首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To deal with real-life diversity of our ecosystem, this paper analyzes two prey-two predator model including both Type-I and Type-II functional responses. The interior equilibrium point of the proposed model is calculated; and behaviour of the model around that point is studied. Local stability at an interior equilibrium point is discussed; and possibility of Hopf-bifurcation with probable direction is studied. A generalized form of the Poincaré-Bendixon criterion is applied to establish the sufficient conditions for global stability of the proposed model surrounding at an interior equilibrium point. Numerical simulations are also conducted in support of our work. Conclusions of our findings and some probable future directions are also included at the end.  相似文献   

2.
In this paper, the dynamical behaviours and mathematics of the fractional order atmosphere-soil-land plant carbon cycle system involving the time dependent variable of carbon flux in atmosphere, the carbon flux of soil, and the carbon flux of animals and plants are qualitatively and numerically investigated. Explicit solutions in terms of the Mittag-Leffler functions to the terrestrial carbon cycle system around the equilibrium point are first time reported by applying Laplace transform of Caputo fractional derivative. The graphs of obtained solutions the time dependent variable of carbon flux in atmosphere, the carbon flux of soil and the carbon flux of animals and plants are plotted against each other. Explicit solutions to original system and stability of the fractional order linearized system around the equilibrium point are graphically compared as well.  相似文献   

3.
The evolution and local stability of a system of two interacting species in a finite two-dimensional habitat is investigated by taking into account the effects of self- and cross-dispersion and convection of the species. In absence of cross-dispersion, an equilibrium state which is stable without dispersion is always stable with dispersion provided that the dispersion coefficients of the two species are equal. However, when the dispersion coefficients of the two species are different, the possibility of self-dispersive instability arises. It is also pointed out that the cross-dispersion of species may lead to stability or instability depending upon the nature and the magnitude of the cross-dispersive interactions in comparison to the self-dispersive interactions. The self-convective movement of species increases the stability of the equilibrium state and can stabilize an otherwise unstable equilibrium state. The effect of cross-convection (in absence of self-dispersion and self-convection) is to stabilize the equilibrium state in a prey-predator model with positive cross-dispersion coefficients for the prey species. Finally, it is shown that if the system is stable under homogeneous boundary conditions it remains so under non-homogeneous boundary conditions.  相似文献   

4.
M H Chau  J W Nelson 《Biochemistry》1992,31(18):4445-4450
Apamin is being studied as a model for the folding mechanism of proteins whose structures are stabilized by disulfide bonds. Apamin consists of 18 amino acid residues and forms a stable structure consisting of a C-terminal alpha-helix and two reverse turns. This structure is stabilized by two disulfide bonds connecting Cys-1 to Cys-11 and Cys-3 to Cys-15. We used glutathione and dithiothreitol as reference thiols to measure the stabilities of the two disulfide bonds as a function of urea concentration and temperature in order to understand what contributes to the stability of the native structure. The results demonstrate modest contributions from secondary structure to the overall stability of the two disulfide bonds. The equilibrium constants for disulfide bond formation between the fully reduced peptide and the native structure with two disulfide bonds at 25 degrees C and pH 7.0 are 0.42 M2 using glutathione and 2.7 x 10(-5) using dithiothreitol. The equilibrium constant decreases by a factor of approximately 4 in 8 M urea and decreases by a factor of 3 between 0 and 60 degrees C. At least three one-disulfide intermediates are found at low concentrations in the equilibrium mixture. Using glutathione, the equilibrium constants for forming the one-disulfide intermediates with respect to the reduced peptide are approximately 0.025 M. The second disulfide bond forms with an equilibrium constant of approximately 17 M. Thus, apamin folding is very cooperative, but the native structure is only modestly stabilized by urea- or temperature-denaturable secondary structure.  相似文献   

5.
In this paper, a mathematical model for the lactic acid fermentation in membrane bioreactor is investigated. This novel theoretical framework could result in an objective criterion on how to control the substrate concentration in order to keep a sustainable and steady output of lactic acid. Firstly, continuous input substrate is taken. The existence and local stability of two equilibria are studied. According to Poincaré-Bendixson Theorem, we obtain the conditions for the globally asymptotical stability of the equilibrium. Secondly, impulsive input substrate is also considered. Using Floquet's theorem and small-amplitude perturbation, we obtain the biomass-free periodic solution is locally stable if some conditions are satisfied. In a certain limiting case, it is shown that a nontrivial periodic solution emerges via a supercritical bifurcation. Finally, our findings are confirmed by means of numerical simulations.  相似文献   

