首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclooxygenase 2 (COX-2) has been thought to be associated with liver fibrosis whereas it is well known that hepatic stellate cells (HSC) play a central role in the pathogenesis of liver fibrosis. There is little evidence of how COX-2 regulates the activation of human HSC or the mechanism involved. In this study, we investigated the effect of a COX-2 inhibitor, NS-398, on a line of human HSC, LI90. Our findings demonstrated that alpha-smooth muscle actin (alpha-SMA) protein expression was inhibited in a dose-dependent manner by treatment with NS-398. Proliferation cell nuclear antigen (PCNA) expression and cell growth were partially down-regulated. The generation of PGE2, IL-8, IL-6, and hyaluronan in the cultured medium was also inhibited. In conclusion, our findings imply that a selective COX-2 inhibitor might be a potential drug for the chemoprevention and treatment of liver fibrosis by inhibiting the activation of HSC.  相似文献   

2.
Production of arachidonic acid (AA) metabolites - prostacyclin (PGI(2)) in large vessels and prostaglandin E(2) (PGE(2)) in microcirculation is intrinsically involved in maintenance of vascular wall homeostasis. EA.hy 926 is a hybrid cell line, is derived by fusion of HUVEC with A549 cells. The aim of this study was to examine the production of prostacyclin and PGE2 in resting and IL-1beta-stimulated EA.ha 926 cells, in comparison with its progenitor cells. Non-stimulated EA.hy 926 cells has been found to produce much lower amounts of prostacyclin than resting HUVEC. Resting hybrid cells produced more PGE(2) than prostacyclin, despite they expressed high levels of COX-1 and PGI(2) synthase. On the contrary to HUVEC and A549, EA.hy 926 cells did not respond to IL-1beta with COX-2 induction and increase of prostaglandin production, however they did it in response to lysophosphatidylcholine (LPC). The characteristics of EA.hy 926 cells in terms of the pattern of prostanoid formation could facilitate studies on endothelial metabolism and role of these important lipid mediators.  相似文献   

3.
Platelet-derived growth factor (PDGF) is a biological mediator for connective tissue cells and plays a critical role in a wide variety of physiological and pathological processes. We here investigated the effect of PDGF on arachidonic acid release and prostaglandin E(2) (PGE(2)) synthesis in human gingival fibroblasts (HGF). PDGF induced arachidonic acid release in a time- and dose-dependent manner, and simultaneously induced a transient increase in intracellular Ca(2+) concentration ([Ca(2+)](i)), but less provoked PGE(2) release and cyclooxygenase-2 (COX-2) mRNA expression. When [Ca(2+)](i) was increased by Ca(2+)-mobilizing reagents, arachidonic acid release was increased. The PDGF-induced arachidonic acid release and increase in [Ca(2+)](i) were prevented by a tyrosine kinase inhibitor. On the other hand, in the HGF pre-stimulated with interleukin-1beta (IL-1beta), PDGF clearly increased PGE(2) release. The PDGF-induced PGE(2) release was inhibited by a tyrosine kinase inhibitor. In the HGF pretreated with IL-1beta, arachidonic acid strongly enhanced PGE(2) release and COX-2 mRNA expression. These results suggest that PDGF stimulates arachidonic acid release by the increase in [Ca(2+)](i) via tyrosine kinase activation, and which contributes to PGE(2) production via COX-2 expression in HGF primed with IL-1beta.  相似文献   

4.
Several studies indicate that estrogen may enhance the effects of mechanical loading on bone mineral density in elderly women. This stimulating effect of estrogen could be due to increased sensitivity of bone cells to mechanical stress in the presence of estrogen. The present study was performed to determine whether 17beta-estradiol (E2) enhances mechanical stress-induced prostaglandin production and cyclooxygenase (COX)-2 mRNA expression. We subjected bone cells from seven nonosteoporotic women between 56 and 75 yr of age for 1 h to pulsating fluid flow (PFF) in the presence or absence of 10(-11) M E2 and measured prostaglandin production and COX-1 and COX-2 mRNA expression. One hour of PFF stimulated prostaglandin (PGE2) production threefold, PGI2 production twofold, and COX-2, but not COX-1, mRNA expression 2.9-fold. Addition of E2 further enhanced PFF-stimulated PGE2 production by 1.9-fold but did not significantly affect PGI2 production or COX-2 or COX-1 mRNA expression. E2 by itself did not affect any of the parameters measured. These results suggest that estrogen modulates bone cell mechanosensitivity via the prostaglandin synthetic pathway independently of COX mRNA expression.  相似文献   

