首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Multidrug-resistant strains of Vibrio cholerae (the causative agent of the diarrhoeal disease cholera) have recently been described. In an attempt to identify a homologue of the Escherichia coli TolC in V . cholerae , we isolated a DNA fragment (pVC) that enabled an E . coli tolC mutant to grow in the presence of 0.05% deoxycholate (DOC). However, other TolC defects were not complemented. Nucleotide sequence analysis of this fragment revealed the presence of two open reading frames (ORF1 and ORF2) separated by 9 bp and encoding 42.4 and 55.8 kDa proteins respectively. The translational products of these two ORFs correlated closely with the molecular weights of the predicted proteins. The deduced amino acid sequences of ORF1 and ORF2 showed a high degree of similarity with conserved regions of the E . coli efflux pump proteins, EmrA and EmrB. The presence of pVC2 within the E . coli efflux pump mutants defective in either the emrAB or the acrAB genes provided the mutants with resistance against several antibiotics. A V . cholerae isogenic mutant defective in ORF2 was constructed by gene replacement. Characterization of this mutant has shown it to be more sensitive to CCCP, PMA, PCP, nalidixic acid and DOC than the parent strain. These results suggest that ORF1 and ORF2 constitute an operon encoding two components of a putative multidrug resistance pump in V . cholerae . In addition, the presence of both structural and functional similarities between VceAB and EmrAB suggests that VceAB is a homologue of EmrAB.  相似文献   

2.
Yeast Rad27 is a 5'-->3' exonuclease and a flap endo-nuclease. Apn1 is the major apurinic/apyrimidinic (AP) endonuclease in yeast. The rad27 deletion mutants are highly sensitive to methylmethane sulfonate (MMS). By examining the role of Rad27 in different modes of DNA excision repair, we wish to understand why the cytotoxic effect of MMS is dramatically enhanced in the absence of Rad27. Base excision repair (BER) of uracil-containing DNA was deficient in rad27 mutant extracts in that (i) the Apn1 activity was reduced, and (ii) after DNA incision by Apn1, hydrolysis of 1-5 nucleotides 3' to the baseless sugar phosphate was deficient. Thus, some AP sites may lead to unprocessed DNA strand breaks in rad27 mutant cells. The severe MMS sensitivity of rad27 mutants is not caused by a reduction of the Apn1 activity. Surprisingly, we found that Apn1 endonuclease sensitizes rad27 mutant cells to MMS. Deleting the APN1 gene largely restored the resistance of rad27 mutants to MMS. These results suggest that unprocessed DNA strand breaks at AP sites are mainly responsible for the MMS sensitivity of rad27 mutants. In contrast, nucleotide excision repair and BER of oxidative damage were not affected in rad27 mutant extracts, indicating that Rad27 is specifically required for BER of AP sites in DNA.  相似文献   

3.
Vibrio cholerae, the causative agent of Asiatic cholera, has been reported to make large quantities of polyphosphate. Inorganic polyphosphate is a ubiquitous molecule with a variety of functions in prokaryotic and eukaryotic cells. We constructed a V. cholerae mutant with a deletion in the polyphosphate kinase (ppk) gene. The mutant was defective in polyphosphate biosynthesis. Deletion of ppk had no significant effect on production of cholera toxin, hemagglutinin/protease, motility, biofilm formation, and colonization of the suckling mouse intestine. The wild type and mutant had similar growth rates in rich and minimal medium and exhibited similar phosphate uptake and alkaline phosphatase induction. In contrast to ppk mutants from other gram-negative bacteria, the V. cholerae mutant survived prolonged starvation in LB medium and artificial seawater basal salts. The ppk mutant was significantly more sensitive to low pH, high salinity, and oxidative stress when it was cultured in low-phosphate minimal medium. The ppk mutant failed to induce catalase when it was downshifted to phosphorus-limiting conditions. Furthermore, the increased sensitivity of the ppk mutant to environmental stressors in phosphate-limited medium correlated with a diminished capacity to synthesize ATP from intracellular reservoirs. We concluded that polyphosphate protects V. cholerae from environmental stresses under phosphate limitation conditions. It has been proposed that toxigenic V. cholerae can survive in estuaries and brackish waters in which phosphorus and/or nitrogen can be a limiting nutrient. Thus, synthesis of large polyphosphate stores could enhance the ability of V. cholerae to survive in the aquatic environment.  相似文献   

