionizing radiation can result in delayed effects that can be detected in the progeny of an irradiated cell multiple generations after the initial exposure. These effects are described under the rubric of radiation-induced genomic instability and encompass multiple genotoxic endpoints. We have developed a green fluorescence protein (GFP)-based assay and demonstrated that ionizing radiation induces genomic instability in human RKO-derived cells and in human hamster hybrid GM10115 cells, manifested as increased homologous recombination (HR). Up to 10% of cells cultured after irradiation produce mixed GFP(+/-) colonies indicative of delayed HR or, in the case of RKO-derived cells, mutation and deletion. Consistent with prior studies, delayed chromosomal instability correlated with delayed reproductive cell death. In contrast, cells displaying delayed HR showed no evidence of delayed reproductive cell death, and there was no correlation between delayed chromosomal instability and delayed HR, indicating that these forms of genome instability arise by distinct mechanisms. Because delayed hyperrecombination can be induced at doses of ionizing radiation that are not associated with significantly reduced cell viability, these data may have important implications for assessment of radiation risk and understanding the mechanisms of radiation carcinogenesis.  相似文献   

19.
Many studies suggest that exogenous antioxidants may protect cells against DNA damage caused with ionizing radiation. One of the most powerful antioxidants is lycopene (LYC), a carotenoid derived from tomatoes. The aim of this study was to investigate, using the comet assay, whether LYC can act as protectors/modifiers and prevent DNA damage induced in human blood lymphocytes, as well as to mitigate the effects of radiation exposure. In this project, LYC, dissolved in DMSO at a concentration of 10, 20 or 40 μM/ml of cell suspension, was added to the isolated lymphocytes from human blood at appropriate intervals before or after the X-irradiation at doses of 0.5, 1 and 2 Gy. Cell viability in all groups was maintained at above 70%. The results showed the decrease of DNA damage in cells treated with various concentrations of LYC directly and 1 h before exposure to X-rays compared to the control group exposed to irradiation alone. Contrary results were observed in cells exposed to LYC immediately after exposure to ionizing radiation. The studies confirmed the protective effect of LYC against DNA damage induced by ionizing radiation, but after irradiation the carotenoid did not stimulate of DNA repair and cannot act as modifier. However, supplementation with LYC, especially at lower doses, may be useful in protection from radiation-induced oxidative damage.  相似文献   

20.
Programmed and unprogrammed double-strand breaks (DSBs) often arise from such physiological requirements as meiotic recombination, and exogenous insults, such as ionizing radiation (IR). Due to deleterious impacts on genome stability, DSBs must be appropriately processed and repaired in a regulatory manner. Recent investigations have indicated that ubiquitination is a critical factor in DNA damage response and meiotic recombination repair. This review summarizes the effects of proteins and complexes associa...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号