5.
Although histamine plays an essential role in inflammation, its influence on cyclooxygenases (COX) and prostanoid homeostasis is not well understood. In this study, we investigated the effects of histamine on the expression of COX-1 and COX-2 and determined their contribution to the production of PGE(2), prostacyclin (PGI(2)), and thromboxane A(2) in human coronary artery endothelial cells (HCAEC). Incubation of HCAEC monolayers with histamine resulted in marked increases in the expression of COX-2 and production of PGI(2) and PGE(2) with no significant change in the expression of COX-1. Histamine-induced increases in PGI(2) and PGE(2) production were due to increased expression and function of COX-2 because gene silencing by small interfering RNA or inhibition of the catalytic activity by a COX-2 inhibitor blocked prostanoid production. The effects of histamine on COX-2 expression and prostanoid production were mediated through H(1) receptors. In addition to the direct effect, histamine was found to amplify LPS-stimulated COX-2 expression and PGE(2) and PGI(2) production. In contrast, histamine did not stimulate thromboxane A(2) production in resting or LPS-activated HCAEC. Histamine-induced increases in the production of PGE(2) and PGI(2) were associated with increased expression of mRNA encoding PGE(2) and PGI(2) synthases. The physiological role of histamine on the regulation of COX-2 expression in the vasculature is indicated by the findings that the expression of COX-2 mRNA, but not COX-1 mRNA, was markedly reduced in the aortic tissues of histidine decarboxylase null mice. Thus, histamine plays an important role in the regulation of COX-2 expression and prostanoid homeostasis in vascular endothelium.  相似文献   

6.
7.
BACKGROUND: Cyclooxygenase 2 (COX-2) is induced by the presence of Helicobacter pylori (H. pylori) on the gastric mucosa as part of the inflammatory response; this results in the synthesis of prostaglandins that amplify the local inflammatory response. The presence of H. pylori inhibits the secretion of ascorbate into the gastric lumen. Interestingly, ascorbate inhibits the growth of H. pylori and low dietary levels are associated with an increased risk of gastric adenocarcinoma. We therefore investigated the effect of ascorbate on H. pylori mediated COX-2 induction and prostaglandin production in vitro. METHODS: H. pylori was cocultured with gastric epithelial cells in the presence of ascorbate at physiological concentrations. The expression of COX-2 was assessed by Western blotting and prostaglandin E(2) (PGE(2)) was assessed by ELISA. RESULTS: Ascorbate inhibited gastric cell PGE(2) synthesis but not in COX-2 expression in response to H. pylori. In the absence of the organism, ascorbate also reduced PGE(2) expression in cells that constitutively express COX-2, again with no reduction of COX-2 protein expression. CONCLUSIONS: Physiological concentrations of ascorbate inhibit PGE(2) but not COX-2 expression in response to H. pylori in gastric epithelial cells.  相似文献   

8.
We investigated possible involvement of three isozymes of prostaglandin E synthase (PGES), microsomal PGES-1 (mPGES-1), mPGES-2 and cytosolic PGES (cPGES) in COX-2-dependent prostaglandin E(2) (PGE(2)) formation following proteinase-activated receptor-2 (PAR2) stimulation in human lung epithelial cells. PAR2 stimulation up-regulated mPGES-1 as well as COX-2, but not mPGES-2 or cPGES, leading to PGE(2) formation. The PAR2-triggered up-regulation of mPGES-1 was suppressed by inhibitors of COX-1, cytosolic phospholipase A(2) (cPLA(2)) and MEK, but not COX-2. Finally, a selective inhibitor of mPGES-1 strongly suppressed the PAR2-evoked PGE(2) formation. PAR2 thus appears to trigger specific up-regulation of mPGES-1 that is dependent on prostanoids formed via the MEK/ERK/cPLA(2)/COX-1 pathway, being critical for PGE(2) formation.  相似文献   

