首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

2.
Yan, Sheng, Pawel Sliwinski, and Peter T. Macklem.Association of chest wall motion and tidal volume responses during CO2 rebreathing.J. Appl. Physiol. 81(4):1528-1534, 1996.The purpose of this study is to investigate theeffect of chest wall configuration at end expiration on tidal volume(VT) response duringCO2 rebreathing. In a group of 11 healthy male subjects, the changes in end-expiratory andend-inspiratory volume of the rib cage (Vrc,E andVrc,I, respectively) and abdomen (Vab,E and Vab,I, respectively) measured by linearizedmagnetometers were expressed as a function of end-tidalPCO2(PETCO2). The changes inend-expiratory and end-inspiratory volumes of the chest wall(Vcw,E and Vcw,I,respectively) were calculated as the sum of the respectiverib cage and abdominal volumes. The magnetometer coils were placed atthe level of the nipples and 1-2 cm above the umbilicus andcalibrated during quiet breathing against theVT measured from apneumotachograph. TheVrc,E/PETCO2 slope was quite variable among subjects. It was significantly positive (P < 0.05) in fivesubjects, significantly negative in four subjects(P < 0.05), and not different fromzero in the remaining two subjects. TheVab,E/PETCO2slope was significantly negative in all subjects(P < 0.05) with a much smallerintersubject variation, probably suggesting a relatively more uniformrecruitment of abdominal expiratory muscles and a variable recruitmentof rib cage muscles during CO2rebreathing in different subjects. As a group, the meanVrc,E/PETCO2,Vab,E/PETCO2, andVcw,E/PETCO2slopes were 0.010 ± 0.034, 0.030 ± 0.007, and0.020 ± 0.032 l / Torr, respectively;only theVab,E/PETCO2 slope was significantly different from zero. More interestingly, theindividualVT/PETCO2slope was negatively associated with theVrc,E/PETCO2(r = 0.68,P = 0.021) and Vcw,E/PETCO2slopes (r = 0.63,P = 0.037) but was not associated withtheVab,E/PETCO2slope (r = 0.40, P = 0.223). There was no correlation oftheVrc,E/PETCO2 andVcw,E/PETCO2slopes with age, body size, forced expiratory volume in 1 s, orexpiratory time. The groupVab,I/PETCO2 slope (0.004 ± 0.014 l / Torr) was not significantlydifferent from zero despite theVT nearly being tripled at theend of CO2 rebreathing. Inconclusion, the individual VTresponse to CO2, althoughindependent of Vab,E, is a function ofVrc,E to the extent that as theVrc,E/PETCO2slope increases (more positive) among subjects, theVT response toCO2 decreases. These results maybe explained on the basis of the respiratory muscle actions andinteractions on the rib cage.

  相似文献   

3.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

4.
Intravenous injection of dopamine (DA) hasconsistently been shown to depress minute ventilation(E). Whereas at low dosage (10µg/kg) this effect may be accounted for by inhibition of the carotidsinus nerve chemosensory discharge (CSNCD), other mechanisms appear tobe involved with large dosage (50 µg/kg). The purpose of this studywas to elucidate the mechanisms of DA-induced E depression. The effects ofintravenous injection of DA doses ranging from 1 to 200 µg/kg werestudied in 18 anesthetized cats. DA was injected during air andO2 breathing, after -adrenergic blockade by phenoxybenzamine and after baro- and chemodenervation. E and CSNCD were also simultaneouslyrecorded on four occasions. In contrast to that with use of low-doseDA, E depression induced by high-doseDA was dissociated from CSNCD, persisted during 100% O2 breathing, and wassignificantly correlated with the rise in arterial blood pressure.Although blunted, E depression was still present after complete chemo- and barodenervation but was suppressed by blocking of the concomitant vasoconstriction with phenoxybenzamine. It is concluded that reflexes of circulatory origincontribute to the E depression inducedby large-dose DA, in addition to its effects on arterialchemoreceptors. The contribution of baroreceptor stimulation andperipheral vasoconstriction is discussed.