4.
The requirement for host factors in the transmission of integrative and conjugative elements (ICEs) has not been extensively explored. Here we tested whether integration host factor (IHF) or Fis, two host-encoded nucleoid proteins, are required for transfer of SXT, a Vibrio cholerae-derived ICE that can be transmitted to many gram-negative species. Fis did not influence the transfer of SXT to or from V. cholerae. In contrast, IHF proved to be required for V. cholerae to act as an SXT donor. In the absence of IHF, V. cholerae displayed a modest defect for serving as an SXT recipient. Surprisingly, SXT integration into or excision from the V. cholerae chromosome, which requires an SXT-encoded integrase related to lambda integrase, did not require IHF. Therefore, the defect in SXT transmission in the V. cholerae IHF mutant is probably not related to IHF's ability to promote DNA recombination. The V. cholerae IHF mutant was also highly impaired as a donor of RP4, a broad-host-range conjugative plasmid. Thus, the V. cholerae IHF mutant appears to have a general defect in conjugation. Escherichia coli IHF mutants were not impaired as donors or recipients of SXT or RP4, indicating that IHF is a V. cholerae-specific conjugation factor.  相似文献   

5.
A mutant of Salmonella typhimurium with a reduced response to mutation induction by 9-aminoacridine (9AA) has been isolated. The mutation (dam-2) is located in the DNA adenine methylase gene. The dam-2 mutant strain exhibits a level of sensitivity to 2-aminopurine (2AP) intermediate between that of the dam+ and the DNA adenine methylation-deficit dam-1 strain, and 2AP sensitivity was reversed by introduction of a mutH mutation or of the plasmid pMQ148 (which carries a functional Escherichia coli dam+ gene). However, the dam-2 strain is not grossly defective in DNA adenine methylase activity. Whole cell DNA appears full methylated at -GATC- sites. The levels of 9AA required to induce equivalent levels of frameshift mutagenesis in the dam-2 strain were approximately 2-fold higher than for the dam+ strain. Introduction of pMQ148 dam+ reduced the level of 9AA required for induction of frameshift mutations 4-fold in the dam-2 strain and 2-fold in the dam+ strain. The dam-2 mutation had no effect on the levels of ICR191 required for induction of frameshift mutations, but introduction of pMQ148 reduced the ICR191-induced mutagenesis 2-fold. The dam+/pMQ148, dam-2/pMQ148 and dam-1/pMQ148 strains showed identical dose-response curves for both 9AA and ICR191. These results are consistent with a slightly reduced (dam-2) or increased (pMQ148) rate of methylation at the replication fork. The 2AP sensitivity of the dam-2 strain cannot be simply explained. Furthermore, addition of methionine to the assay medium reverses the 2AP sensitivity of the dam-2 strain, but has no effect on 9AA mutagenesis.  相似文献   

