首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
U46619, a thromboxane A2 mimetic, caused tyrosine phosphorylation of several proteins in rabbit platelets. Among them, 42 kDa protein was identified as a mitogen-activated protein kinase (MAPK). U46619 activated MAPK in a concentration-dependent manner, measured by incorporation of 32P to a specific substrate for MAPK. U46619 also liberated [3H)arachidonic acid in a concentration-dependent manner. The U46619-induced MAPK activation and [3H]arachidonic acid liberation were inhibited by SQ29548 and by the removal of external Ca2+ ions. This is a first demonstration that TXA2 activates MAPK accompanied with arachidonic acid liberation in rabbit platelets.  相似文献   

2.
Tuo QH  Wang C  Yan FX  Liao DF 《Life sciences》2004,76(5):487-497
Our recent studies have shown that onychin could protect rabbit aortic rings from lysophosphatidylcholine-induced injury by preserving endothelium-dependent relaxation and alleviating acute endothelial damage mediated by oxidative stress. However, the effect of onychin on apoptosis of endothelial cells induced by oxidative stress was not evaluated. In the present study, we investigated the effect of onychin on Hydrogen Peroxide (H2O2) induced apoptosis of ECV304 endothelial cells. Cultured human umbilical vein endothelial cell line (ECV304) was pretreated with vehicle (DMSO), genistein, or different concentrations of onychin (0.1, 0.3, 1, 3, and 10 micromol/L) for 30 minutes and then exposed to 1 mmol/L H2O2 for 24 hours. Cell apoptosis was determined by TUNEL and flow cytometric analysis. Meanwhile, Western-blot was used to measure the expression of phospho-ERK1/2, phospho-p38 and caspase-3. Our data showed that onychin treatment exhibited a protective effect on ECV304 endothelial cells from H2O2-induced apoptosis in a concentration-dependent manner. Moreover, onychin attenuated H2O2-induced phosphorylation of p38MAPK and increased H2O2-induced phosphorylation of ERK1/2. Furthermore, onychin decreased the activation of caspase-3. The opposing effects of onychin on phosphorylation levels of p38MAPK and ERK1/2, and its caspase-3 inhibition might play a role in the beneficial effect of onychin on endothelial injury.  相似文献   

3.
The removal of H(2)O(2) by antioxidants has been proven to be beneficial to patients with vitiligo. Baicalein (5,6,7-trihydroxyflavone; BE) has antioxidant activity and has been used in vitiligo therapy in Chinese traditional medicine. In this study, we investigated the potential protective effect and mechanisms of BE against H(2)O(2)-induced apoptosis in human melanocytes. Melanocytes from the PIG1 cell line were pretreated with different concentrations of BE for 1 h, followed by exposure to 1.0 mM H(2)O(2) for 24 h. Cell apoptosis, reactive oxygen species levels, and mitochondrial membrane potentials were evaluated by flow cytometry, and cell viability was determined by an MTT assay. The expressions of Bax, Bcl-2, caspase-3, total and phosphorylated ERKs, and p38 MAPK were assayed by Western blot to investigate the possible molecular mechanisms. Our results showed that BE significantly inhibited H(2)O(2)-induced apoptosis, intracellular reactive oxygen species generation, and changes in the mitochondrial membrane potential. It also reduced the Bax/Bcl-2 ratio, the release of cytochrome c, the activation of caspase-3, and the phosphorylation of p38 MAPK in a concentration-dependent manner. The results demonstrate for the first time that BE exerts a cytoprotective role in H(2)O(2)-induced apoptosis by inhibiting the mitochondria-dependent caspase activation and p38 MAPK pathway.  相似文献   

4.
H(2)O(2)-induced pulmonary arterial smooth muscle (PASM) contractions are independent of Ca(2+) and myosin light chain phosphorylation. The purpose of this study was to determine whether mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK) 1 and ERK2, or protein kinase C (PKC) activation is required for H(2)O(2)-induced contraction. Porcine PASM strips were stimulated with 1 mM H(2)O(2), 120 mM KCl, or 10 microM phorbol myristic acetate and freeze clamped at various times during the contractions. Changes in relative amounts of tyrosine/threonine phosphorylated MAPK compared with total MAPK were measured. MAPK tyrosine phosphorylation levels increased in correlation with tension development. However, 50 microM PD-98059, a MAPK/ERK kinase-MAPK kinase blocker, reduced MAPK phosphorylation below resting levels, even though the magnitude of the isometric tension development was unaltered. Freeze-clamped PASM strips were placed in a PKC activity assay buffer containing (32)P and CaCl(2) to measure the total myelin basic protein phosphorylation. The data show that: 1) the time courses of PKC activity and force produced in response to H(2)O(2) do not correlate, and 2) MAPK activation may be a concurrent event with, or a consequence of, tension development in response to a variety of agonists but is not responsible for contractions to H(2)O(2), high K(+), or phorbol esters.  相似文献   

