首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expression of a yeast glycolytic gene is subject to dosage limitation   总被引:2,自引:0,他引:2  
P A Moore  A J Bettany  J P Brown 《Gene》1990,89(1):85-92
The Saccharomyces cerevisiae pyruvate kinase-encoding gene (PYK1) has been transformed back into yeast using a derivative of the multicopy vector, pJDB207. High levels of PYK1 expression in these transformants are limited by at least two separate mechanisms. Pyruvate kinase assays and polysome analyses demonstrate that the translation of the PYK1 mRNA is inhibited as its abundance increases. The abundance of the PYK1 mRNA per gene copy also decreases as the copy number of the PYK1 gene increases. This is the first report which demonstrates that a eukaryotic glycolytic gene is subject to dosage limitation at the translational level.  相似文献   

2.
3.
4.
5.
6.
Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position ?542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress.  相似文献   

7.
L F Chang  P R Gatzek  G B Kohlhaw 《Gene》1985,33(3):333-339
Using a combination of restriction endonuclease digestion, nuclease BAL 31 treatment, and standard ligation procedures, a 4.4-kb DNA segment that carried the yeast LEU4 gene [encoding alpha-isopropylmalate synthase (IPMS) I] and adjoining sequences was excised from an appropriate plasmid and replaced with the yeast HIS3 gene. The new plasmid was digested to obtain a linear HIS3-carrying fragment flanked by remnants of the LEU4 region. Integrative transformation of a LEU4fbr LEU5+ his3- strain with this fragment resulted in the deletion of the LEU4 gene from the genome of some recipients, as demonstrated by transformant phenotype, genetic analysis and the absence of RNA capable of hybridizing to a LEU4 probe. The leu4 deletion strains remained Leu+. The extract of one such strain contained about 18% of the IPMS activity of wild-type cells. It is concluded that the residual activity is that of a second IPMS (IPMS II) that depends on an intact LEU5 locus. IPMS II was inhibited by leucine, but its sensitivity was about an order of magnitude lower than that of IPMS I. Deletion of the LEU4 region by the method utilized here resulted in an amino acid auxotrophy that could be satisfied by methionine, homocysteine, or cysteine. Complementation tests and genetic analysis demonstrated that the affected gene was MET4. Linkage to MET4 would place the LEU4 gene on the left arm of chromosome XIV.  相似文献   

8.
9.
 Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position −542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hap1 mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress. Received: 3 June 1996 / Accepted: 20 August 1996  相似文献   

10.
11.
12.
13.
We identified a new mutation, Asp578Tyr, in alpha-isopropylmalate synthase (a LEU4 gene product) that releases leucine feedback inhibition and causes hyperproduction of isoamyl alcohol (i-AmOH) in sake yeast. Spontaneous sake yeast mutants that express resistance to 5,5,5-trifluoro-DL-leucine (TFL) were isolated, and a mutant strain, TFL20, was characterized at the genetic and biochemical levels. An enzyme assay for alpha-isopropylmalate synthase showed that strain TFL20 was released from feedback inhibition by L-leucine. Furthermore, DNA sequencing of the LEU4 gene for a haploid of the mutant TFL20 revealed that aspartic acid in position 578 changes to tyrosine. A comparison of the three-dimensional structures of wild-type LEU4p and mutant LEU4D578Yp by the homology modeling method showed that Asp578 is important for leucine feedback inhibition. We conclude that the mutation from Asp to Tyr in 578 is a novel change causing release from leucine feedback inhibition.  相似文献   

14.
The repression of beta-isopropylmalate dehydrogenase, the LEU2 gene product, by leucine and leucine plus threonine was unaffected by the transposition of LEU2 from its original locus on chromosome III to a new locus within the ribosomal deoxyribonucleic acid gene cluster on chromosome XII. Since the expression of the LEU2 gene is probably controlled at a pretranslational level, we conclude that the recombinant plasmid used for transformation carries regulatory information in addition to LEU2 structural information.  相似文献   

15.
In this study, we examined the contribution of the four different pathways of phosphatidylethanolamine (PE) synthesis in the yeast Saccharomyces cerevisiae to the supply of this phospholipid to the plasma membrane. These pathways of PE formation are decarboxylation of phosphatidylserine (PS) by (i) phosphatidylserine decarboxylase 1 (Psd1p) in mitochondria and (ii) phosphatidylserine decarboxylase 2 (Psd2p) in a Golgi/vacuolar compartment, (iii) incorporation of exogenous ethanolamine and ethanolamine phosphate derived from sphingolipid catabolism via the CDP-ethanolamine pathway in the endoplasmic reticulum (ER), and (iv) synthesis of PE through acylation of lyso-PE catalyzed by the acyl-CoA-dependent acyltransferase Ale1p in the mitochondria associated endoplasmic reticulum membrane (MAM). Deletion of PSD1 and/or PSD2 led to depletion of total cellular and plasma membrane PE level, whereas mutation in the other pathways had practically no effect. Analysis of wild type and mutants, however, revealed that all four routes of PE synthesis contributed not only to PE formation but also to the supply of PE to the plasma membrane. Pulse-chase labeling experiments with L[3H(G)]serine and [14C]ethanolamine confirmed the latter finding. Fatty acid profiling demonstrated a rather balanced incorporation of PE species into the plasma membrane irrespective of mutations suggesting that all four pathways of PE synthesis provide at least a basic portion of “correct” PE species required for plasma membrane biogenesis. In summary, the PE level in the plasma membrane is strongly influenced by total cellular PE synthesis, but fine tuned by selective assembly mechanisms.  相似文献   

16.
17.
18.
The CDC4 gene product is associated with the yeast nuclear skeleton   总被引:4,自引:0,他引:4  
The CDC4 gene product of Saccharomyces cerevisiae is required at the late G1/S phase boundary of the cell cycle. In an attempt to better understand the function of CDC4, we performed experiments to localize this protein in the yeast cell. Using antisera, directed against a TrpE-CDC4 fusion protein, to analyze immuno-blots of different subcellular fractions from yeast, we demonstrated that the CDC4 gene product localizes in the nucleus by two different biochemical preparations of the yeast nucleoskeletal proteins. Immunofluorescence microscopy further confirmed its nuclear localization. These data support a model that includes the CDC4 gene product as a component of the yeast nuclear skeleton. The significance of this association in relationship to the biological role of CDC4 is discussed.  相似文献   

19.
W Xiao  G H Rank 《Génome》1988,30(6):984-986
The yeast ILV2 gene encodes acetolactate synthase, the first enzyme in the biosynthesis of isoleucine and valine. Its multiple regulation has precluded the clear demonstration of whether ILV2 is under general amino acid control. Nonderepressible gcn4 strains were used as recipients for transformation with a YCp plasmid carrying GCN4. Parental gcn4 cells and their isogenic GCN4 transformants were evaluated for ALS derepression following induced amino acid starvation. GCN4 cells showed 1.5- to 1.7-fold derepression but no derepression was observed in isogenic control gcn4 strains. A similar depression of ILV2 mRNA was also observed. Genetic evidence for general amino acid control was the gcn4 suppression of high level resistance to sulfometuron methyl by the SMRI-410 allele of ILV2.  相似文献   

20.
A novel expression vector using the 300 bp promotor-operator fragment of the recA gene of Escherichia coli has been constructed. The strength of the recA promotor was examined by assaying aminoglycoside phosphotransferase (APT) activity expressed from APT gene placed downstream of the promotor. We have observed, that some plasmids, containing N-portion of recA gene caused a large increase in radiosensitivity of host bacteria cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号