首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

2.
The chemo-enzymatic synthesis is described of beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->O(CH(2))(6)NH(2) (1), beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (2), beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (3), and beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (4), representing fragments of the repeating unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Linear intermediate oligosaccharides 5-8 were synthesized via chemical synthesis, followed by enzymatic galactosylation using bovine milk beta-1,4-galactosyltransferase as a catalyst. The title oligosaccharides form suitable compounds for conjugation with carrier proteins, to be tested as potential vaccines in animal models.  相似文献   

3.
A neutral disaccharide beta-D-Galp-(1-->4)-alpha-D-Manp and phosphorylated di- and tri-saccharides beta-D-Galp-(1-->3)-[H(2)PO(3)-6]-beta-D-Galp-O[CH(2)](8)CHCH(2) and beta-D-Galp-(1-->3)-[H(2)PO(3)-6]-beta-D-Galp-(1-->4)-alpha-D-Manp, which are fragments of the phosphoglycan portion of the surface lipophosphoglycan from Leishmania donovani (the disaccharide) or Leishmania major (all three compounds), were prepared and used as TLC standards to help the identification and differentiation of the elongating and branching beta-D-galactosyl transferase activities in Leishmania. The phosphosaccharides were synthesised using the H-phosphonate method for phosphorylation.  相似文献   

4.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

5.
The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The synthesis of the pentasaccharide, beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-beta-D-Galp-(1-->6)-[beta-D-Galf-(1-->4)]-D-GlcpNAc and the corresponding alditol, previously isolated by reductive beta-elimination of the mucins, is described. The key step was the 6-O-glycosylation of a easily accessible derivative of beta-D-Galf-(1-->4)-D-GlcpNAc with a beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-D-Galp donor using the trichloroacetimidate method. The beta-linkage was diastereoselectively obtained by the nitrile effect. The pentasaccharide is the major oligosaccharide in the mucins of T. cruzi, G strain and presents two terminal beta-D-Galp residues for possible sialylation by TcTS. A preparative sialylation reaction was performed with its benzyl glycoside and the sialylated product was isolated and characterized. NMR spectroscopic analysis showed that selective monosialylation occurred at the terminal (1-->3) linked galactopyranose.  相似文献   

6.
A mixture of oligosaccharides produced by beta-galactosidase using lactose as a substrate was fractionated according to degree of polymerization using gel filtration, followed by high-pH anion-exchange chromatography. The fractions obtained were analyzed using monosaccharide analysis, methylation analysis, mass spectrometry, and NMR spectroscopy. Twelve novel non-reducing oligosaccharides were characterized, namely, [beta-D-Galp-(1-->4)]n-alpha-D-Glcp- (1<-->1)-beta-D-Galp[-(4<--1)-beta-D-Galp]m, with n, m = (1, 2, 3, or 4) and beta-D-Galp-(1-->2)-alpha-D-Glcp- (1<-->1)-beta-D-Galp.  相似文献   

7.
A fraction of saponins from Quillaja saponaria Molina, QH-B, was fractionated by consecutive separations on three different reverse-phase HPLC systems. Eight compounds were isolated and the structures of these were elucidated mainly by sugar analysis and NMR spectroscopy. The structures consisted of a quillaic acid substituted with two different trisaccharides at C-3, beta-D-Galp-(1-->2)-[alpha-L-Rhap-(1-->3)]-beta-D-GlcpA and beta-D-Galp-(1-->2)-[beta-D-Xylp-(1-->3)]-beta-D-GlcpA, and a tetra- or pentasaccharide at C-28, beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3)]-alpha-L-Rhap-(1--> 2)-beta-D-Fucp and beta-D-Apif-(1-->3)-beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3) ]-alpha-L- Rhap-(1-->2)-beta-D-Fucp. These compounds were further substituted with an acyl group either at O-3 or O-4 of the fucose residue, which is the sugar linked to C-28 of the quillaic acid.  相似文献   

8.
Li A  Kong F 《Carbohydrate research》2004,339(11):1847-1856
Two arabinogalactosyl nonasaccharides, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp and beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp, were synthesized as their 4-methoxyphenyl glycosides with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (14), 4-methoxyphenyl 3-O-allyl-2,4-di-O-benzoyl-beta-D-galactopyranoside (2), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (8), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl-(1-->5)-2,3-di-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (11), as the key synthons. The tetra- (10) and pentasaccharide donor (13), and the tetra- (20) and pentasaccharide acceptor (22) were synthesized based on these synthons through simple transformations. Coupling of 22 with 10, and coupling of 20 with 13 and subsequent deacylation gave nonasaccharides 24 and 26, respectively, consisting of beta-(1-->6)-linked glactopyranosyl backbone and alpha-(1-->3)-linked arabinofuranosyl side chains of different size.  相似文献   

