首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent reports from this laboratory indicate that exposure of cholesterol-loaded macrophages to high density lipoprotein 3 (HDL3) stimulates not only cholesterol efflux, but also results in a two- to threefold increase in apoE accumulation in the media (Dory, L., 1989. J. Lipid Res. 30: 809-816). The present experiments demonstrate that the effect of HDL3, and to a lesser extent HDL2, on apoE secretion is specific, concentration-dependent, and may require interaction with the HDL receptor. Very low density lipoproteins (VLDL) and low-density lipoproteins (LDL) fail to specifically stimulate apoE secretion by cholesterol-loaded macrophages. The effect of HLD3 is maximal at 25-50 micrograms/ml (0.26-0.52 microM) and can be totally abolished by mild nitrosylation (with 3 mM tetranitromethane (TNM)). Data are also presented to indicate that the increased rate of apoE secretion in the presence of HDL3 is not due to a "protective" effect of this lipoprotein on possible proteolytic degradation or cellular reuptake of apoE secreted into the media. The stimulatory effect of HDL on apoE secretion can be clearly dissociated from cholesterol efflux; HDL stimulates apoE secretion from oxysterol-treated cells in the absence of measurable cholesterol efflux, while TNM-HDL promotes substantial cholesterol efflux from cholesterol-loaded cells but has no effect on apoE secretion. The kinetics of apoE synthesis and secretion, determined in short-term labeling studies, demonstrate that under all experimental conditions examined a substantial portion of cellular apoE is not secreted. Furthermore, in cholesterol-loaded cells HDL3 increases apoE secretion essentially by diversion of a greater portion of cellular apoE pool for secretion. While HDL3 has no effect on the rate of apoE synthesis, cellular apoE turns over two-fold faster in cells incubated in the presence of HDL3 than in its absence (t 1/2 = 11 +/- 2 and 22 +/- 4 min, respectively), an observation corresponding well with the changes in the rates of apoE secretion under similar conditions. The HDL3-mediated increase in apoE secretion by cholesterol-loaded macrophages suggests another mechanism by which HDL exerts a protective effect in the development of atherosclerosis; increased contribution to the metabolic pool of apoE by peripheral tissues may lead to a more effective clearance of peripheral cholesterol by the liver (reverse cholesterol transport).  相似文献   

2.
ApoE synthesis and secretion, as a function of cellular cholesterol content and cholesterol efflux, was studied in thioglycolate-elicited mouse peritoneal macrophages. As expected, loading elicited macrophages with cholesterol induced a 5-fold increase in apoE secretion and a 2.5-fold increase in cellular apoE content over a 5-h period. Treatment of cholesterol-loaded cells with HDL3 further increased apoE secretion 1.7-fold and decreased cellular cholesterol by 20%. Treatment of cholesterol-loaded cells with HDL3 and SAH 58.035 (an ACAT inhibitor) increased apoE secretion 2.4-fold and decreased cellular cholesterol content by 35%. Treatment of the cells with the ACAT inhibitor alone suppressed apoE secretion by 40% but did not change cellular cholesterol content. Northern blot analysis of RNA indicated that cholesterol loading increased apoE mRNA 2-fold. ApoE mRNA levels were not further affected by treatment with HDL3 and/or the ACAT inhibitor. Cholesterol-loaded cells, in the absence of HDL3, secreted apoE into the media in two fractions as determined by column chromatography: a large molecular weight complex, (larger than HDL), and an essentially lipid-free protein. In the presence of HDL3, the cells secreted apoE in three fractions: a large molecular weight complex, an essentially lipid-free protein, and over 50% of apoE associated with HDL. In the process, HDL3 became larger and eluted in a position identical to that of HDL2. A small amount of HDL3-derived material was also transformed to an LDL-size particle. Incubation of HDL3 in the absence of cholesterol-loaded cells did not produce these changes. It is concluded that cholesterol-loading increases apoE mRNA content and apoE synthesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Human apolipoprotein (apo) E4 binds preferentially to very low-density lipoproteins (VLDLs), whereas apoE3 binds preferentially to high-density lipoproteins (HDLs), resulting in different plasma cholesterol levels for the two isoforms. To understand the molecular basis for this effect, we engineered the isolated apoE N-terminal domain (residues 1-191) and C-terminal domain (residues 192-299) together with a series of variants containing deletions in the C-terminal domain and assessed their lipid and lipoprotein binding properties. Both isoforms can bind to a phospholipid (PL)-stabilized triolein emulsion, and residues 261-299 are primarily responsible for this activity. ApoE4 exhibits better lipid binding ability than apoE3 as a consequence of a rearrangement involving the segment spanning residues 261-272 in the C-terminal domain. The strong lipid binding ability of apoE4 coupled with the VLDL particle surface being ~60% PL-covered is the basis for its preference for binding VLDL rather than HDL. ApoE4 binds much more strongly than apoE3 to VLDL but less strongly than apoE3 to HDL(3), consistent with apoE-lipid interactions being relatively unimportant for binding to HDL. The preference of apoE3 for binding to HDL(3) arises because binding is mediated primarily by interaction of the N-terminal helix bundle domain with the resident apolipoproteins that cover ~80% of the HDL(3) particle surface. Thus, the selectivity in the binding of apoE3 and apoE4 to HDL(3) and VLDL is dependent upon two factors: (1) the stronger lipid binding ability of apoE4 relative to that of apoE3 and (2) the differences in the nature of the surfaces of VLDL and HDL(3) particles, with the former being largely covered with PL and the latter with protein.  相似文献   