6.
Salmonella enterica serovar Typhimurium that lacks the DNA adenine methylase (Dam) ectopically expresses multiple genes that are preferentially expressed during infection, is attenuated for virulence, and confers heightened immunity in vaccinated hosts. The safety of dam mutant Salmonella vaccines was evaluated by screening within infected mice for isolates that have an increased capacity to cause disease relative to the attenuated parental strain. Since dam mutant strains are sensitive to the DNA base analog 2-aminopurine (2-AP), we screened for 2-AP-resistant (2-AP(r)) isolates in systemic tissues of mice infected with dam mutant Salmonella. Such 2-AP(r) derivatives were isolated following intraperitoneal but not oral administration and were shown to be competent for infectivity via intraperitoneal but not oral infection of na?ve mice. These 2-AP(r) derivatives were deficient in methyl-directed mismatch repair and were resistant to nitric oxide, yet they retained the bile-sensitive phenotype of the parental dam mutant strain. Additionally, introduction of a mutH null mutation into dam mutant cells suppressed the inherent defects in intraperitoneal infectivity and nitric oxide resistance, as well as overexpression of SpvB, an actin cytotoxin required for Salmonella systemic survival. These data suggest that restoration of intraperitoneal virulence of dam mutant strains is associated with deficiencies in methyl-directed mismatch repair that correlate with the production of systemically related virulence functions.  相似文献   

7.
Schizosaccharomyces pombe Nthpl, an ortholog of the endonuclease III family, is the sole bifunctional DNA glycosylase encoded in its genome. The enzyme removes oxidative pyrimidine and incises 3' to the apurinic/apyrimidinic (AP) site, leaving 3'-alpha,beta-unsaturated aldehyde. Analysis of nth1 cDNA revealed an intronless structure including 5'- and 3'-untranslated regions. An Nth1p-green fluorescent fusion protein was predominantly localized in the nuclei of yeast cells, indicating a nuclear function. Deletion of nth1 confirmed that Nth1p is responsible for the majority of activity for thymine glycol and AP site incision in the absence of metal ions, while nth1 mutants exhibit hypersensitivity to methylmethanesulfonate (MMS). Complementation of sensitivity by heterologous expression of various DNA glycosylases showed that the methyl-formamidopyrimidine (me-fapy) and/or AP sites are plausible substrates for Nth1p in repairing MMS damage. Apn2p, the major AP endonuclease in S. pombe, also greatly contributes to the repair of MMS damage. Deletion of nth1 from an apn2 mutant resulted in tolerance to MMS damage, indicating that Nth1p-induced 3'-blocks are responsible for MMS sensitivity in apn2 mutants. Overexpression of Apn2p in nth1 mutants failed to suppress MMS sensitivity. These results indicate that Nth1p, not Apn2p, primarily incises AP sites and that the resultant 3'-blocks are removed by the 3'-phosphodiesterase activity of Apn2p. Nth1p is dispensable for cell survival against low levels of oxidative stress, but wild-type yeast became more sensitive than the nth1 mutant at high levels. Overexpression of Nth1p in heavily damaged cells probably induced cell death via the formation of 3'-blocked single-strand breaks.  相似文献   

8.
BACKGROUND AND AIMS: It has previously been shown that Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP) contributed to resistance to abiotic stresses. Interestingly, it has also been reported that expression of ethylene-responsive factor (ERF) genes including AtEBP were regulated by the activity of APETALA2 (AP2), a floral homeotic factor. AP2 is known to regulate expression of several floral-specific homeotic genes such as AGAMOUS. The aim of this study was to clarify the relationship between AP2 and AtEBP in gene expression. METHODS: Northern blot analysis was performed on ap2 mutants, ethylene-related Arabidopsis mutants and transgenic Arabidopsis plants over-expressing AtEBP, and a T-DNA insertional mutant of AtEBP. Phenotypic analysis of these plants was performed. KEY RESULTS: Expression levels of ERF genes such as AtEBP and AtERF1 were increased in ap2 mutants. Over-expression of AtEBP caused upregulation of AP2 expression in leaves. AP2 expression was suppressed by the null-function of ethylene-insensitive2 (EIN2), although AP2 expression was not affected by ethylene treatment. Loss of AtEBP function slightly reduced the average number of stamens. CONCLUSIONS: AP2 and AtEBP are mutually regulated in terms of gene expression. AP2 expression was affected by EIN2 but was not regulated by ethylene treatment.  相似文献   