9.
Cone snails are marine predators that use immobilizing venoms for catching prey. Chemical analysis of the venoms has revealed a variety of biologically active small and intermediate size peptides rich in post-translational modifications (modified amino acids, glycosylation). The glycopeptide contulakin-G (pGlu-Ser-Glu-Glu-Gly-Gly-Ser-Asn-Ala-[beta-D-Galp-(1-->3)-alpha-D-GalpNAc-(1-->]Thr-Lys-Lys-Pro-Tyr-Ile-Leu-OH) is a potent analgesic from Conus geographus venom. The in vivo activity of synthetic contulakin-G was previously found to be significantly higher compared to that of a peptide lacking the glycan. In order to further investigate the importance of the glycan, we have now synthesized analogs of contulakin-G where the glycan chain O-linked to threonine has been altered either to beta-D-Galp-(1-->3)-beta-D-GalpNAc-, alpha-D-Galp-(1-->3)-alpha-D-GalpNAc-, or beta-D-Galp-(1-->6)-alpha-D-GalpNAc-. The glycopeptides were assembled on a Wang resin using commercially available Fmoc amino acids and synthetically prepared Fmoc-protected threonine derivatives carrying O-acetyl protected sugar chains. The final products were thoroughly characterized by NMR and mass spectroscopy.  相似文献   

10.
A pentasaccharide mimic of a fragment of the capsular polysaccharide of Streptococcus pneumoniae type 15C beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[alpha-D-Galp-(1-->2)-beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->OCH2CH2N3) (1) was synthesized in a regio- and stereoselective manner. The 2-azidoethyl-spacered pentasaccharide mimic 1 can be used to construct a neoglycoconjugate antigen.  相似文献   

11.
Oligosaccharides formed by a transgalactosylation reaction during lactose hydrolysis with Bifidobacterium bifidum were separated into eight fractions by gel-permeation chromatography and their structures studies determined by trimethylsilylation analysis, methylation analysis, f.a.b.-m.s., g.l.c.-m.s. and enzymic hydrolysis as beta-D-Galp-(1----3)-D-Glc, beta-D-Galp-(1----6)-D-Glc, beta-D-Galp-(1----6)-D-Gal, beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----6)[beta-D-Galp-(1----4)]-D-Glc, beta-D-Galp-(1----2)[beta-D-Galp-(1----6)]-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp- (1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-DGalp-(1----3)-beta -D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, and beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp-(1----3)-beta-D-G-alp-(1----3) beta-D-Galp-(1----4)-D-Glc.  相似文献   

12.
The galactosyl transfer reaction to cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] (CTS) was examined using lactose as a donor and beta-galactosidases from Aspergillus oryzae and Bacillus circulans. The A. oryzae beta-galactosidase produced three galactosyl derivatives of CTS. The main galactosyl derivative produced by the A. oryzae enzyme was identified as 6-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-[beta-D-Galp-(1-->6)]-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. The B. circulans beta-galactosidase also synthesized three galactosyl-transfer products to CTS. The structure of main transgalactosylation product was 3-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-[beta-D-Galp-(1-->3)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. These results showed that beta-galactosidase transferred galactose directly to the ring glucose residue of CTS.  相似文献   

13.
Li H  Li Q  Cai MS  Li ZJ 《Carbohydrate research》2000,328(4):611-615
Based on the known anti-metastasis activities of lactosides and galactosides, a galactosyl and a lactosyl trimannoside were prepared via the conventional Koenigs-Knorr and trichloroacetimidate methods, respectively. Through typical deblocking procedures, a tetrasaccharide alpha-D-Galp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 and a pentasaccharide beta-D-Galp-(1 --> 4)-beta-D-Glcp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 were obtained.  相似文献   