4.
After internalization of triglyceride-rich lipoproteins (TRL) in hepatoma cells, TRL particles are immediately disintegrated in the early endosomal compartment. This involves the targeting of lipids and apoprotein B along the degradative pathway and the recycling of TRL-derived apoE through recycling endosomes. Re-secretion of apoE is accompanied by the concomitant association of apoE and cellular cholesterol with high-density lipoproteins (HDL). Since epidemiological data showed that apoE3 and apoE4 have differential effects on HDL metabolism, we investigated whether the intracellular processing of TRL-derived apoE4 differs from apoE3-TRL. In this study, we demonstrated by radioactive and immunofluorescence uptake experiments that cell-surface binding and internalization of TRL-derived apoE4 are increased compared with apoE3 in hepatoma cells. Pulse-chase experiments revealed that HDL-induced recycling, but not disintegration and degradation, of apoE4-enriched TRL is strongly reduced in these cells. Furthermore, impaired HDL-induced apoE4 recycling is associated with reduced cholesterol efflux. Studies performed in Tangier fibroblasts showed that apoE recycling does not depend on ATP-binding cassette transporter A1 activity. These studies provide initial evidence that impaired recycling of apoE4 could interfere with intracellular cholesterol transport and contribute to the pathophysiological lipoprotein profile observed in apoE4 homozygotes.  相似文献   

5.
Abstract: Although the critical role of apolipoprotein E (apoE) allelic variation in Alzheimer's disease and in the outcome of CNS injury is now recognized, the functions of apoE in the CNS remain obscure, particularly with regard to lipid metabolism. We used density gradient ultracentrifugation to identify apoE-containing lipoproteins in human CSF. CSF apoE lipoproteins, previously identified only in the 1.063–1.21 g/ml density range, were also demonstrated in the 1.006–1.060 g/ml density range. Plasma lipoproteins in this density range include low-density lipoprotein and high-density lipoprotein (HDL) subfraction 1 (HDL1). The novel CSF apoE lipoproteins are designated HDL1. No immunoreactive apolipoprotein A-I (apo A-I) or B could be identified in the CSF HDL1 fractions. Large lipoproteins 18.3 ± 6.6 nm in diameter (mean ± SD) in the HDL1 density range were demonstrated by electron microscopy. Following fast protein liquid chromatography of CSF at physiologic ionic strength, apoE was demonstrated in particles of average size greater than particles containing apoA-I. The largest lipoproteins separated by this technique contained apoE without apoA-I. Thus, the presence of large apoE-containing lipoproteins was confirmed without ultracentrifugation. Interconversion between the more abundant smaller apoE-HDL subfractions 2 and 3 and the novel larger apoE-HDL1 is postulated to mediate a role in cholesterol redistribution in brain.  相似文献   