6.
Global stability in two species interactions   总被引:26,自引:0,他引:26  
Summary It is proved that sufficient conditions for global stability in a Lotka-Volterra model of a two species interactions are (i) the equilibrium is feasible, (ii) the equilibrium is locally stable and (iii) at the equilibrium each species sustains density dependent mortalities due to intraspecific interactions.  相似文献   

7.
Using Liapunov's direct method, effects of convective and dispersive migration on the global stability of the equilibrium state of a system of two interacting species are investigated. It is shown that the stable equilibrium state without dispersal remains so with dispersal. Further, it is pointed out that stability or instability of the equilibrium state of the system is not affected by convective migration. These results are justified in cases of a system of mutualistic interactions of species and a prey-predator system with functional response.  相似文献   

8.
Using successor functions and Poincaré-Bendixson theorem of impulsive differential equations, the existence of periodical solutions to a predator-prey model with two state impulses is investigated. By stability theorem of periodic solution to impulsive differential equations, the stability conditions of periodic solutions to the system are given. Some simulations are exerted to prove the results.  相似文献   

9.
In this paper, effects of convective and dispersive migration on the linear stability of the equilibrium state of a two species system with mutualistic interactions and functional response have been investigated. In both finite and semi-infinite habitats, it has been shown that the otherwise stable equilibrium state without dispersal remains so with dispersal also, both under flux and reservior conditions. In the case of finite habitat, the degree of stability increases as dispersal coefficients of the two species increase. The effect of convective migration also is to stabilize the equilibrium state in this case.  相似文献   

10.
We consider a biological economic model based on prey-predator interactions to study the dynamical behaviour of a fishery resource system consisting of one prey and two predators surviving on the same prey. The mathematical model is a set of first order non-linear differential equations in three variables with the population densities of one prey and the two predators. All the possible equilibrium points of the model are identified, where the local and global stabilities are investigated. Biological and bionomical equilibriums of the system are also derived. We have analysed the population intensities of fluctuations i.e., variances around the positive equilibrium due to noise with incorporation of a constant delay leading to chaos, and lastly have investigated the stability and chaotic phenomena with a computer simulation.  相似文献   

11.
A deterministic, continuous time model for the dynamics of two locus, two allele Mendelian traits in a large randomly mating diploid population is derived. The model allows for frequency and time dependent birth and death rates. It is analyzed under the assumption that the selective forces acting in the population are small. Slow selection approximations to the system's solution are then constructed. Two particular cases are studied. First, when linkage between loci is tight, the population is shown to rapidly approach Hardy-Weinberg proportions, which then may vary on a (slow) time scale determined by differential fitness. In the case of constant birth and death rates, a measure of the population's fitness is shown to increase on the slow time scale after an initial rapid adjustment. The second case considered is for loose linkage; a population near linkage equilibrium is studied. It is shown that the epistatic parameters cancel and that the results agree with the tight linkage case to leading order. The linkage disequlibrium is described in both cases.  相似文献   

12.
This work presents a predator-prey Lotka-Volterra model in a two patch environment. The model is a set of four ordinary differential equations that govern the prey and predator population densities on each patch. Predators disperse with constant migration rates, while prey dispersal is predator density-dependent. When the predator density is large, the dispersal of prey is more likely to occur. We assume that prey and predator dispersal is faster than the local predator-prey interaction on each patch. Thus, we take advantage of two time scales in order to reduce the complete model to a system of two equations governing the total prey and predator densities. The stability analysis of the aggregated model shows that a unique strictly positive equilibrium exists. This equilibrium may be stable or unstable. A Hopf bifurcation may occur, leading the equilibrium to be a centre. If the two patches are similar, the predator density dependent dispersal of prey has a stabilizing effect on the predator-prey system.  相似文献   