14.
A galactoglucomannan (GGM) has been purified from the primary cell walls of ripe kiwifruit. A combination of barium hydroxide precipitation, anion exchange- and gel-permeation chromatography gave a chemically homogeneous polymer with a 1:2:2 galactose-glucose-mannose ratio and a molecular weight range of 16-42 kDa. Complete hydrolysis of the polymer with endo-1,4-beta-mannanase (EC 3.2.1.78) from Aspergillus niger gave a mixture of oligosaccharides, three of which (II, III, IV) accounted for more than 80% of the GGM. Structural characterisation of these oligosaccharides and the original polysaccharide was achieved by linkage analysis, 1D and 2D NMR spectrometry and enzymatic hydrolysis. Oligosaccharide II beta-D-Glcp-(1-->4)-beta-D-Manp-(1-->, III beta-D-Glcp-(1-->4)-[alpha-D-Galp-(1-->6)]-beta-D-Manp-(1-->, and IV beta-D-Glcp-(1-->4)-[beta-D-Galp-(1-->2)-alpha-D-Galp-(1-->6)]-beta-D-Manp-(1-->4)-beta-D-Glcp-(1-->4)-beta-D-Manp-(1-->, appeared in the molar ratio of 2:1:1. A trace amount of mannobiose (I) was detected, indicating that some of the mannosyl residues were contiguous. It is concluded that the predominant structural feature of kiwifruit GGM is a backbone of alternating beta-(1-->4)-linked D-glucopyranosyl and D-mannopyranosyl residues, with approximately one third of the latter carrying side-chains at 0-6 of single alpha-D-Galp-(1--> residues (50% of the branches) or the disaccharide beta-D-Galp-(1-->2)-alpha-D-Galp-(1--> (50% of the branches), the substituted residues being separated by three or five unsubstituted monosaccharide units.  相似文献   

15.
Arabinogalactan type I from potato was partially degraded by endo-galactanase from Aspergillus niger. High-performance anion-exchange chromatography revealed that several of the oligomeric degradation products eluted as double peaks. To investigate the nature of these products, the digest was fractionated by Bio-Gel P2 chromatography. The pool that contained tetramers was treated with a beta-D-Galp-(1-->4)-specific galactosidase from Bifidobacterium adolescentis to obtain a dimer with deviating linkage type, which was further purified by BioGel P2 chromatography. By obtaining all (1)H and (13)C chemical shifts and the presence of intra residual scalar coupling (HMBC) it could be concluded that the dimer contained a beta-(1-->3)-linkage instead of the expected beta-(1-->4)-linkage. Using the same NMR techniques as for the dimer, it was found that the pool of tetramers consisted of the following two galactose tetramers: beta-Galp-(1-->4)-beta-Galp-(1-->4)-beta-Galp-(1-->4)-alpha/beta-Galp-OH and beta-Galp-(1-->4)-beta-Galp-(1-->4)-beta-Galp-(1-->3)-alpha/beta-Galp-OH. The fact that the deviating beta-(1-->3)-linked galactose was found at the reducing end of the dimer showed that this deviating linkage is present within the backbone. The beta-(1-->3)-galactosyl interruption appeared to be a common structural feature of type I arabinogalactans with a frequency ranging from approximately 1 in 160 (potato, soy, citrus) to 1 in 250 (onion).  相似文献   

16.
The structure of the lipopolysaccharide (LPS) of non-typeable Haemophilus influenzae strain 723 has been elucidated using NMR spectroscopy and electrospray ionization mass spectrometry (ESI-MS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESI-MSn on permethylated dephosphorylated OS. It was found that the LPS contains the common structural element of H. influenzae, l-alpha-D-Hepp-(1-->2)-[PEtn-->6]-l-alpha-D-Hepp-(1-->3)-[beta-D-Glcp-(1-->4)]-l-alpha-D-Hepp-(1-->5)-[PPEtn-->4]-alpha-Kdo-(2-->6)-Lipid A, in which the beta-D-Glcp residue (GlcI) is substituted by phosphocholine at O-6 and the distal heptose residue (HepIII) by PEtn at O-3, respectively. In a subpopulation of glycoforms O-2 of HepIII was substituted by beta-D-Galp-(1-->4)-beta-D-Glcp-(1--> or beta-D-Glcp-(1-->. Considerable heterogeneity of the LPS was due to the extent of substitution by O-acetyl groups (Ac) and ester-linked glycine of the core oligosaccharide. The location for glycine was found to be at Kdo. Prominent acetylation sites were found to be at GlcI, HepIII, and the proximal heptose (HepI) residue of the triheptosyl moiety. Moreover, GlcI was acetylated at O-3 and/or O-4 and HepI was acetylated at O-2 as evidenced by capillary electrophoresis ESI-MSn in combination with NMR analyses. This is the first study to show that an acetyl group can substitute HepI of the inner-core region of H. influenzae LPS.  相似文献   