9.
Roles of prostaglandin synthesis in excitotoxic brain diseases   总被引:2,自引:0,他引:2  
Cyclooxygenase (COX) is a rate-limiting enzyme in prostaglandin synthesis. COX consists of two isoforms, constitutive COX-1 and inducible COX-2. We have first found that COX-2 expression in the brain is tightly regulated by neuronal activity under physiological conditions, and electroconvulsive seizure robustly induces COX-2 mRNA in the brain. Our recent in-depth studies reveal COX-2 expression is divided into two phases, early in neurons and late in non-neuronal cells, such as endothelial cells or astrocytes. In this review, we present that early synthesized COX-2 facilitates the recurrence of hippocampal seizures in rapid kindling model, and late induced COX-2 stimulates hippocampal neuron loss after kainic acid treatment. Hence, we consider the potential role of COX-2 inhibitors as a new therapeutic drug for a neuronal loss after seizure or focal cerebral ischemia. The short-term and sub-acute medication of selective COX-2 inhibitors that suppresses an elevation of prostaglandin E(2) (PGE(2)) may be an effective treatment to prevent neuronal loss after onset of neuronal excitatory diseases. This review also discusses a novel role of vascular endothelial cells in brain diseases. We found that these cells produce PGE(2) by synthesizing COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) in response to excitotoxicity and neuroinflammation. We also show a possible mechanisms of neuronal damage associated with seizure via astrocytes and endothelial cells. Further analysis of the interaction among neurons, astrocytes and endothelial cells may provide a better understanding of the processes of neuropathological disorders, as well as facilitating the development of new treatments.  相似文献   

10.
Microsomal prostaglandin E synthase (mPGES)-1, which is dramatically induced in macrophages by inflammatory stimuli such as lipopolysaccharide (LPS), catalyzes the conversion of cyclooxygenase-2 (COX-2) reaction product prostaglandin H(2) (PGH(2)) into prostaglandin E(2) (PGE(2)). The mPGES-1-derived PGE(2) is thought to help regulate inflammatory responses. On the other hand, excess PGE(2) derived from mPGES-1 contributes to the development of inflammatory diseases such as arthritis and inflammatory pain. Here, we examined the effects of liver X receptor (LXR) ligands on LPS-induced mPGES-1 expression in murine peritoneal macrophages. The LXR ligands 22(R)-hydroxycholesterol (22R-HC) and T0901317 reduced LPS-induced expression of mPGES-1 mRNA and mPGES-1 protein as well as that of COX-2 protein. However, LXR ligands did not influence the expression of microsomal PGES-2 (mPGES-2) or cytosolic PGES (cPGES) protein. Consequently, LXR ligands suppressed the production of PGE(2) in macrophages. These results suggest that LXR ligands diminish PGE(2) production by inhibiting the LPS-induced gene expression of the COX-2-mPGES-1 axis in LPS-activated macrophages.  相似文献   

11.
4',5,7-Trihydroxy-3',5'-dimethoxyflavone (Tricin), a naturally occurring flavone, has anti-inflammatory potential and exhibits diverse biological activities including antigrowth activity in several human cancer cell lines and cancer chemopreventive effects in the gastrointestinal tract of mice. The present study aimed to investigate the biological actions of tricin on hepatic stellate cells (HSCs) in vitro, exploring its potential as a treatment of liver fibrosis, since HSC proliferation is closely related to the progression of hepatic fibrogenesis in chronic liver diseases leading to irreversible liver cirrhosis and hepatocellular carcinoma. Tricin inhibited platelet-derived growth factor (PDGF)-BB-induced cell proliferation by blocking cell cycle progression and cell migration in the human HSC line LI90 and culture-activated HSCs. It also reduced the phosphorylation of PDGF receptor β and the downstream signaling molecules ERK1/2 and Akt, which might be due to its tyrosine kinase inhibitor properties rather than inhibition of the direct binding between PDGF-BB and its receptor. Our findings suggest that tricin might be beneficial in HSC-targeting therapeutic or chemopreventive applications for hepatic fibrosis.  相似文献   

12.
The hyperalgesic effects of prostacyclin and prostaglandin E2.   总被引:13,自引:0,他引:13  
Hyperalgesia induced in rat paws or dog knee joints by prostacyclin (PGI2) and prostaglandin E2 was measured by a modification of the Randall-Selitto method (1) or by the degree of incapacitation (2). In both species PGI2 induced an immediate hyperalgesic effect but the effect of PGE2 had a longer latency. Low doses of PGI2 caused a short lasting effect but PGE2, large doses of PGI2 or successive administration of small doses of PGI2 caused a long lasting effect. It is suggested that prostacyclin mediates rat paw hyperalgesia induced by carrageenin. The long lasting hyperalgesic effect of PGE2 and high doses of PGI2 is possibly an indirect effect caused by stimulation of a sensory nerve sensitising mechanism.  相似文献   