6.
Apolipoprotein E (apoE) plays a major role in lipoprotein metabolism by mediating the binding of apoE-containing lipoproteins to receptors. The role of hepatic apoE in the catabolism of apoE-free lipoproteins such as low density lipoprotein (LDL) and high density lipoprotein-3 (HDL(3)) is however, unclear. We analyzed the importance of hepatic apoE by comparing human LDL and HDL(3) metabolism in primary cultures of hepatic cells from control C57BL/6J and apoE knockout (KO) mice. Binding analysis showed that the maximal binding capacity (Bmax) of LDL, but not of HDL(3), is increased by twofold in the absence of apoE synthesis/secretion. Compared to control hepatic cells, LDL and HDL(3) holoparticle uptake by apoE KO hepatic cells, as monitored by protein degradation, is reduced by 54 and 77%, respectively. Cleavage of heparan sulfate proteoglycans (HSPG) by treatment with heparinase I reduces LDL association by 21% in control hepatic cells. Thus, HSPG alone or a hepatic apoE-HSPG complex is partially involved in LDL association with mouse hepatic cells. In apoE KO, but not in normal hepatic cells, the same treatment increases LDL uptake/degradation by 2.4-fold suggesting that in normal hepatic cells, hepatic apoE increases LDL degradation by masking apoB-100 binding sites on proteoglycans. Cholesteryl ester (CE) association and CE selective uptake (CE/protein association ratio) from LDL and HDL(3) by mouse hepatic cells were not affected by the absence of apoE expression. We also show that 69 and 72% of LDL-CE hydrolysis in control and apoE KO hepatic cells, respectively, is sensitive to chloroquine revealing the importance of a pathway linked to lysosomes. In contrast, HDL(3)-CE hydrolysis is only mediated by a nonlysosomal pathway in both control and apoE KO hepatic cells. Overall, our results indicate that hepatic apoE increases the holoparticle uptake pathway of LDL and HDL(3) by mouse hepatic cells, that HSPG devoid of apoE favors LDL binding/association but impairs LDL uptake/degradation and that apoE plays no significant role in CE selective uptake from either human LDL or HDL(3) lipoproteins.  相似文献   

7.
We have developed an astrocyte cell culture system that is attractive for the study of apoE structure and its impact on astrocyte lipoproteins and neuronal function. Primary astrocytes from apoE-/- mice were infected with adenovirus expressing apoE3 or apoE4 and the nascent lipoproteins secreted were characterized. The nascent apoE-containing astrocyte particles were predominantly the size of plasma high density lipoprotein (HDL). ApoE4, in contrast to apoE3, appeared to be distributed in two distinct lipoprotein peaks and the apoE4-containing lipoproteins contained significantly more radiolabeled triglyceride. On electron micrographs the astrocyte particles were both discoidal and spherical in shape with a prevalence of stacked discs in apoE3 particles, but single discs and larger spheres in apoE4 particles. The apoE4 discs were significantly wider than apoE3 discs. These properties of the astrocyte lipoproteins are similar to those obtained from apoE isoform transgenic mice. Astrocyte lipoproteins containing apoE3, but not apoE4, stimulated neurite outgrowth in Neuro-2a cells. These studies suggest that the isoform-specific effects of apoE lipoproteins may involve differences in particle size and composition. Finally we demonstrate the usefulness of this system by expressing a truncated apoE3 (delta202-299) mutant and show preliminary data indicating that a liver X receptor agonist promotes HDL output by the astrocytes without an increase in apoE in the media. This cell culture system is more flexible and allows for more rapid expression of apoE mutants.  相似文献   