17.
C-H dipolar coupling values were measured for a natural-abundance sample of the pentasaccharide beta-D-Galp-(1-->3)-[alpha-L-Fucp-(1-->4)]-beta-D-GlcNAcp-(1 -->3)-beta-D- Galp-(1-->4)-beta-D-Glcp ('lacto-N-fucopentaose 2') (LNF-2), in a 7.5% solution of dimyristoyl phosphatidylcholine-dihexanoyl phosphatidylcholine bicelle liquid crystals oriented in the NMR magnetic field. Interpretation of the dipolar coupling data and NOE confirms the conformational model for the Lewis(a) trisaccharide epitope based on NOE, molecular dynamics simulations, and scalar coupling data and provided new structural information for the remaining residues of the pentasaccharide. Since residual dipolar coupling provides information on long-range order, it is a valuable complement to other types of NMR data such as NOE and scalar coupling for exploring conformations of complex oligosaccharides.  相似文献   

18.
During lactose conversion at 70 degrees C, when catalyzed by beta-glycosidases from the archea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB), galactosyl transfer to acceptors other than water competes efficiently with complete hydrolysis of substrate. This process leads to transient formation of a range of new products, mainly disaccharides and trisaccharides, and shows a marked dependence on initial substrate concentration and lactose conversion. Oligosaccharides have been analyzed quantitatively by using capillary electrophoresis and high performance anion-exchange chromatography. At 270 g/L initial lactose, they accumulate at a maximum concentration of 86 g/L at 80% lactose conversion. With both enzymes, the molar ratio of trisaccharides to disaccharides is maximal at an early stage of reaction and decreases directly proportional to increasing substrate conversion. Overall, CelB produces about 6% more hydrolysis byproducts than SsbetaGly. However, the product spectrum of SsbetaGly is richer in trisaccharides, and this agrees with results obtained from the steady-state kinetics analyses of galactosyl transfer catalyzed by SsbetaGly and CelB. The major transgalactosylation products of SsbetaGly and CelB have been identified. They are beta-D-Galp-(1-->3)-Glc and beta-D-Galp-(1-->6)-Glc, and beta-D-Galp-(1-->3)-lactose and beta-D-Galp-(1-->6)-lactose, and their formation and degradation have been shown to be dependent upon lactose conversion. Both enzymes accumulate beta(1-->6)-linked glycosides, particularly allolactose, at a late stage of reaction. Because a high oligosaccharide concentration prevails until about 80% lactose conversion, thermostable beta-glycosidases are efficient for oligosaccharide production from lactose. Therefore, they prove to be stable and versatile catalysts for lactose utilization.  相似文献   

19.
Guo S  Kenne L 《Phytochemistry》2000,54(6):615-623
Sixteen saponins were identified from a bark extract of Quillaja saponaria Molina. The compounds were characterized, using NMR spectroscopy, mass spectrometry and monosaccharide analysis, as quillaic acid substituted at C-3 with oligosaccharides consisting of a disaccharide, beta-D-Galp-(1-->2)-beta-D-GlcpA substituted with either D-xylose or L-rhamnose and at C-28 with complex oligosaccharide structures consisting of a disaccharide, alpha-L-Rhap-(1-->2)-4-O-acetyl-beta-D-Fucp, substituted with various amount of D-xylose. D-glucose, D-apiose, and L-rhamnose.  相似文献   

20.
The structure of the O-antigen polysaccharide (PS) from the enteroaggregative Escherichia coli strain 180/C3 has been determined. Sugar and methylation analysis together with (1)H and (13)C NMR spectroscopy were the main methods used. The PS is composed of tetrasaccharide repeating units with the following structure: -->2)beta-D-Quip3NAc-(1-->3)beta-D-RIBf-(1-->4)beta-D-Galp-(1-->3)alpha-D-GalpNAc-(1-->. Analysis of NMR data indicates that the presented sequence of sugar residues also represents the biological repeating unit of the O-chain. The structure is closely related to that of O-antigen polysaccharide from E. coli O5 and partially to that of E. coli O65. The difference between the O-antigen from the 180/C3 strain and that of E. coli O5 is the linkage to the D-Quip3NAc residue, which in the latter strain is 4-O-substituted. The E. coli O65 O-antigen contains as part of its linear pentasaccharide repeating unit a similar structural element, namely -->4)-beta-d-GalpA-(1-->3)-alpha-D-GlcpNAc-(1-->2)-beta-D-Quip3NAc-(1-->, thereby indicating that a common epitope could be present for the two polysaccharides. Monospecific anti-E. coli O5 rabbit serum did not distinguish between the two positional isomeric structures neither in slide agglutination nor in an indirect enzyme immunoassay. The anti-O65 serum did react with both the 180/C3 and O5 LPS showing a partial cross-reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号