  相似文献   

5.
Pulmonary blood flow redistribution by increased gravitational force   总被引:2,自引:0,他引:2  
This study was undertaken to assess theinfluence of gravity on the distribution of pulmonary blood flow (PBF)using increased inertial force as a perturbation. PBF was studied inunanesthetized swine exposed toGx (dorsal-to-ventraldirection, prone position), where G is the magnitude of the force ofgravity at the surface of the Earth, on the Armstrong LaboratoryCentrifuge at Brooks Air Force Base. PBF was measured using 15-µmfluorescent microspheres, a method with markedly enhanced spatialresolution. Each animal was exposed randomly to 1, 2, and3 Gx. Pulmonary vascularpressures, cardiac output, heart rate, arterial blood gases, and PBFdistribution were measured at each G level. Heterogeneity of PBFdistribution as measured by the coefficient of variation of PBFdistribution increased from 0.38 ± 0.05 to 0.55 ± 0.11 to0.72 ± 0.16 at 1, 2, and 3Gx, respectively. At 1Gx, PBF was greatest in theventral and cranial and lowest in the dorsal and caudal regions of thelung. With increased Gx,this gradient was augmented in both directions. Extrapolation of thesevalues to 0 G predicts a slight dorsal (nondependent) region dominanceof PBF and a coefficient of variation of 0.22 in microgravity. Analysisof variance revealed that a fixed component (vascular structure)accounted for 81% and nonstructure components (including gravity)accounted for the remaining 19% of the PBF variance across the entireexperiment (all 3 gravitational levels). The results are inconsistentwith the predictions of the zone model.

  相似文献   

6.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

7.
Inhibition of carbonic anhydrase (CA) isassociated with a lower plasma lactate concentration([La]pl)during fatiguing exercise. We hypothesized that a lower[La]plmay be associated with faster O2uptake (O2) kinetics during constant-load exercise. Seven men performed cycle ergometer exercise during control (Con) and acute CA inhibition with acetazolamide (Acz,10 mg/kg body wt iv). On 6 separate days, each subject performed 6-minstep transitions in work rate from 0 to 100 W (below ventilatory threshold,<ET)or to a O2 corresponding to~50% of the difference between the work rate atET and peakO2(>ET).Gas exchange was measured breath by breath. Trials were interpolated at1-s intervals and ensemble averaged to yield a single response. The mean response time (MRT, i.e., time to 63% of total exponential increase) for on- and off-transients was determined using a two- (<ET) or athree-component exponential model(>ET).Arterialized venous blood was sampled from a dorsal hand vein andanalyzed for[La]pl.MRT was similar during Con (31.2 ± 2.6 and 32.7 ± 1.2 s for onand off, respectively) and Acz (30.9 ± 3.0 and 31.4 ± 1.5 s for on and off, respectively) for work rates<ET. Atwork rates >ET, MRTwas similar between Con (69.1 ± 6.1 and 50.4 ± 3.5 s for on andoff, respectively) and Acz (69.7 ± 5.9 and 53.8 ± 3.8 s for on and off, respectively). On- and off-MRTs were slower for>ET thanfor <ETexercise.[La]plincreased above 0-W cycling values during<ET and>ET exercise but was lower at the end of the transition during Acz (1.4 ± 0.2 and 7.1 ± 0.5 mmol/l for<ET and>ET,respectively) than during Con (2.0 ± 0.2 and 9.8 ± 0.9 mmol/lfor <ETand >ET,respectively). CA inhibition does not affectO2 utilization at the onset of<ET or>ETexercise, suggesting that the contribution of oxidative phosphorylationto the energy demand is not affected by acute CA inhibition with Acz.

  相似文献   

8.
Kinetics of oxygen uptake at the onset of exercise in boys and men   总被引:3,自引:0,他引:3  
The objective of this study was to compare theO2 uptake(O2) kinetics at the onsetof heavy exercise in boys and men. Nine boys, aged 9-12 yr, and 8 men, aged 19-27 yr, performed a continuous incremental cyclingtask to determine peak O2(O2 peak).On 2 other days, subjects performed each day four cycling tasks at 80 rpm, each consisting of 2 min of unloaded cycling followed twice bycycling at 50%O2 peak for 3.5 min,once by cycling at 100%O2 peak for 2 min,and once by cycling at 130%O2 peak for 75 s.O2 deficit was not significantlydifferent between boys and men (respectively, 50%O2 peak task: 6.6 ± 11.1 vs. 5.5 ± 7.3 ml · min1 · kg1;100% O2 peak task:28.5 ± 8.1 vs. 31.8 ± 6.3 ml · min1 · kg1;and 130%O2 peaktask: 30.1 ± 5.7 vs. 35.8 ± 5.3 ml · min1 · kg1).To assess the kinetics, phase I was excluded from analysis. Phase IIO2 kinetics could bedescribed in all cases by a monoexponential function. ANOVA revealed nodifferences in time constants between boys and men (respectively, 50%O2 peaktask: 22.8 ± 5.1 vs. 26.4 ± 4.1 s; 100%O2 peak task: 28.0 ± 6.0 vs. 28.1 ± 4.4 s; and 130%O2 peak task: 19.8 ± 4.1 vs. 20.7 ± 5.7 s). In conclusion, O2 deficit and fast-componentO2 on-transientsare similar in boys and men, even at high exercise intensities, whichis in contrast to the findings of other studies employing simplermethods of analysis. The previous interpretation that children relyless on nonoxidative energy pathways at the onset of heavy exercise isnot supported by our findings.