5.
Reactive oxygen species (ROS) are implicated in the pathogenesis of several proliferative diseases, including atherosclerosis and cancer. Eukaryotic translation initiation factor 4E (eIF4E) plays an important role in cell proliferation and differentiation. To gain insight into molecular mechanisms by which ROS influence the pathogenesis of these diseases, I have studied the effect of H(2)O(2), a ROS, on eIF4E phosphorylation. H(2)O(2) induced eIF4E phosphorylation in a dose- and time-dependent manner in growth-arrested smooth muscle cells (SMC). H(2)O(2)-induced eIF4E phosphorylation occurred on serine residues. PD098059, a specific inhibitor of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) kinase inhibited ERK activities but had no significant effect on eIF4E phosphorylation induced by H(2)O(2). Similarly, SB203580, a specific inhibitor of p38 MAPK, although inhibiting H(2)O(2)-induced p38 MAPK activity, had no effect on H(2)O(2)-induced eIF4E phosphorylation. Calphostin C, a specific inhibitor of protein kinase C, also had no effect on H(2)O(2)-induced eIF4E phosphorylation. In contrast, trifluoperazine, an antagonist of calcium/calmodulin kinases, completely blocked H(2)O(2)-induced eIF4E phosphorylation. In addition, intracellular and extracellular Ca(2+) chelators significantly inhibited H(2)O(2)-induced eIF4E phosphorylation. Despite its ability to induce eIF4E phosphorylation, H(2)O(2) had no significant effect on protein levels and new protein synthesis as compared with control. In contrast, it induced the expression of c-Fos, c-Jun, and HSP70 in a time-dependent manner in SMC. Together, these results suggest that H(2)O(2), a ROS and a cellular oxidant, induces eIF4E phosphorylation in a manner that is dependent on Ca(2+) and Ca(2+)/calmodulin kinases and independent of ERKs, p38 MAPK, and protein kinase C. These results also suggest that enhanced eIF4E phosphorylation by H(2)O(2) appears to be an important event in SMC in response to oxidant stress and that eIF4E phosphorylation may be associated with the translation of a small subset of mRNAs such as c-fos, c-jun, and HSP70 gene mRNAs, whose products may have a critical role in cell survival.  相似文献   

6.
Nguyen A  Chen P  Cai H 《FEBS letters》2004,572(1-3):307-313
Growing evidence suggests that reactive oxygen species such as hydrogen peroxide (H(2)O(2)) can function as important signaling molecules in vascular cells. H(2)O(2)-activated redox-sensitive pathways mediate both physiological and pathological responses given the location and concentration of H(2)O(2). We showed previously for the first time that calcium/calmodulin-dependent protein kinase II (CaMKII) is redox-sensitive in endothelial cells, mediating H(2)O(2) upregulation of endothelial nitric oxide synthase. This response is always accompanied by an elongation phenotype of endothelial cells, implying modulation of actin cytoskeleton. In the present study, we investigated the role of CaMKII in H(2)O(2) activation of p38 MAPK/heat shock protein 27 (HSP27) pathway and ERK1/2, both of which have been known to regulate actin reorganization in endothelial cells. Addition of H(2)O(2) to bovine aortic endothelial cells increased ERK1/2 phosphorylation and activity, which was attenuated by a specific inhibitor of CaMKII, KN93. KN93 also prevented H(2)O(2) activation of p38 MAPK. Transfection of endothelial cells with a CaMKII-specific inhibitory peptide (AA 281-309) reduced H(2)O(2) phosphorylation of p38 MAPK and ERK1/2. Furthermore, blockade of CaMKII or janus kinase 2 (JAK2, downstream of CaMKII) prevented H(2)O(2) activation of HSP27. KN93 attenuated, whereas AG490 (JAK2 inhibitor) abolished, H(2)O(2)-induced formation of actin stress fibers. Blockade of ERK1/2 inhibited H(2)O(2) phosphorylation of HSP27 transiently. It also partially prevented H(2)O(2) induction of actin stress fibers. In summary, redox-sensitive activation of p38 MAPK/HSP27 pathway or ERK1/2 in endothelial cells requires CaMKII. These pathways are at least partially responsible for H(2)O(2) induced reorganization of actin cytoskeleton.  相似文献   