9.
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.  相似文献   

10.
DNA mismatch repair (MMR) in mammalian cells or Escherichia coli dam mutants increases the cytotoxic effects of cisplatin and N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). We found that, unlike wildtype, the dnaE486 (alpha catalytic subunit of DNA polymerase III holoenzyme) mutant, and a DnaX (clamp loader subunits) over-producer, are sensitive to cisplatin but resistant to MNNG at the permissive temperature for growth. Survival of dam-13 dnaN159 (beta sliding clamp) bacteria to cisplatin was significantly less than dam cells, suggesting decreased MMR, which may be due to reduced MutS-beta clamp interaction. We also found an elevated spontaneous mutant frequency to rifampicin resistance in dnaE486 (10-fold), dnaN159 (35-fold) and dnaX36 (10-fold) strains. The mutation spectrum in the dnaN159 strain was consistent with increased SOS induction and not indicative of MMR deficiency.  相似文献   

11.
Although dam mutants of Salmonella have been proposed as live vaccines, their capacity to trigger cell inflammatory cascades has not been fully elucidated. We investigated in detail the ability of Salmonella enterica dam mutant to activate the signalling pathways of the inflammatory response in RAW 264.7 cells. Apoptosis in macrophages treated with Salmonella dam mutant was low. Similarly, the expression of both NOS-2 and COX-2 and subsequently the production of NO and PGE(2) was significantly reduced. Also, Salmonella dam mutant induced an attenuated activation of the inflammatory signalling pathway as indicated by the reduced degradation of IkappaBalpha and IkappaBbeta and the low IkappaBalpha phosphorylation found. In addition, translocation of p65 to the nucleus was notably impaired and the amount of phosphorylated p44, p42 and p38 MAPKs was clearly reduced in extracts from dam-infected macrophages. These results indicate that the lack of ERK and p38 phosphorylation at the proper time in dam-infected cells notably reduces the engagement of subsequent signalling pathways involved in the full activation of NF-kappaB in response to infection. Taken together, these results suggest that Salmonella activation of both signalling cascades in the inflammatory response is a mechanism requiring Dam protein participation.  相似文献   

12.
Yeast mutants, snm1 (pso2-1), rev3 (pso1-1), and rad51, which display significant sensitivity to interstrand crosslinks (ICLs) have low relative sensitivity to other DNA damaging agents. SNM1, REV3, and RAD51 were disrupted in the same haploid strain, singly and in combination. The double mutants, snm1 Delta rev3 Delta, snm1 Delta rad51 Delta and rev3 Delta rad51 Delta were all more sensitive to ICLs than any of the single mutants, indicating that they are in separate epistasis groups for survival. A triple mutant displayed greater sensitivity to ICLs than any of the double mutants, with one ICL per genome being lethal. Therefore, Saccharomyces cerevisiae appears to have three separate ICL repair pathways, but no more. S-phase delay was not observed after ICL damage introduced by cisplatin (CDDP) or 8-methoxypsoralen (8-MOP) during the G1-phase, in any of the above mutants, or in an isogenic rad14 Delta mutant deficient in nucleotide excision repair. However, the psoralen analog angelicin (monoadduct damage) induced a significant S-phase delay in the rad14 Delta mutant. Thus, normal S-phase in the presence of ICLs does not seem to be due to rapid excision repair. The results also indicate that monoadduct formation by CDDP or 8-MOP at the doses used is not sufficient to delay S-phase in the rad14 Delta mutant. While the sensitivity of a rev3 Delta mutant indicates Pol zeta is needed for optimal ICL repair, isogenic cells deficient in Pol eta (rad30 Delta cells) were not significantly more sensitive to ICL agents than wild-type cells, and have no S-phase delay.  相似文献   