8.
To determine the importance of hepatic apolipoprotein (apo) E in lipoprotein metabolism, HepG2 cells were transfected with a constitutive expression vector (pRc/CMV) containing either the complete or the first 474 base pairs of the human apoE cDNA inserted in an antisense orientation, for apoE gene inactivation, or the full-length human apoE cDNA inserted in a sense orientation for overexpression of apoE. Stable transformants were obtained that expressed 15, 24, 226, and 287% the apoE level of control HepG2 cells. The metabolism of low-density lipoprotein (LDL) and high-density lipoprotein-3 (HDL(3)), two lipoprotein classes following both holoparticle and cholesteryl esters (CE)-selective uptake pathways, was compared between all these cells. LDL-protein degradation, an indicator of the holoparticle uptake, was greater in low apoE expressing cells than in control or high expressing cells, while HDL(3)-protein degradation paralleled the apoE levels of the cells (r(2) = 0.989). LDL- and HDL(3)-protein association was higher in low apoE expressing cells compared to control cells. In opposition, LDL- and HDL(3)-CE association was not different from control cells in low apoE expressing cells but rose in high apoE expressing cells. In consequence, the CE-selective uptake (CE/protein association ratio) was positively correlated with the level of apoE expression in all cells for both LDL (r(2) = 0.977) and HDL(3) (r(2) = 0.998). We also show that, although in normal and low apoE expressor cells, 92% of LDL- and 80% HDL(3)-CE hydrolysis is sensitive to chloroquine suggesting a pathway linked to lysosomes for both lipoproteins, cells overexpressing apoE lost 60% of chloroquine-sensitive HDL(3)-CE hydrolysis without affecting that of LDL-CE. Thus, the level of apoE expression in HepG2 cells determines the fate of LDL and HDL(3).  相似文献   

9.
Atherosclerosis is initiated when lipoproteins bind to proteoglycans (PGs) in arterial walls. The binding is mediated by apolipoprotein apoB-100 and/or apoE, both of which have binding affinity toward heparin. We developed covalently bound heparin coatings for APTES-modified silica capillaries and SiO(2) chips and carried out capillary electrochromatography (CEC) and quartz crystal microbalance (QCM) studies on the interactions of heparin with selected peptide fragments of apoB-100 and apoE and, for CEC, also with low- and high-density lipoproteins (LDL and HDL), the latter with and without apoE. The peptides are known to mediate interactions of HDL and LDL with arterial PGs. Interactions and affinities were expressed in CEC as retention factors and reduced mobilities and in continuous flow QCM techniques as affinity constants. Both techniques showed heparin interactions to be stronger with apoB-100 peptide than with apoE peptide fragment, and they confirmed that the sulfate groups in heparin play an especially important role in interactions with apoB-100 peptide fragments. In addition, CEC confirmed the importance of sulfate groups of heparin in interactions between heparin and LDL and between heparin and apoE-containing HDL. CEC and QCM acted as excellent platforms to mimic these biologically important interactions, with small sample and reagent consumption.  相似文献   

10.
The formation of large cholesterol-enriched high density lipoproteins (HDL1/HDLc) from typical HDL3 requires lecithin:cholesterol acyltransferase activity, additional cholesterol, and a source of apolipoprotein (apo-) E. The present study explores the role of apo-E in promoting HDL1/HDLc formation and in imparting to these lipoprotein particles the ability to interact with the apo-B,E(low density lipoprotein (LDL] receptor. Incubation of normal canine serum with cholesterol-loaded mouse peritoneal macrophages resulted in the formation of HDL1/HDLc that competed with 125I-LDL for binding to the apo-B,E(LDL) receptors on cultured human fibroblasts. Cholesterol efflux from macrophages was necessary because incubation of normal canine serum with nonloaded macrophages did not cause HDL1/HDLc formation. However, cholesterol delivery to the serum was not sufficient to result in HDL1/HDLc formation. Apolipoprotein E had to be available. Incubation of apo-E-depleted canine serum with cholesterol-loaded J774 cells, a macrophage cell line that does not synthesize apo-E, demonstrated that no HDL1/HDLc formation was detected even in the presence of significant cholesterol efflux. However, addition of exogenous apo-E to the serum during the incubation with cholesterol-loaded J744 cells promoted the formation of large receptor-active HDL1/HDLc. The receptor binding activity of these particles produced in vitro correlated with the amount of apo-E incorporated into the HDL1/HDLc. Apolipoproteins A-I and C-III were ineffective in promoting HDL1/HDLc formation; thus, apo-E was unique in allowing HDL1/HDLc formation. These results demonstrate that when lecithin:cholesterol acyltransferase activity, cholesterol, and apo-E are present in serum, typical HDL can be transformed in vitro into large cholesterol-rich HDL1/HDLc that are capable of binding to lipoprotein receptors.  相似文献   