13.
There is significant current interest in the application of game theory to problems in epidemiology. Most mathematical analyses of epidemiology games have studied populations where all individuals have the same risks and interests. This paper analyses the rational-expectation equilibria in an epidemiology game with two interacting subpopulations of equal size where decisions change the prevalence and transmission patterns of an infectious disease. The transmission dynamics are described by an SIS model and individuals are only allowed to invest in daily prevention measures like hygiene. The analysis shows that disassortative mixing may lead to multiple Nash equilibria when there are two interacting subpopulations affecting disease prevalence. The dynamic stability of these equilibria is analysed under the assumption that strategies change slowly in the direction of self-interest. When mixing is disassortative, interior Nash equilibria are always unstable. When mixing is positively assortative, there is a unique Nash equilibrium that is globally stable.  相似文献   

14.
There is significant current interest in the application of game theory to problems in epidemiology. Most mathematical analyses of epidemiology games have studied populations where all individuals have the same risks and interests. This paper analyses the rational-expectation equilibria in an epidemiology game with two interacting subpopulations of equal size where decisions change the prevalence and transmission patterns of an infectious disease. The transmission dynamics are described by an SIS model and individuals are only allowed to invest in daily prevention measures like hygiene. The analysis shows that disassortative mixing may lead to multiple Nash equilibria when there are two interacting subpopulations affecting disease prevalence. The dynamic stability of these equilibria is analysed under the assumption that strategies change slowly in the direction of self-interest. When mixing is disassortative, interior Nash equilibria are always unstable. When mixing is positively assortative, there is a unique Nash equilibrium that is globally stable.  相似文献   

15.
In this paper, we analyze a laissez-faire predator-prey model and a Leslie-type predator-prey model with type I functional responses. We study the stability of the equilibrium where the predator and prey coexist by both performing a linearized stability analysis and by constructing a Lyapunov function. For the Leslie-type model, we use a generalized Jacobian to determine how eigenvalues jump at the corner of the functional response. We show, numerically, that our two models can both possess two limit cycles that surround a stable equilibrium and that these cycles arise through global cyclic-fold bifurcations. The Leslie-type model may also exhibit super-critical and discontinuous Hopf bifurcations. We then present and analyze a new functional response, built around the arctangent, that smoothes the sharp corner in a type I functional response. For this new functional response, both models undergo Hopf, cyclic-fold, and Bautin bifurcations. We use our analyses to characterize predator-prey systems that may exhibit bistability.  相似文献   

16.
研究一类具有时滞和阶段结构的SIS传染病模型.通过分析特征方程,讨论了系统平衡点的局部稳定性,根据比较定理讨论了无病平衡点的全局稳定性,并证明了当地方病平衡点存在时系统是一致持续生存的.  相似文献   

17.
A two locus deterministic population genetic model is analysed. One locus is under viability selection, the other under fertility selection with both forms of selection completely symmetric. It is shown that linkage equilibrium may occur at two different equilibrium points. For a two-locus polymorphism to be stable, it is necessary that the viability locus be overdominant but not necessary that the fertility locus, considered separately, be able to support a stable polymorphism. The overlaps in stability are not as complex as under two locus symmetric fertilities, but considerably more complex than with symmetric viabilities. Extensions of the analysis for the central linkage equilibrium point with multiple viability and fertility loci are indicated.Research supported in part by NIH grants GM 28106 and GM 10452  相似文献   

18.
本文研究一个关于细胞增长的数学模型,用微分方程组来确定。通过系统的稳定性的分析指出参数对细胞组织容量的平衡状态的影响。  相似文献   

19.
This paper provides an explicit Lyapunov function for a general single-joint muscle-skeletal model. Using this Lyapunov function one can determine analytically large subsets of the basin of attraction of an asymptotically stable equilibrium. Besides providing an analytical tool for the analysis of such a system we consider an elbow model and show that the theoretical predictions are in agreement with experimental results. Moreover, we can thus distinguish between regions where the self-stabilizing properties of the muscle-skeletal system guarantee stability and regions where nerval control and reflexes are necessary.   相似文献   

20.
Summary The reaction-diffusion system considered involves only one nonlinear term and is a gradient system. In a bifurcation analysis for the equilibrium states, the global existence of infinitely many solution branches can be shown by the method of Ljusternik-Schnirelmann. Their stability is studied. Using a Ljapunov functional it can be shown that the solutions of the time-dependent system converge to the equilibrium states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号