13.
The X-ray-sensitive mutant M10 and the UV-sensitive mutant Q31 of mouse lymphoma L5178Y cells are both sensitive to killing by 4-nitroquinoline-1-oxide (4NQO). Since cell hybridization experiments showed that the 4NQO sensitivities in M10 and Q31 cells behaved as codominant traits (Shiomi et al., 1982c), it is not possible to determine by complementation test whether the M10 and the Q31 mutations responsible for 4NQO sensitivities are allelic. We have obviated this difficulty by selecting double mutants that are sensitive to both X-rays and UV. From X-ray-sensitive M10 cells, two UV-sensitive mutants (XU 1 and XU 2) were isolated by a cell-suspension spotting method. XU 1 and XU 2 were found to belong to the same complementation group as Q31 (group I). Double mutants XU 1 and XU 2 were 30-37-fold more sensitive to 4NQO than parental L5178Y cells, whereas the single mutants M10 and Q31 were only 6-8-fold more sensitive to 4NQO than L5178Y cells in terms of D10 values (dose required to reduce survival to 10%). These results show that the M10-Q31-double mutations enhance 4NQO sensitivity synergistically, indicating that the M10 and the Q31 mutations relevant to 4NQO sensitivities are non-allelic. The implications of this finding are discussed.  相似文献   

14.
15.
Stable mutants (Dipr), highly resistant to diphtheria toxin have been selected from a sensitive human lymphoblast line. A second human lymphoblast line, HH-4 (and its derivative TK6-1) were found to be highly resistant to diphtheria toxin without any previous selection, suggesting the presence of the Dipr allele in the human population. The resistance of protein synthesis in extracts of mutant cells to diphtheria toxin indicates that the genetic lesion in the resistant lines examined involved an alteration in the protein synthesis. In comparison to sensitive cells, the mutant cell extracts contained reduced (30–40%) levels of ADP-ribosylatable elongation factor-2 activity suggesting that the lesion presumably affects elongation factor-2 in such cells. The biochemical phenotype of these mutants appears similar to that of the DiprIIb class of mutants of Chinese hamster cells (4,6) which behave codominantly in hybrids.  相似文献   

16.
DNA base excision repair (BER) is initiated by DNA glycosylases that recognize and remove damaged bases. The phosphate backbone adjacent to the resulting apurinic/apyrimidinic (AP) site is then cleaved by an AP endonuclease or glycosylase-associated AP lyase to invoke subsequent BER steps. We have used a genetic approach in Saccharomyces cerevisiae to determine whether or not AP sites are blocks to DNA replication and the biological consequences if AP sites persist in the genome. We previously reported that yeast cells deficient in the two AP endonucleases (apn1 apn2 double mutant) are extremely sensitive to killing by a model DNA alkylating agent methyl methanesulfonate (MMS) and that this sensitivity can be reduced by deleting the MAG1 3-methyladenine DNA glycosylase gene. Here we report that in the absence of the AP endonucleases, deletion of two Escherichia coli endonuclease III homologs, NTG1 and NTG2, partially suppresses MMS-induced killing, which indicates that the AP lyase products are deleterious unless they are further processed by an AP endonuclease. The severe MMS sensitivity seen in AP endonuclease deficient strains can also be rescued by treatment of cells with the AP lyase inhibitor methoxyamine, which suggests that the product of AP lyase action on an AP site is indeed an extremely toxic lesion. In addition to the AP endonuclease interactions, deletion of NTG1 and NTG2 enhances the mag1 mutant sensitivity to MMS, whereas overexpression of MAG1 in either the ntg1 or ntg2 mutant severely affects cell growth. These results help to delineate alkylation base lesion flow within the BER pathway.  相似文献   