13.
Cyclooxygenase-1 is the primary isoform responsible for the production of cytoprotective prostaglandins (PGE(2) and PGI(2)) in the stomach. In contrast COX-2 is induced at the sites of inflammation. Using Helicobacter pylori infection as a model of inflammation, this study was designed to evaluate the effects of H. pylori infection on prostanoid synthesis and expression of COX-2 in human gastric mucosa.Prostaglandin (PGE(2)) and prostacyclin (PGI(2)) synthesis in gastric biopsies obtained from 21 patients undergoing diagnostic endoscopy, were determined. H. pylori was detected by CLO test, histology and culture. Biopsy samples were incubated either with NS-398, selective COX-2 inhibitor or aspirin. Samples were also treated with endotoxin (LPS) in order to induce COX-2 expression. Tissue was also analysed for COX-2 expression in vivo by immunohistochemistry.In 15 out of 21 patients, H. pylori was detected by at least two of the three methods. Higher levels of PGE(2) and PGI(2) were seen in patients infected with H. pylori (191+/-30 and 245+/-88ng/mg protein, respectively) compared with non-infected patients (77+/-17 and 120+/-36ng/mg protein, respectively). There was significant inhibition of PGE(2) and PGI(2) with aspirin in both H. pylori infected (28+/-6.6 and 53+/-43ng/mg, respectively) and in non-infected patients (16+/-7 and 12.5+/-3.5ng/mg protein, respectively). However, NS-398 and LPS did not alter prostaglandin function significantly. Immunohistochemistry in all patients irrespective of Hp status demonstrated expression of COX-2.Lower concentration of constitutive expression of COX-2 was detected in human gastric mucosa by immunohistochemistry, however, H. pylori infection failed to induce COX-2 protein. In addition, increased prostaglandin synthesis in Hp-infected patients appears to be COX-1 mediated rather than COX-2. Furthermore, failure of endotoxaemia-treated sample to produce more PGE(2) in the face of enhanced COX-2 expression in gastric mucosa further suggests that increased prostanoids in human gastric stomach are COX-1 mediated.  相似文献   

14.
Although large amounts of epidermal growth factor (EGF) are found in the synovial fluids of arthritic cartilage, the role of EGF in arthritis is not clearly understood. This study investigated the effect of EGF on differentiation and on inflammatory responses such as cyclooxygenase-2 (COX-2) expression and prostaglandin E(2) (PGE(2)) production in articular chondrocytes. EGF caused a loss of differentiated chondrocyte phenotype as demonstrated by inhibition of type II collagen expression and proteoglycan synthesis. EGF also induced COX-2 expression and PGE(2) production. EGF-induced dedifferentiation was caused by EGF receptor-mediated activation of extracellular signal-regulated protein kinases 1 and 2 (ERK1/2) but not p38 kinase, whereas the activation of both ERK1/2 and p38 kinase was necessary for COX-2 expression and PGE(2) production. Neither the inhibition of COX-2 expression and PGE(2) production nor the addition of exogenous PGE(2) affected EGF-induced dedifferentiation. However, COX-2 expression and PGE(2) production were significantly enhanced in chondrocytes that were dedifferentiated by serial subculture, and EGF also potentiated COX-2 expression and PGE(2) production, although these cells were less sensitive to EGF. Dedifferentiation-induced COX-2 expression and PGE(2) production were mediated by ERK1/2 and p38 kinase signaling. Our results indicate that EGF in articular chondrocytes stimulates COX-2 expression and PGE(2) production via ERK and p38 kinase signaling in association with differentiation status.  相似文献   

15.
Experimental amoebic liver abscess in hamsters curses with an increase in both, systemic levels of prostaglandin E2 (PGE(2)) and local cyclooxygenase activity in liver microsomes. The cellular source of PGE(2) and the isoform of cyclooxygenase responsible are not completely evidenced. Cyclooxygenase-2 (COX-2) protein and gene expression were demonstrated on macrophages and polymorphonuclear cells as a result of Entamoeba histolytica infection in hamsters at 2, 4, and 7 days postinfection by immunohistochemistry and RT-PCR. E. histolytica trophozoites located in the lesion showed a strong positive signal for COX-2, however the enzyme was not detected in cultured trophozoites by Western blot. Our results indicate that the increment in PGE(2) is the result of COX-2 activity from cells of the reticuloendothelial system and reinforce the possibility that PGE(2) production by enzyme induction in macrophages may be a mechanism by which E. histolytica modulates the host immune response in this parasitic infection.  相似文献   