11.
Lipoprotein remodelling in the periphery has been extensively studied. For example, the processing of nascent apoAI particles to cholesterol-loaded HDL lipoproteins during reverse cholesterol transport involves a series of enzymes, transporters in peripheral tissue, as well as other apolipoproteins and lipoproteins. These extensive modifications and interconversions are well defined. Here, we present the hypothesis that a similar process occurs within the blood brain barrier (BBB) via glia-secreted lipid-poor apoE particles undergoing remodelling to become mature central nervous system (CNS) lipoproteins. We further pose several pressing issues and future directions for the study of lipoproteins in the brain.  相似文献   

12.
Apolipoprotein B (apoB) of plasma low density lipoproteins (LDL) binds to high affinity receptors on many cell types. A minor subclass of high density lipoproteins (HDL), termed HDL1, which contains apoE but lacks apoB, binds to the same receptor. Bound lipoproteins are engulfed, degraded, and regulate intracellular cholesterol metabolism and receptor activity. The HDL of many patients with liver disease is rich in apoE. We tested the hypothesis that such patient HDL would reduce LDL binding and would themselves regulate cellular cholesterol metabolism. Normal HDL had little effect on binding, uptake, and degradation of 125I-labeled LDL by cultured human skin fibroblasts. Patient HDL (d 1.063-1.21 g/ml) inhibited these processes, and in 15 of the 25 samples studied there was more than 50% inhibition at 125I-labeled LDL and HDL protein concentrations of 10 micrograms/ml and 25 micrograms/ml, respectively. There was a significant negative correlation between the percentage of 125I-labeled LDL bound and the apoE content of the competing HDL (r = -0.54, P less than 0.01). Patient 125I-labeled HDL was also taken up and degraded by the fibroblasts, apparently through the LDL-receptor pathway, stimulated cellular cholesterol esterification, increased cell cholesteryl ester content, and suppressed cholesterol synthesis and receptor activity. We conclude that LDL catabolism by the receptor-mediated pathway may be impaired in liver disease and that patient HDL may deliver cholesterol to cells.  相似文献   

13.
The effect of inhibiting cholesteryl ester transfer protein (CETP) on the in vitro redistribution of apolipoproteins(apo) A-IV and apoE among lipoproteins in whole plasma was studied in seven normal male subjects. Plasmas were incubated in the presence of a purified monoclonal antibody TP2 (Mab TP2) that neutralizes the activity of CETP. Mab TP2 had no effect on lecithin:cholesterol acyltransferase (LCAT) activity. Prior to and following a 6-h incubation at 37 degrees C in the presence of Mab TP2 or a control mouse myeloma immunoglobulin (IgG), plasmas were gel-filtered on Sephacryl S-300 and the distribution of apoA-IV and apoE among lipoproteins was determined by radioimmunoassay. Incubation (i.e., with active LCAT and CETP) increased the amount of apoA-IV associated with lipoproteins by 240%. When CETP activity was inhibited during incubation, the amount of apoA-IV that became lipoprotein-associated was significantly increased (315% of basal). Plasma incubation also caused a redistribution of apoE from high density lipoproteins (HDL) to larger lipoproteins (131% of basal); however, when CETP was inhibited, significantly greater amounts of apoE became associated with the larger particles (155% of basal). These effects were observed in all seven subjects. Increased movement of apoE from HDL to triglyceride-rich particles was not due to displacement by apoA-IV since loss of apoE from HDL was still observed when no movement of apoA-IV onto HDL occurred, such as during LCAT or combined LCAT and CETP inhibition. We speculate that low CETP activity (e.g., in species such as rats) may lead to an increased content of HDL apoA-IV and also to apoE enrichment of triglyceride-rich lipoproteins, augmenting their clearance.  相似文献   

14.
The Class B type I scavenger receptor I (SR-BI) is a physiologically relevant high density lipoprotein (HDL) receptor that can mediate selective cholesteryl ester (CE) uptake by cells. Direct interaction of apolipoprotein E (apoE) with this receptor has never been demonstrated, and its implication in CE uptake is still controversial. By using a human adrenal cell line (NCI-H295R), we have addressed the role of apoE in binding to SR-BI and in selective CE uptake from lipoproteins to cells. This cell line does not secrete apoE and SR-BI is its major HDL-binding protein. We can now provide evidence that 1) free apoE is a ligand for SR-BI, 2) apoE associated to lipids or in lipoproteins does not modulate binding or CE-selective uptake by the SR-BI pathway, and 3) the direct interaction of free apoE to SR-BI leads to an increase in CE uptake from lipoproteins of both low and high densities. We propose that this direct interaction could modify SR-BI structure in cell membranes and potentiate CE uptake.  相似文献   