7.
The cause of selective dopaminergic neuronal degeneration in Parkinson disease has still not been resolved, but it has been hypothesized that oxidative stress and the ubiquitin-proteasome system are important in the pathogenesis. In this report, we investigated the effect of proteasome inhibition on oxidative stress-induced cytotoxicity in PC12 cells, an in vitro model of Parkinson disease. Treatment with proteasome inhibitors provided significant protection against toxicity by 6-hydroxydopamine and H(2)O(2) in a concentration-dependent manner. The measurement of intracellular reactive oxygen species using 2',7'-dichlorofluorescein diacetate demonstrated that lactacystin, a proteasome inhibitor, significantly reduced 6-hydroxydopamineand H(2)O(2)-induced reactive oxygen species production. Proteasome inhibitors elevated the amount of glutathione and phosphorylated p38 mitogen-activated protein kinase (MAPK) prior to glutathione elevation. The treatment with lactacystin induced the nuclear translocation of NF-E2-related factor 2 (Nrf2) and increased the level of mRNA for gamma-glutamylcysteine synthetase, a rate-limiting enzyme in glutathione synthesis. Furthermore, SB203580, an inhibitor of p38 MAPK, abolished glutathione elevation and cytoprotection by lactacystin. These data suggest that proteasome inhibition afforded cytoprotection against oxidative stress by the elevation of glutathione content, and its elevation was mediated by p38 MAPK phosphorylation.  相似文献   

8.
Oxidative stress induces in endothelial cells a quick and transient coactivation of both stress-activated protein kinase-2/p38 and extracellular signal-regulated kinase (ERK) mitogen-activated protein kinases. We found that inhibiting the ERK pathway resulted, within 5 min of oxidative stress, in a misassembly of focal adhesions characterized by mislocalization of key proteins such as paxillin. The focal adhesion misassembly that followed ERK inhibition with the mitogen-activated protein kinase kinase (MEK) inhibitor PD098059 (2'-amino-3'-methoxyflavone) or with a kinase negative mutant of ERK in the presence of H(2)O(2) resulted in a quick and intense membrane blebbing that was associated with important damage to the endothelium. We isolated by two-dimensional gel electrophoresis a PD098059-sensitive phosphoprotein of 38 kDa that we identified, by mass spectrometry, as tropomyosin-1. In fact, H(2)O(2) induced a time-dependent phosphorylation of tropomyosin that was sensitive to inhibition by PD098059 and UO126 (1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butanediane). Tropomyosin phosphorylation was also induced by expression of a constitutively activated form of MEK1 (MEK(CA)), which confirms that its phosphorylation resulted from the activation of ERK. In unstimulated cells, tropomyosin-1 was found diffuse in the cells, whereas it quickly colocalized with actin and stress fibers upon stimulation of ERK by H(2)O(2) or by expression of MEK(CA). We propose that phosphorylation of tropomyosin-1 downstream of ERK by contributing to formation of actin filaments increases cellular contractility and promotes the formation of focal adhesions. Incidentally, ML-7 (1-[5iodonaphthalene-1-sulfonyl]homopiperazine, HCl), an inhibitor of cell contractility, inhibited phosphorylation of tropomyosin and blocked the formation of stress fibers and focal adhesions, which also led to membrane blebbing in the presence of oxidative stress. Our finding that tropomyosin-1 is phosphorylated downstream of ERK, an event that modulates its interaction with actin, may lead to further understanding of the role of this protein in regulating cellular functions associated with cytoskeletal remodeling.  相似文献   