  相似文献   

9.
Zschauer, A. O. A., M. W. Sielczak, D. A. S. Smith, and A. Wanner. Norepinephrine-induced contraction of isolated rabbit bronchial artery: role of 1-and 2-adrenoceptor activation. J. Appl. Physiol. 82(6):1918-1925, 1997.The contractile effect of norepinephrine (NE) onisolated rabbit bronchial artery rings (150-300 µm in diameter)and the role of 1- and2-adrenoceptors (AR) on smoothmuscle and endothelium were studied. In intact arteries, NE increasedtension in a dose-dependent manner, and the sensitivity for NE wasfurther increased in the absence of endothelium. In intact but not inendothelium-denuded arteries, the response to NE was increased in thepresence of both indomethacin (Indo; cyclooxygenase inhibitor) andNG-nitro-L-argininemethyl ester [L-NAME;nitric oxide (NO) synthase inhibitor], indicating that twoendothelium-derived factors, NO and a prostanoid, modulate theNE-induced contraction. The1-AR antagonist prazosinshifted the NE dose-response curve to the right, and phenylephrine(1-AR agonist) induced adose-dependent contraction that was potentiated byL-NAME or removal of theendothelium. The sensitivity to NE was increased slightly by the2-AR antagonists yohimbine andidazoxan, and this effect was abolished by Indo or removal of theendothelium. Similarly, contractions induced by UK-14304(2-AR agonist) were potentiatedby Indo or removal of the endothelium. These results suggest thatNE-induced contraction is mediated through activation of1- and2-ARs on both smooth muscle andendothelium. Activation of the1- and2-ARs on the smooth musclecauses contraction, whereas activation of the endothelial 1- and2-ARs induces relaxationthrough release of NO (1-ARs) and a prostanoid (2-ARs).

  相似文献   

10.
Repetitiveisometric tetanic contractions (1/s) of the caninegastrocnemius-plantaris muscle were studied either at optimal length(Lo) or shortlength (Ls;~0.9 · Lo),to determine the effects of initial length on mechanical and metabolicperformance in situ. Respective averages of mechanical and metabolicvariables were(Lo vs.Ls, allP < 0.05) passive tension (preload) = 55 vs. 6 g/g, maximal active tetanic tension(Po) = 544 vs. 174 (0.38 · Po)g/g, maximal blood flow () = 2.0 vs. 1.4 ml · min1 · g1,and maximal oxygen uptake(O2) = 12 vs. 9 µmol · min1 · g1.Tension at Lodecreased to0.64 · Po over20 min of repetitive contractions, demonstrating fatigue; there were nosignificant changes in tension atLs. In separatemuscles contracting atLo, was set to that measured atLs (1.1 ml · min1 · g1),resulting in decreased O2(7 µmol · min1 · g1),and rapid fatigue, to0.44 · Po. Thesedata demonstrate that 1)muscles at Lohave higher andO2 values than those at Ls;2) fatigue occurs atLo with highO2, adjusting metabolic demand (tension output) to match supply; and3) the lack of fatigue atLs with lowertension, , andO2 suggestsadequate matching of metabolic demand, set low by shortmuscle length, with supply optimized by low preload. Thesedifferences in tension andO2 betweenLo andLs groupsindicate that muscles contracting isometrically at initial lengthsshorter than Loare working under submaximal conditions.