15.
The interaction of human serum high density lipoproteins (HDL) with mouse peritoneal macrophages and human blood monocytes was studied. Saturation curves for binding of apolipoprotein E-free [125I]HDL3 showed at least two components: non-specific binding and specific binding that saturated at approximately 40 micrograms HDL protein/ml. Scatchard analysis of specific binding of apo E-free [125I]-HDL3 to cultured macrophages yielded linear plots indicative of a single class of specific binding sites. Pretreatment of [125I]HDL3 with various apolipoprotein antibodies (anti apo A-I, anti apo A-II, anti apo C-II, anti apo C-III and anti apo E) and preincubation of the cells with anti-idiotype antibodies against apo A-I and apo A-II prior to the HDL binding studies revealed apolipoprotein A-I as the ligand involved in specific binding of HDL. Cellular cholesterol accumulation via incubation with acetylated LDL led to an increase in HDL binding sites as well as an increase in the activity of the cytoplasmic cholesterol esterifying enzyme acyl-CoA:cholesterol acyltransferase (ACAT). Incubation of the cholesterol-loaded cells in the presence of various ACAT inhibitors (Sandoz 58.035, Octimibate-Nattermann, progesterone) revealed a time- and dose-dependent amplification in HDL binding and HDL-mediated cholesterol efflux. It is concluded that the homeostasis of cellular cholesterol in macrophages is regulated in part by the number of HDL binding sites and that ACAT inhibitors enhance HDL-mediated cholesterol efflux from peripheral cells.  相似文献   

16.
Phospholipid transfer protein (PLTP) transfers phospholipids between HDL and other lipoproteins in plasma. It also remodels spherical, apolipoprotein A-I (apoA-I)-containing HDL into large and small particles in a process involving the dissociation of lipid-free/lipid-poor apoA-I. ApoE is another apolipoprotein that is mostly associated with large, spherical HDL that do not contain apoA-I. Three isoforms of apoE have been identified in human plasma: apoE2, apoE3, and apoE4. This study investigates the remodeling of spherical apoE-containing HDL by PLTP and the ability of PLTP to transfer phospholipids between apoE-containing HDL and phospholipid vesicles. Spherical reconstituted high density lipoproteins (rHDL) containing apoA-I [(A-I)rHDL], apoE2 [(E2)rHDL], apoE3 [(E3)rHDL], or apoE4 [(E4)rHDL] as the sole apolipoprotein were prepared by incubating discoidal rHDL with low density lipoproteins and lecithin:cholesterol acyltransferase. PLTP remodeled the spherical, apoE-containing rHDL into large and small particles without the dissociation of apoE. The PLTP-mediated remodeling of apoE-containing rHDL was more extensive than that of (A-I)rHDL. PLTP transferred phospholipids from small unilamellar vesicles to apoE-containing rHDL in an isoform-dependent manner, but at a rate slower than that for spherical (A-I)rHDL. It is concluded that apoE enhances the capacity of PLTP to remodel HDL but reduces the ability of HDL to participate in PLTP-mediated phospholipid transfers.  相似文献   

17.
After receptor-mediated endocytosis of triglyceride-rich lipoproteins (TRL) into the liver, TRL particles are immediately disintegrated in peripheral endosomal compartments. Whereas core lipids and apoprotein B are delivered for degradation into lysosomes, TRL-derived apoE is efficiently recycled back to the plasma membrane. This is followed by apoE re-secretion and association of apoE with high density lipoproteins (HDL). Because HDL and apoE can independently promote cholesterol efflux, we investigated whether recycling of TRL-derived apoE in human hepatoma cells and fibroblasts could be linked to intracellular cholesterol transport. In this study we demonstrate that HDL(3) does not only act as an extracellular acceptor for recycled apoE but also stimulates the recycling of internalized TRL-derived apoE. Furthermore, radioactive pulse-chase experiments indicate that apoE recycling is accompanied by cholesterol efflux. Confocal imaging reveals co-localization of apoE and cholesterol in early endosome antigen 1-positive endosomes. During apoE re-secretion, HDL(3)-derived apoA-I is found in these early endosome antigen 1, cholesterol-containing endosomes. As shown by time-lapse fluorescence microscopy, apoE recycling involves the intracellular trafficking of apoA-I to pre-existing and TRL-derived apoE/cholesterol-containing endosomes in the periphery. Thus, these studies provide evidence for a new intracellular link between TRL-derived apoE, cellular cholesterol transport, and HDL metabolism.  相似文献   