16.
In the present study, the roles of telomerase and prostaglandin E(2) (PGE(2)) in platelet-derived growth factor (PDGF's) and fibroblast growth factor-2 (FGF-2's) effects against C(2)-ceramide-induced cell death were investigated. C(2)-ceramide reduced the viability of NIH3T3 cells in a condition without calf serum (CS) in accordance with decreasing telomerase activity according to the TRAP assay. The addition of CS significantly protected cells from C(2)-ceramide-induced apoptosis through increased telomerase activity, and the phosphorylations of PDGF and the FGF-2-like receptor in NIH3T3 cells were detected. Adding PDGF and FGF-2 decreased the cytotoxic effect elicited by C(2)-ceramide through stimulating telomerase activity, which was blocked by adding a telomerase inhibitor (TI). Activations of ERKs and JNKs were detected in PDGF- and FGF-2-treated NIH3T3 cells, and the telomerase activities induced by PDGF and FGF were respectively inhibited by the addition of the ERK inhibitor, PD98059, and the JNK inhibitor, SP600125. Accordingly, induction of cyclooxygenase-2 (COX-2) protein expression and PGE(2) production was detected in PDGF- and FGF-2-treated NIH3T3 cells, and the telomerase activities stimulated by PDGF and FGF were reduced by adding a specific COX-2 inhibitor, NS398, through a decrease in PGE(2) production. Incubation of cells with PGE(2) or the EP1 agonist, 17-PT, but not the EP2 agonist, sulprostone, the EP3 agonist, butaprost, or the EP4 agonist, PGE(1) alcohol, significantly enhanced the telomerase activity of NIH3T3 cells. PGE(2) protection of NIH3T3 cells against C(2)-ceramide-induced cell death was identified by the MTT and LDH-release assays, and it was inhibited by adding the EP1 antagonist, SC-19220. Ceramide metabolites including ceramide-1-phosphate (C1P) and sphingosine-1-phosphate (S1P), and a standard control of exogenous ceramide C(2)-dihydroceramide show no effect on the telomerase activity and viability of NIH3T3 cells. The involvement of COX-2/PGE(2)-mediated telomerase activation by PDGF and FGF-2 against C(2)-ceramide-induced cell death is first demonstrated herein.  相似文献   

17.
The regulation of PGE2 (prostaglandin E2) and PGI2 (prostaglandin I2; prostacyclin) formation was investigated in isolated adipocytes. The formation of both PGs was stimulated by various lipolytic agents such as isoproterenol, adrenaline and dibutyryl cyclic AMP. During maximal stimulation the production of PGE2 and PGI2 (measured as 6-oxo-PGF1 alpha) was 0.51 +/- 0.04 and 1.21 +/- 0.09 ng/2 h per 10(6) cells respectively. Thus PGI2 was produced in excess of PGE2 in rat adipocytes. The production of the PGs was inhibited by indomethacin and acetylsalicylic acid in a concentration-dependent manner. The half-maximal effective concentration of indomethacin was 328 +/- 38 nM and that of acetylsalicylic acid was 38.5 +/- 5.3 microM. The PGs were maximally inhibited by 70-75% after incubation for 2 h. In contrast with their effect on PG production, the two agents had a small potentiating effect on the stimulated lipolysis (P less than 0.05). The phospholipase inhibitors mepacrine and chloroquine inhibited both PG production and triacylglycerol lipolysis and were therefore unable to indicate whether the PG precursor, arachidonic acid, originates from phospholipids or triacylglycerols in adipocytes. Angiotensin II significantly (P less than 0.05) stimulated both PGE2 and PGI2 production in rat adipocytes without affecting triacylglycerol lipolysis. Finally, it was shown that PGE2 and PGI2 were also produced in human adipocytes, although in smaller quantities than in rat adipocytes. It is concluded that the production of PGs in isolated adipocytes is regulated by various hormones. Moreover, at least two separate mechanisms for PG production may exist in adipocytes: (1) a mechanism that is activated concomitantly with triacylglycerol lipolysis (and cyclic AMP) and (2) an angiotensin II-sensitive, but lipolysis (and cyclic AMP)-independent mechanism.  相似文献   