  相似文献   

11.
Respiratory muscle work compromises leg blood flow during maximal exercise   总被引:10,自引:0,他引:10  
Harms, Craig A., Mark A. Babcock, Steven R. McClaran, DavidF. Pegelow, Glenn A. Nickele, William B. Nelson, and Jerome A. Dempsey.Respiratory muscle work compromises leg blood flow during maximalexercise. J. Appl. Physiol.82(5): 1573-1583, 1997.We hypothesized that duringexercise at maximal O2 consumption (O2 max),high demand for respiratory muscle blood flow() would elicit locomotor muscle vasoconstrictionand compromise limb . Seven male cyclists(O2 max 64 ± 6 ml · kg1 · min1)each completed 14 exercise bouts of 2.5-min duration atO2 max on a cycleergometer during two testing sessions. Inspiratory muscle work waseither 1) reduced via aproportional-assist ventilator, 2)increased via graded resistive loads, or3) was not manipulated (control).Arterial (brachial) and venous (femoral) blood samples, arterial bloodpressure, leg (legs;thermodilution), esophageal pressure, andO2 consumption(O2) weremeasured. Within each subject and across all subjects, at constantmaximal work rate, significant correlations existed(r = 0.74-0.90;P < 0.05) between work of breathing(Wb) and legs (inverse), leg vascular resistance (LVR), and leg O2(O2 legs;inverse), and between LVR and norepinephrine spillover. Mean arterialpressure did not change with changes in Wb nor did tidal volume orminute ventilation. For a ±50% change from control in Wb,legs changed 2 l/min or 11% of control, LVRchanged 13% of control, and O2extraction did not change; thusO2 legschanged 0.4 l/min or 10% of control. TotalO2 max was unchangedwith loading but fell 9.3% with unloading; thusO2 legsas a percentage of totalO2 max was 81% incontrol, increased to 89% with respiratory muscle unloading, anddecreased to 71% with respiratory muscle loading. We conclude that Wbnormally incurred during maximal exercise causes vasoconstriction inlocomotor muscles and compromises locomotor muscle perfusion andO2.

  相似文献   

12.
Tanaka, Hirofumi, Christopher A. DeSouza, Pamela P. Jones,Edith T. Stevenson, Kevin P. Davy, and Douglas R. Seals. Greater rate of decline in maximal aerobic capacity with age in physically active vs. sedentary healthy women. J. Appl.Physiol. 83(6): 1947-1953, 1997.Using ameta-analytic approach, we recently reported that the rate of declinein maximal oxygen uptake(O2 max) with age inhealthy women is greatest in the most physically active and smallest inthe least active when expressed in milliliters per kilogram per minuteper decade. We tested this hypothesis prospectively underwell-controlled laboratory conditions by studying 156 healthy, nonobesewomen (age 20-75 yr): 84 endurance-trained runners (ET) and 72 sedentary subjects (S). ET were matched across the age range forage-adjusted 10-km running performance. Body mass was positivelyrelated with age in S but not in ET. Fat-free mass was not differentwith age in ET or S. Maximal respiratory exchange ratio and rating ofperceived exertion were similar across age in ET and S, suggestingequivalent voluntary maximal efforts. There was a significant butmodest decline in running mileage, frequency, and speed with advancingage in ET.O2 max(ml · kg1 · min1)was inversely related to age (P < 0.001) in ET (r = 0.82) and S(r = 0.71) and was higher atany age in ET. Consistent with our meta-analysic findings,the absolute rate of decline inO2 max was greater inET (5.7ml · kg1 · min1 · decade1)compared with S (3.2 ml · kg1 · min1 · decade1;P < 0.01), but the relative (%)rate of decline was similar (9.7 vs 9.1%/decade; notsignificant). The greater absolute rate of decline inO2 max in ET comparedwith S was not associated with a greater rate of decline in maximalheart rate (5.6 vs. 6.2beats · min1 · decade1),nor was it related to training factors. The present cross-sectional findings provide additional evidence that the absolute, but not therelative, rate of decline in maximal aerobic capacity with age may begreater in highly physically active women compared with theirsedentary healthy peers. This difference does not appear to be relatedto age-associated changes in maximal heart rate, bodycomposition, or training factors.