17.
Endonuclease III (Nth) enzyme from Escherichia coli is involved in base excision repair of oxidised pyrimidine residues in DNA. The Schizosaccharomyces pombe Nth1 protein is a sequence and functional homologue of E. coli Nth, possessing both DNA glycosylase and apurinic/apyrimidinic (AP) lyase activity. Here, we report the construction and characterization of the S. pombe nth1 mutant. The nth1 mutant exhibited no enhanced sensitivity to oxidising agents, UV or gamma-irradiation, but was hypersensitive to the alkylating agent methyl methanesulphonate (MMS). Analysis of base excision from DNA exposed to [3H]methyl-N-nitrosourea showed that the purified Nth1 enzyme did not remove alkylated bases such as 3-methyladenine and 7-methylguanine whereas methyl-formamidopyrimidine was excised efficiently. The repair of AP sites in S. pombe has previously been shown to be independent of Apn1-like AP endonuclease activity, and the main reason for the MMS sensitivity of nth1 cells appears to be their lack of AP lyase activity. The nth1 mutant also exhibited elevated frequencies of spontaneous mitotic intrachromosomal recombination, which is a phenotype shared by the MMS-hypersensitive DNA repair mutants rad2, rhp55 and NER repair mutants rad16, rhp14, rad13 and swi10. Epistasis analyses of nth1 and these DNA repair mutants suggest that several DNA damage repair/tolerance pathways participate in the processing of alkylation and spontaneous DNA damage in S. pombe.  相似文献   

18.
Near-ultraviolet (NUV) radiation and hydrogen peroxide (H2O2) inactivation studies were performed on Escherichia coli K-12 DNA adenine methylation (dam) mutants and on cells that carry plasmids which overexpress Dam methylase. Lack of methylation resulted in increased sensitivity to NUV and H2O2 (a photoproduct of NUV). In a dam mutant carrying a dam plasmid, the levels of Dam enzyme and resistance to NUV and H2O2 were restored. However, using a multicopy dam+ plasmid strain, increasing the methylase above wildtype levels resulted in an increase in sensitivity of the cells rather than resistance.  相似文献   

19.
T K Bera  S K Ghosh    J Das 《Nucleic acids research》1989,17(15):6241-6251
The mutL and mutS genes of Vibrio cholerae have been identified using interspecific complementation of Escherichia coli mutL and mutS mutants with plasmids containing the gene bank of V. cholerae. The recombinant plasmid pJT470, containing a 4.7 kb fragment of V. cholerae DNA codes for a protein of molecular weight 92,000. The product of this gene reduces the spontaneous mutation frequency of the E. coli mutS mutant. The plasmid, designated pJT250, containing a 2.5 kb DNA fragment of V. cholerae and coding for a protein of molecular weight 62,000, complements the mutL gene function of E. coli mutL mutants. These gene products are involved in the repair of mismatches in DNA. The complete nucleotide sequence of mutL gene of V. cholerae has been determined.  相似文献   

20.
Papillomavirus E6 oncoproteins transform mammalian cells through interaction with cellular proteins. Bovine papillomavirus type 1 E6 (BE6) interacts with three previously described cellular targets: the E6AP E3 ubiquitin ligase, the calcium-binding protein E6BP (also known as ERC-55), and paxillin, which is a focal adhesion adapter protein. BE6 interacts strongly with each of these proteins in vitro, binding to similar peptide sequences found in E6AP, E6BP, and paxillin. To determine which BE6 interactions are necessary for transformation by BE6, we used a novel selection strategy for temperature-sensitive BE6 mutants in yeast that could discriminate in their interaction between E6AP, E6BP, and paxillin. All BE6 mutants that retained transforming ability retained association with paxillin, while some mutants that were transformation positive failed to interact with E6AP or E6BP. This study demonstrates that oncogene mutants that are temperature sensitive for transformation can be selected in yeast and that the induction of anchorage-independent cell proliferation by BE6 does not require strong association of BE6 with either E6AP or E6BP. Of particular interest is the identification of a BE6 mutant that interacts strongly with the acidic charged leucine motifs of E6AP, E6BP, and paxillin but is devoid of transformation activity, thereby genetically identifying a second essential transformation function in BE6 that is independent of interaction with acidic charged leucine motifs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号