18.
This study was designed to investigate the effect of IL-1alpha-induced up-regulation of cyclooxygenase-2 (COX-2) on prostaglandin E(2) (PGE(2)) secretion and the subsequent phenotypic effects of PGE(2) on epithelial cells. The effect of IL-1alpha on COX-2 expression was investigated in the T24 bladder epithelial cell line following treatment with 0, 0.05, 0.5, 1 or 10 ng/ml IL-1alpha for 1, 2, 4 or 6 h. Quantitative PCR confirmed up-regulation of expression of COX-2 with maximal expression observed following treatment with 0.5 ng/ml IL-1alpha for 1 h. Co-treatment of the cells with 0.5 ng/ml IL-1alpha in the presence or absence of 100 ng/ml IL-1 receptor antagonist (RA) abolished the up-regulation in COX-2 expression confirming that the effect of IL-1alpha is mediated via its membrane-bound receptors. Treatment with 0.5 ng/ml IL-1alpha resulted in a time-dependent increase in PGE(2) secretion with maximal secretion detected at 24 and 48 h after stimulation with IL-1alpha. Co-treatment of the cells with IL-1alpha and IL-1RA or the COX-2 enzyme inhibitor NS398 abolished the IL-1alpha mediated secretion of PGE(2). Treatment of T24 cells with 100 nM PGE(2) resulted in a significant elevation in cAMP generation confirming the expression of functional PGE(2) receptors. Finally, the effect of exogenous treatment with PGE(2) on apoptosis of T24 cells was assessed using cell death detection ELISA. T24 cells were treated with camptothecin to induce apoptosis in the presence or absence of 50 or 100 nM PGE(2) or 10 microM forskolin. Treatment of T24 cells with increasing doses of camptothecin alone resulted in a significant increase in the induction of apoptosis (P<0.01). However, co-treatment of the cells with 50 or 100 nM PGE(2) or 10 microM forskolin resulted in the inhibition of induction of the apoptotic pathway by camptothecin. These data demonstrate that PGE(2) inhibits apoptosis of epithelial cells possibly via cAMP-dependent pathway.  相似文献   

19.
In this paper, we have determined the effect of both muscarinic acetylcholine receptor (mAChR) and exogenous prostaglandin E(2) (PGE(2)) on PGE(2) production and cyclooxygenases (COX) mRNA gene expression on rat cerebral frontal cortex. Carbachol and PGE(2) increase endogenous PGE(2) production and the COX-1 mRNA levels by activation of PLA(2)s. The COX-1 and COX-2 activity participated in the production of PGE(2) triggered by exogenous PGE(2). While in carbachol-PGE(2) only COX-1 activity is affected. The specific inhibition of PGE(2) receptor was able to impair the increase of endogenous PGE(2) production triggered by both carbachol and exogenous PGE(2). These results suggest that carbachol-activation mAChR increased PGE(2) production that in turn interacting with its own receptor triggers an additional production of PGE(2). Both mechanisms appear to occur by using PLA(2) signaling system. This data should be able to contribute to understand the involvement of PGE(2) in normal brain function and its participation in neuroinflammatory processes.  相似文献   

20.
Cyclooxygenase-2 (COX-2) is an inducible enzyme and serves as a source of paracrine prostaglandin E2 (PGE2) formation in many tissues. In glomerular immune injury COX-2 formation is up-regulated in association with increased mesangial cell growth. To examine whether COX-2 exerts growth modulating effects on glomerular cells, we established two separate COX-2-overexpressing mesangial cell lines (COX-2+) and assessed their proliferative response to the potent mesangial cell growth-promoting factor, platelet-derived growth factor (PDGF). PDGF increased proliferation in mock-transfected cells. In contrast, PDGF did not induce proliferation in COX-2+ cells. Our results also showed that the tumor suppressor protein p53 and the cyclin-dependent kinase inhibitors p21(cip-1) and p27(kip-1) were up-regulated in COX-2+ cells de novo as well as under PDGF-stimulated conditions. To study whether COX-2 products are required for these effects, COX-2+ cells were treated with indomethacin (1 microg/ml) or NS-398 (3 microm). Unexpectedly, both COX inhibitors had no significant effect on cell proliferation, not on the protein levels of p53, p21(cip-1), or p27(kip-1). To evaluate the role of p21(cip-1) and p27(kip-1), COX-2 was overexpressed in mesangial cells derived from p21(cip-1) (p21-/- COX-2+) and p27(kip-1) (p27-/- COX-2+) null mice. In contrast to the wild type COX-2+ cells, p21-/- COX-2+ and p27-/- COX-2+ cells proliferated in response to PDGF. These data suggest that COX-2 inhibits mesangial cell proliferation by a novel mechanism that is independent of prostaglandin synthesis, but involves p53, p21(cip-1), and p27(kip-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号