  相似文献   

13.
Fitzgerald, Margaret D., Hirofumi Tanaka, Zung V. Tran, andDouglas R. Seals. Age-related declines in maximal aerobic capacityin regularly exercising vs. sedentary women: a meta-analysis. J. Appl. Physiol. 83(1): 160-165, 1997.Our purpose was to determine the relationship between habitualaerobic exercise status and the rate of decline in maximal aerobiccapacity across the adult age range in women. A meta-analytic approachwas used in which mean maximal oxygen consumption(O2 max) values fromfemale subject groups (ages 18-89 yr) were obtained from thepublished literature. A total of 239 subject groups from 109 studiesinvolving 4,884 subjects met the inclusion criteria and werearbitrarily separated into sedentary (groups = 107; subjects = 2,256),active (groups = 69; subjects = 1,717), and endurance-trained (groups = 63; subjects = 911) populations.O2 max averaged 29.7 ± 7.8, 38.7 ± 9.2, and 52.0 ± 10.5 ml · kg1 · min1,respectively, and was inversely related to age within each population (r = 0.82 to 0.87, allP < 0.0001). The rate of decline inO2 max withincreasing subject group age was lowest in sedentary women (3.5ml · kg1 · min1· decade1), greater inactive women (4.4ml · kg1 · min1· decade1), andgreatest in endurance-trained women (6.2ml · kg1 · min1 · decade1)(all P < 0.001 vs. each other). Whenexpressed as percent decrease from mean levels at age ~25 yr, therates of decline inO2 max were similarin the three populations (10.0 to 10.9%/decade). Therewas no obvious relationship between aerobic exercise status and therate of decline in maximal heart rate with age. The results of thiscross-sectional study support the hypothesis that, in contrast to theprevailing view, the rate of decline in maximal aerobic capacity withage is greater, not smaller, in endurance-trained vs. sedentary women.The greater rate of decline inO2 max in endurance-trained populations may be related to their higher values asyoung adults (baseline effect) and/or to greater age-related reductions in exercise volume; however, it does not appear to berelated to a greater rate of decline in maximal heart rate with age.

  相似文献   

14.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

15.
To analyze the effect of hyperthermia on thevascular response, the isometric response of isolated rabbit femoralartery segments was recorded at 37°C and hyperthermia (41 and44°C). Contraction to potassium (5 × 103-5 × 102 M) was significantlygreater at 41 and 44 than at 37°C and increased by inhibition ofnitric oxide (NO) synthesis withN-nitro-L-arginine(L-NNA;104 M) or endotheliumremoval at 37°C but not at 41 or 44°C. Norepinephrine (109-104M) produced a concentration-dependent contraction greater at 41 or 44 than at 37°C and not modified by endothelium removal orL-NNA at either temperature.Phenylephrine(109-104M) produced a contraction increased by warming to 44°C but not to41°C. The specific2-adrenoceptor agonist BHT-920produced a weak contraction, reduced by the1-adrenoceptor antagonist prazosin (106 M) andincreased at 44°C but not at 41°C. The concentration-dependent contraction to endothelin-1 (ET-1;1011-107M) was increased by warming to 41 and 44°C and by endothelium removal or L-NNA at 37°C butnot at 41 or 44°C. Response to ET-1 was reduced by endothelinETA-receptor antagonist BQ-123(105 M) andETB-receptor antagonist BQ-788(105 M). In arteriesprecontracted with ET-1(108-3 × 108 M), relaxation tosodium nitroprusside(108-104M) was increased at 41 and 44°C vs. at 37°C, but that of ACh (108-104M) or adenosine(108-104M) was not different at all temperatures studied. Relaxation to ACh,but not adenosine, was reduced similarly byL-NNA at all temperaturesstudied. These results suggest hyperthermia in muscular arteries mayinhibit production of, and increase dilatation to, NO, resulting inunchanged relaxation to ACh and increased constriction to KCl and ET-1,and may increase constriction to stimulation of1-adrenoceptors byNO-independent mechanisms.