18.
Macrophages synthesize and secrete apolipoprotein E (apoE) constitutively. This process is upregulated under conditions of cholesterol loading. The response to cholesterol is antiatherogenic as it is believed to promote cholesterol efflux from the artery wall. The concentration of lactosyl ceramide (LacCer), a glycosphingolipid recently discovered to regulate cellular signaling, proliferation, and expression of adhesion molecules, is also increased in atherosclerotic tissues. Here we have investigated the effect of exogenous LacCer on macrophage apoE levels. We show that increasing macrophage LacCer levels sevenfold led to reductions in cellular and secreted apoE (15 and 30%, respectively, over a 24-h period) as determined by enzyme-linked immunosorbent assay. A similar effect was also induced by glucosyl ceramide (GlcCer) but not by ganglioside species. When macrophages were converted to cholesterol-loaded foam cells by incubation with acetylated LDL, the resulting increase in cellular apoE levels was inhibited by 26% when the cells were subsequently enriched with LacCer. After metabolic labeling of cellular glycosphingolipids with [14C]palmitate, we also discovered that high-density lipoprotein (HDL) stimulates the efflux of glycosphingolipids from foam cells. These data imply that LacCer and GlcCer may be proatherogenic due to the suppression of macrophage apoE production. Furthermore, the efflux of glycosphingolipids from macrophage foam cells to HDL could indicate a potential pathway for their removal from the artery wall and subsequent delivery to the liver.  相似文献   

19.
Treatment of 125I-labelled high-density lipoprotein ([125I]HDL3) with monospecific polyclonal antibodies against apolipoproteins A-I and A-II resulted in a dose-dependent inhibition of the [125I]HDL3 binding to isolated human small intestine epithelial cells by 25% and 50%, respectively. Both antibodies also inhibited intracellular degradation of [125I]HDL3 by 80%. Treatment of enterocytes with polyclonal antibody against apolipoprotein A-I binding protein, a putative HDL receptor, inhibited both binding and degradation of [125I]HDL3 by these cells by 50%. Antibodies to apolipoprotein A-I, A-II and apo A-I-binding protein also inhibited [125I]HDL3 binding to cholesterol-loaded cells.  相似文献   

20.
The interaction of high density lipoproteins (HDL) with the HDL receptor stimulates the translocation of cholesterol from intracellular pools to the plasma membrane where the cholesterol becomes available for removal by appropriate acceptors. The role of signal transduction through protein kinase C in HDL receptor-dependent cholesterol translocation and efflux was examined using cholesterol-loaded cultured human skin fibroblasts. Treatment of cells with HDL3 activated protein kinase C, demonstrated by a transient increase in membrane associated kinase activity. Kinase activation appeared to be dependent on binding of HDL3 to the HDL receptor, since tetranitromethane-modified HDL3, which does not bind to the receptor, was without effect. Translocation of intracellular sterol to the plasma membrane was stimulated by treatment of cells with the protein kinase C activators, dioctanoylglycerol and phorbol myristic acetate, and the calcium ionophore A23187. Conversely, treatment of cells with sphingosine, a protein kinase C inhibitor, reduced HDL3-mediated translocation and efflux of intracellular sterols. However, sphingosine had no effect on efflux of labeled cholesterol derived from the plasma membrane. Down-regulation of cellular protein kinase C activity by long term incubation with phorbol esters also inhibited HDL3-mediated efflux of intracellular sterols and abolished the ability of sphingosine to further inhibit HDL3-mediated efflux. These studies support the conclusion that HDL receptor-mediated translocation and efflux of intracellular cholesterol occurs through activation of protein kinase C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号