9.
10.
11.
We investigated activation of mitogen-activated protein kinase (MAPK) subtype cascades in human neutrophils stimulated by IL-1beta. IL-1beta induced phosphorylation and activation of p38 MAPK and phosphorylation of MAPK kinase-3/6 (MKK3/6). Maximal activation of p38 MAPK was obtained by stimulation of cells with 300 U/ml IL-1beta for 10 min. Extracellular signal-regulated kinase (ERK) was faintly phosphorylated and c-Jun N-terminal kinase (JNK) was not phosphorylated by IL-1beta. IL-1beta primed neutrophils for enhanced release of superoxide (O(2)(-)) stimulated by FMLP in parallel with increased phosphorylation of p38 MAPK. IL-1beta also induced O(2)(-) release and up-regulation of CD11b and CD15, and both responses were inhibited by SB203580 (p38 MAPK inhibitor), suggesting that p38 MAPK activation mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15. Combined stimulation of neutrophils with IL-1beta and G-CSF, a selective activator of the ERK cascade, resulted in the additive effects when the priming effect and phosphorylation of p38 MAPK and ERK were assessed. IL-1beta induced phosphorylation of ERK and JNK as well as p38 MAPK in human endothelial cells. These findings suggest that 1) in human neutrophils the MKK3/6-p38 MAPK cascade is selectively activated by IL-1beta and activation of this cascade mediates IL-1beta-induced O(2)(-) release and up-regulation of CD11b and CD15, and 2) the IL-1R-p38 MAPK pathway and the G-CSF receptor-ERK pathway work independently for activation of neutrophils.  相似文献   

12.
We examined the upstream kinases for mitogen-activated protein kinase (MAPK) activation during ischemic hypoxia and reoxygenation using H9c2 cells derived from rat cardiomyocytes. Protein kinase C (PKC)zeta, an atypical PKC isoform mainly expressed in rat heart, has been shown to act as an upstream kinase of MAPK during ischemic hypoxia and reoxygenation by analyses with PKC inhibitors, antisense DNA, a dominant negative kinase defective mutant, and constitutively active mutants of PKCzeta. Immunocytochemical observations show PKCzeta staining in the nucleus during ischemic hypoxia and reoxygenation when phosphorylated MAPK is also detected in the nucleus. This nuclear localization of PKCzeta is inhibited by treatment with wortmannin, a phosphoinositide 3-kinase inhibitor that also inhibits MAPK activation in a dose-dependent manner. This is supported by the inhibition of MAPK phosphorylation by another blocker of phosphoinositide 3-kinase, LY294002. An upstream kinase of MAPK, MEK1/2, is significantly phosphorylated 15 min after reoxygenation and observed mainly in the nucleus, whereas it is present in the cytoplasm in serum stimulation. The phosphorylation of MEK is blocked by PKC inhibitors and phosphoinositide 3-kinase inhibitors, as observed in the case of MAPK phosphorylation. These observations indicate that PKCzeta, which is activated by phosphoinositide 3-kinase, induces MAPK activation through MEK in the nucleus during reoxygenation after ischemic hypoxia.  相似文献   

13.
It has been shown that endogenous production of reactive oxygen species (ROS) during T cell activation regulates signaling events including MAPK activation. Protein tyrosine phosphatases (PTPs) have been regarded as targets of ROS which modify the catalytic cysteine residues of the enzymes. We have analyzed the interplay between the inhibition of PTPs and the activation of MAPK by H(2)O(2). Stimulation of Jurkat T cells with H(2)O(2) induces the phosphorylation of ERK, p38, and JNK members of MAPK family. H(2)O(2) stimulation of T cells was found to inhibit the PTP activity of CD45, SHP-1, and HePTP. Transfection of cells with wtSHP-1 decreased H(2)O(2)-induced ERK and JNK phosphorylation without affecting p38 phosphorylation. Transfection with wtHePTP inhibited H(2)O(2)-induced ERK and p38 phosphorylation without inhibiting JNK phosphorylation. The Src-family kinase inhibitor, PP2, inhibited the H(2)O(2)-induced phosphorylation of ERK, p38, and JNK. The phospholipase C (PLC) inhibitor, U73122, or the protein kinase C (PKC) inhibitor, Ro-31-8425, blocked H(2)O(2)-induced ERK phosphorylation, whereas the same treatment did not inhibit p38 or JNK phosphorylation. Taken together, these results suggest that inhibition of PTPs by H(2)O(2) contributes to the induction of distinct MAPK activation profiles via differential signaling pathways.  相似文献   