  相似文献   

16.
Griffin, M. Pamela. Role for anions in pulmonaryendothelial permeability. J. Appl.Physiol. 83(2): 615-622, 1997.-Adrenergic stimulation reduces albumin permeation across pulmonary artery endothelial monolayers and induces changes in cell morphology that aremediated by Cl flux. Wetested the hypothesis that anion-mediated changes in endothelial cellsresult in changes in endothelial permeability. We measured permeationof radiolabeled albumin across bovine pulmonary arterial endothelialmonolayers when the extracellular anion was Cl,Br,I,F, acetate(Ac), gluconate(G), and propionate(Pr). Permeability toalbumin (Palbumin)was calculated before and after addition of 0.2 mM of thephosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX), whichreduces permeability. InCl, thePalbumin was 3.05 ± 0.86 × 106 cm/s andfell by 70% with the addition of IBMX. The initialPalbumin was lowest forPr andAc. InitialPalbumin was higher inBr,I,G, andF than inCl. A permeability ratiowas calculated to examine the IBMX effect. The greatest IBMX effect wasseen when Cl was theextracellular anion, and the order among halide anions wasCl > Br > I > F. Although the level ofextracellular Ca2+ concentration([Ca2+]o)varied over a wide range in the anion solutions,[Ca2+]odid not systematically affect endothelial permeability in this system.When Cl was theextracellular anion, varying[Ca2+]ofrom 0.2 to 2.8 mM caused a change in initialPalbumin but no changein the IBMX effect. The anion channel blockers4-acetamido-4-isothiocyanotostilbene-2,2-disulfonic acid(0.25 mM) and anthracene-9-carboxylic acid (0.5 mM) significantly altered initialPalbumin and the IBMXeffect. The anion transport blockers bumetanide (0.2 mM) and furosemide(1 mM) had no such effects. We conclude that extracellular anionsinfluence bovine pulmonary arterial endothelial permeability and thatthe pharmacological profile fits better with the activity of anionchannels than with other anion transport processes.

  相似文献   

17.
The mechanism(s)limiting muscle O2 uptake(O2) kinetics wasinvestigated in isolated canine gastrocnemius muscles(n = 7) during transitions from restto 3 min of electrically stimulated isometric tetanic contractions(200-ms trains, 50 Hz; 1 contraction/2 s; 60-70% of peakO2). Two conditions weremainly compared: 1) spontaneousadjustment of blood flow () [control, spontaneous (C Spont)]; and2) pump-perfused, adjusted ~15 s before contractions at aconstant level corresponding to the steady-state value duringcontractions in C Spont [faster adjustment ofO2 delivery (FastO2 Delivery)]. During FastO2 Delivery, 1-2 ml/min of102 M adenosine wereinfused intra-arterially to prevent inordinate pressure increases withthe elevated . The purpose of the study was todetermine whether a faster adjustment ofO2 delivery would affectO2 kinetics. was measured continuously; arterial(CaO2) and popliteal venous(CvO2)O2 contents were determined atrest and at 5- to 7-s intervals during contractions;O2 delivery was calculated as · CaO2,and O2 was calculated as · arteriovenous O2 content difference. Times toreach 63% of the difference between baseline and steady-stateO2 during contractions were23.8 ± 2.0 (SE) s in C Spont and 21.8 ± 0.9 s in FastO2 Delivery (not significant). Inthe present experimental model, elimination of any delay inO2 delivery during therest-to-contraction transition did not affect muscleO2 kinetics, which suggeststhat this kinetics was mainly set by an intrinsic inertia of oxidativemetabolism.

  相似文献   

18.
Zhang, Rong, Julie H. Zuckerman, James A. Pawelczyk, andBenjamin D. Levine. Effects of head-down-tilt bed rest on cerebralhemodynamics during orthostatic stress. J. Appl.Physiol. 83(6): 2139-2145, 1997.Our aim was todetermine whether the adaptation to simulated microgravity (µG)impairs regulation of cerebral blood flow (CBF) during orthostaticstress and contributes to orthostatic intolerance. Twelvehealthy subjects (aged 24 ± 5 yr) underwent 2 wk of 6°head-down-tilt (HDT) bed rest to simulate hemodynamic changes thatoccur when humans are exposed to µG. CBF velocity in the middlecerebral artery (transcranial Doppler), blood pressure, cardiac output(acetylene rebreathing), and forearm blood flow were measured at eachlevel of a ramped protocol of lower body negative pressure (LBNP;15, 30, and 40 mmHg × 5 min, 50 mmHg × 3 min, then 10 mmHg every 3 min to presyncope) beforeand after bed rest. Orthostatic tolerance was assessed by using thecumulative stress index (CSI; mmHg × minutes) for the LBNPprotocol. After bed rest, each individual's orthostatic tolerance wasreduced, with the group CSI decreased by 24% associated with greaterdecreases in cardiac output and greater increases in systemic vascularresistance at each level of LBNP. Before bed rest, mean CBF velocitydecreased by 14, 10, and 45% at 40 mmHg, 50 mmHg, andmaximal LBNP, respectively. After bed rest, mean velocity decreased by16% at 30 mmHg and by 21, 35, and 39% at 40 mmHg,50 mmHg, and maximal LBNP, respectively. Compared with pre-bedrest, post-bed-rest mean velocity was less by 11, 10, and 21% at30, 40, and 50 mmHg, respectively. However, therewas no significant difference at maximal LBNP. We conclude thatcerebral autoregulation during orthostatic stress is impaired byadaptation to simulated µG as evidenced by an earlier and greater fall in CBF velocity during LBNP. We speculate that impairment ofcerebral autoregulation may contribute to the reduced orthostatic tolerance after bed rest.

  相似文献   

19.
Tantucci, C., P. Bottini, M. L. Dottorini, E. Puxeddu, G. Casucci, L. Scionti, and C. A. Sorbini. Ventilatory response toexercise in diabetic subjects with autonomic neuropathy.J. Appl. Physiol. 81(5):1978-1986, 1996.We have used diabetic autonomic neuropathy as amodel of chronic pulmonary denervation to study the ventilatoryresponse to incremental exercise in 20 diabetic subjects, 10 with(Dan+) and 10 without (Dan) autonomic dysfunction, and in 10 normal control subjects. Although both Dan+ and Dan subjectsachieved lower O2 consumption andCO2 production(CO2) thancontrol subjects at peak of exercise, they attained similar values ofeither minute ventilation(E) oradjusted ventilation (E/maximalvoluntary ventilation). The increment of respiratory rate withincreasing adjusted ventilation was much higher in Dan+ than inDan and control subjects (P < 0.05). The slope of the linearE/CO2relationship was 0.032 ± 0.002, 0.027 ± 0.001 (P < 0.05), and 0.025 ± 0.001 (P < 0.001) ml/min inDan+, Dan, and control subjects, respectively. Bothneuromuscular and ventilatory outputs in relation to increasingCO2 were progressivelyhigher in Dan+ than in Dan and control subjects. At peak ofexercise, end-tidal PCO2 was muchlower in Dan+ (35.9 ± 1.6 Torr) than in Dan (42.1 ± 1.7 Torr; P < 0.02) and control (42.1 ± 0.9 Torr; P < 0.005) subjects.We conclude that pulmonary autonomic denervation affects ventilatoryresponse to stressful exercise by excessively increasing respiratoryrate and alveolar ventilation. Reduced neural inhibitory modulationfrom sympathetic pulmonary afferents and/or increasedchemosensitivity may be responsible for the higher inspiratoryoutput.

  相似文献   

20.
VO2 max is associated with ACE genotype in postmenopausal women   总被引:6,自引:0,他引:6  
Relationships have frequently been found betweenangiotensin-converting enzyme (ACE) genotype and various pathologicaland physiological cardiovascular outcomes and functions. Thuswe sought to determine whether ACE genotype affected maximalO2 consumption (O2 max) and maximalexercise hemodynamics in postmenopausal women with different habitualphysical activity levels. Age, body composition, and habitual physicalactivity levels did not differ among ACE genotype groups. However, ACEinsertion/insertion (II) genotype carriers had a 6.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEdeletion/deletion (DD) genotype group after accounting for the effectof physical activity levels. The ACE II genotype group also had a 3.3 ml · kg1 · min1higher O2 max(P < 0.05) than the ACEinsertion/deletion (ID) genotype group. The ACE ID group tended to havea higher O2 max thanthe DD genotype group, but the difference was not significant. ACEgenotype accounted for 12% of the variation inO2 max among womenafter accounting for the effect of habitual physical activity levels.The entire difference inO2 max among ACEgenotype groups was the result of differences in maximal arteriovenousO2 difference (a-vDO2).ACE genotype accounted for 17% of the variation in maximal a-vDO2 inthese women. Maximal cardiac output index did not differ whatsoeveramong ACE genotype groups. Thus it appears that ACE genotype accountsfor a significant portion of the interindividual differences inO2 max among thesewomen. However, this difference is the result of genotype-dependentdifferences in maximala-vDO2 andnot of maximal stroke volume and maximal cardiac output.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号