14.
Axl, a receptor tyrosine kinase, is involved in cell survival, proliferation, and migration. We have shown that Axl expression increases in the neointima of balloon-injured rat carotids. Because oxidative stress is known to play a major role in remodeling of injured vessels, we hypothesized that H(2)O(2) might activate Axl by promoting autophosphorylation. H(2)O(2) rapidly stimulated Axl tyrosine phosphorylation in rat vascular smooth muscle cells within 1 min that was maximal at 5 min (6-fold). The response to H(2)O(2) was concentration-dependent with EC(50) of approximately 500 microm. Axl phosphorylation was partly dependent on production of its endogenous ligand, growth arrest gene 6 (Gas6), because Axl-Fc, a fragment of Axl extracellular domain that neutralizes Gas6, inhibited H(2)O(2)-induced Axl phosphorylation by 50%. Axl phosphorylation by H(2)O(2) was also attenuated by warfarin, which inhibits Gas6 activity by preventing post-translational modification. In intact vessels Axl was phosphorylated by H(2)O(2), and Axl phosphorylation was inhibited by warfarin treatment in balloon-injured carotids. Akt, a downstream target of Axl, was phosphorylated by H(2)O(2)in Axl(+/+) mouse aorta but significantly inhibited in Axl(-/-) aorta. Intimal proliferation was decreased significantly in a cuff injury model in Axl(-/-) mice compared with Axl(+/+) mice. In summary, Axl is an important signaling mediator for oxidative stress in cultured vascular smooth muscle cells and intact vessels and may represent an important therapeutic target for vascular remodeling and response to injury.  相似文献   

15.
The ATP.Mg-dependent type-1 protein phosphatase activating factor (factor FA) was identified as a brain protein kinase that could phosphorylate microtubule-associated protein-2 (MAP-2) and thereby inhibit cross-linking interactions of MAP-2 with actin filaments and microtubules isolated from porcine brain. The phosphorylation sites were found to be equally located on both projection and microtubule-binding domains of MAP-2. Phosphoamino acid analysis revealed that the phosphorylation sites were on both serine and threonine residues, indicating that factor FA is a serine/threonine-specific MAP-2 kinase. Conversely, factor FA was further identified as a MAP-2 phosphatase activator that could promote the dephosphorylation of32P-MAP-2 phosphorylated by factor FA itself and thereby potentiate cross-linking interactions of MAP-2 with actin and microtubules. Furthermore, the two opposing functions of factor FA can be selectively modulated in a reciprocal manner bypH change. For instance, alkalinepH could stimulate factor FA to work as a MAP-2 kinase but simultaneously block it to work as a MAP-2 phosphatase activator to potentiate the inhibition on the cross-linking interactions of MAP-2 with actin and microtubules. Taken together, the results provide initial evidence that a cyclic modulation of cross-linking interactions of MAP-2 with actin filaments and microtubules can be controlled by factor FA, representing an efficient cyclic cascade control mechanism for rapid structural and functional regulation of neuronal cytoskeletal system.  相似文献   

16.
Under conditions where apoptosis is prevented, peroxides disrupt the endothelial monolayer by inducing cytoskeletal rearrangements, cell retraction and formation of arrays of membrane blebs. In human umbilical vein endothelial cells (HUVEC), the H(2)O(2)-induced membrane blebbing was found to be a transient process executed by two parallel signaling mechanisms: (i) mobilization of cytosolic [Ca(2+)](i) through a pathway requiring oxidation of reduced glutathione (GSH), and (ii) activation of p38 mitogen-activated protein kinases (MAPK) independently of GSH oxidation and Ca(2+) mobilization. In the HUVEC, membrane blebbing was thus blocked by inhibition of GSH oxidation, Ca(2+) mobilization or p38 MAPK activation. Stimulation of GSH peroxidation with ebselen potentiated the H(2)O(2)-induced oscillating Ca(2+) response and the bleb formation, but not p38 phosphorylation. Chelation of [Ca(2+)](i) abolished the blebbing process but not p38 activation. In addition, in the GSH peroxidase-resistant cell line ECV304, H(2)O(2) was unable to promote membrane blebbing or significant Ca(2+) release, while p38 became phosphorylated. However, [Ca(2+)](i) was increased and blebs were formed, when the ECV304 were treated with ebselen before H(2)O(2). Together, this leads to a model where oxidative stress, through both Ca(2+)-dependent and p38 kinase-mediated phosphorylation events, causes reassembly of the actin cytoskeleton and subsequent appearance of membrane blebs at the plasma membrane.  相似文献   

17.
18.
Disruption of gap junctional communication (GJC) by various compounds, including growth factors and tumor promoters, is believed to be modulated by the phosphorylation of a gap junctional protein, connexin43 (Cx43). We have previously demonstrated a platelet-derived growth factor (PDGF)-induced blockade of GJC and phosphorylation of Cx43 in T51B rat liver epithelial cells expressing wild-type PDGF receptor beta (PDGFr beta). Both of these actions of PDGF required participation of protein kinase C (PKC) and mitogen-activated protein kinase (MAPK). Similar requirements of MAPK were suggested in the modulation of GJC by other agents, including epidermal growth factor (EGF) and lysophosphatidic acid (LPA). Since many of these agents activate additional protein kinases, our present study examined whether activation of MAPK was sufficient for Cx43 phosphorylation and GJC blockade. By utilizing a variety of MAPK activators, we now show that activation of MAPK is not always associated with either Cx43 phosphorylation or disruption of GJC, which suggests a requirement for additional factors. Furthermore, pretreatment with hydrogen peroxide (H2O2), a potent MAPK activator but inefficient GJC/Cx43 modulator, abrogated PDGF- or TPA-induced disruption of GJC. While a 5 min H2O2 pretreatment abolished both PDGF- and TPA-induced Cx43 phosphorylation and GJC blockade, a simultaneous H2O2 treatment interfered only with GJC closure but not with the phosphorylation of Cx43 induced by PDGF and TPA. This finding indicates that, in addition to the Cx43 phosphorylation step, inhibition of GJC requires interaction with other components. H2O2-mediated abrogation of PDGF/TPA signaling can be neutralized by the antioxidant N-acetylcysteine (NAC) or by the tyrosine kinase inhibitor genistein. Taken together, our results suggest that disruption of GJC is not solely mediated by either activated MAPK or Cx43 phosphorylation but requires the participation of additional kinases and regulatory components. This complex mode of regulation is perhaps essential for the proposed functional role of GJC.  相似文献   

19.
Free oxygen radicals are involved in the pathogenesis of necrotizing enterocolitis (NEC) in premature infants. The stress-activated p38 mitogen-activated protein kinase (MAPK) has been implicated in gut injury. Here, we found that phosphorylated p38 was detected primarily in the villus tips of normal intestine, whereas it was expressed in the entire mucosa in NEC. H(2)O(2) treatment resulted in a rapid phosphorylation of p38 MAPK and subsequent apoptosis of rat intestinal epithelial (RIE)-1 cells; this induction was attenuated by treatment with SB203580, a selective p38 MAPK inhibitor, or transfection with p38alpha siRNA. Moreover, SB203580 also blocked H(2)O(2)-induced PKC activation. In contrast, the PKC inhibitor (GF109203x) did not affect p38 activation, indicating that p38 MAPK activation occurs upstream of PKC activation in H(2)O(2)-induced apoptosis. H(2)O(2) treatment also decreased mitochondrial membrane potential; pretreatment with SB203580 attenuated this response. Our study demonstrates that the p38 MAPK/PKC pathway plays an important role as a pro-apoptotic cellular signaling during oxidative stress-induced intestinal epithelial cell injury.  相似文献   

20.
The effects of pituitary adenylate cyclase activating polypeptide (PACAP) on human lung cancer cell line NCI-1299 mitogen activated protein kinase (MAPK) tyrosine phosphorylation and vascular endothelial cell growth factor (VEGF) expression were investigated. PACAP-27 (100 nM) increased MAPK tyrosine phosphorylation 3-fold, 5 min after addition to NCI-H1299 cells. PACAP caused tyrosine phosphorylation in a concentration-dependent manner being half-maximal at 10 nM PACAP-27. PACAP-27 or PACAP-38 (100 nM) but not PACAP28-38 or VIP caused increased MAPK tyrosine phosphorylation using NCI-H1299 cells. Also, the increase in MAPK tyrosine phosphorylation caused by PACAP-27 was totally inhibited by 10 microM PACAP(6-38), a PAC(1) receptor antagonist or 10 microM PD98059, a MAPKK inhibitor. These results suggest that PAC(1) receptors regulate tyrosine phosphorylation of MAPK in a MAPKK-dependent manner. PACAP-27 (100 nM) caused increased VEGF mRNA in NCI-H1299 cells after 8 h. The increase in VEGF mRNA caused by PACAP-27 was partially inhibited by PACAP(6-38), PD98059 and H-89. Addition of VIP to NCI-H1299 cells caused increased VEGF mRNA, which was totally inhibited by H89, a PKA inhibitor. These results suggest that PAC(1) and VPAC(1) receptors regulate VEGF expression in lung cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号