首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Respiratory sinus arrhythmia (RSA) is related to cardiac vagal outflow and the respiratory pattern. Prior infant studies have not systematically examined respiration rate and tidal volume influences on infant RSA or the extent to which infants'' breathing is too fast to extract a valid RSA. We therefore monitored cardiac activity, respiration, and physical activity in 23 six-month old infants during a standardized laboratory stressor protocol. On average, 12.6% (range 0–58.2%) of analyzed breaths were too short for RSA extraction. Higher respiration rate was associated with lower RSA amplitude in most infants, and lower tidal volume was associated with lower RSA amplitude in some infants. RSA amplitude corrected for respiration rate and tidal volume influences showed theoretically expected strong reductions during stress, whereas performance of uncorrected RSA was less consistent. We conclude that stress-induced changes of peak-valley RSA and effects of variations in breathing patterns on RSA can be determined for a representative percentage of infant breaths. As expected, breathing substantially affects infant RSA and needs to be considered in studies of infant psychophysiology.  相似文献   

2.
The calcium channel blocker, verapamil (0.1-1.0 mg/kg, i.v.) was administered to anesthetized rats to determine its effects on ventilation and on ventilatory responses to hypoxia and CO2. Verapamil produced a dose-dependent increase in tidal volume (VT) and a decrease in respiration rate (f). The bradypnea due to verapamil was characterized by an increase in expiratory duration (TE) and no change of inspiratory duration (TI). Verapamil produced similar changes in VT and f in vagotomized rats. The increase in respiration rate and minute volume due to hypoxia were inhibited by verapamil (0.5 and 1.0 mg/kg) but the increase in tidal volume due to hypoxia was depressed only with the 1.0 mg/kg dose. On the other hand, the increase in VT due to breathing CO2 was not changed by verapamil (0.1-1.0 mg/kg), but depression of the respiratory frequency response to CO2 occurred with 1.0 mg/kg of verapamil. These results indicate that verapamil produced slow, deep breathing and these responses were not mediated by vagal mechanisms. Ventilatory responses to hypoxia were depressed by verapamil. However, since the calcium blocker demonstrated no effect on the VT-CO2 relationship, verapamil did not change ventilatory chemosensitivity to CO2. The data also suggest that mechanisms governing the control of respiratory frequency are more sensitive to verapamil than tidal volume responses.  相似文献   

3.
The goal of the research was to determine the characteristics of the breathing pattern in kettlebell lifters. The following main indicators of external respiration were recorded during exercise performance: respiratory rate (RR, f), tidal volume (TV, V T ), and respiratory minute volume (RMV, V E ). The dependence of these parameters on the qualification of athletes and competitive exercise intensity was estimated. An SMP-21/01-“R-D” spirograph was used for qualitative and quantitative assessment of the main indicators of breathing patterns in kettlebell lifters. The characteristic changes in breathing of masters of sports (MS) and candidate masters of sport (CMS) were shown mainly for the three parameters, respiratory rate and tidal volume, as well as in the number of breathing cycles per cycle of exercise. Respiratory rate increases and tidal volume decreases at a high-intensity exercise. In international masters of sports (MSIC), the number of breathing cycles per cycle of competitive exercise and, consequently, respiratory rate remain constant independent of physical load. They show the predominance of only one index, tidal volume, which increases from 0.7 ± 0.1 L to 1.2 ± 0.1 L (p < 0.01) with increasing intensity of exercise. We have found transitional forms of breathing patterns in the competitive exercises of kettlebell lifting. The results lay the basis for the development of a novel concept of training and improvement of breathing technique in kettlebell lifting.  相似文献   

4.
The pattern of breathing following the breaking-point of sixty breath-holds has been studied in five healthy adults and compared with the pattern during recovery from CO2-rebreathing. The volume and direction of the first respiratory movement, and the VT, V relation for the first four complete breaths was measured. Only when breath-holds were terminated with an inspiration was the accumulated drive to breathe reflected in an increased volume of the first respiratory movement: terminating expirations simply returned the chest to the resting respiratory level. The volume of the first inspiration was not influenced by the intervention of a terminating expiration, suggesting that expiratory movements do not dissipate the non-chemical component of the drive to breathe. In three of the five subjects the tidal volumes for given levels of ventilation were greater following breath-holding than following rebreathing. This altered pattern of breathing has been interpreted in terms of an insiratory-augmenting reflex.  相似文献   

5.
The study was carried out on 17 healthy males aged 20-27 years subjected for 15 minutes to submaximal effort on a cycle ergometer (Elema-Schonander) under conditions of breathing ambient atmospheric air or a helium-oxygen mixture (20% O2 + 80% He) and under hypobaric pressure simulating an altitude of 3500 m above sea level. During the experiment the heart rate was recorded with ECG, and determinations were performed of the minute volume, respiratory rate, tidal volume and systolic arterial blood pressure. In the serum of venous blood obtained before and 3 minutes after the exercise the concentrations were measured of lactate (LA), pyruvate (PA) and glucose. High-altitude hypoxia caused unifavourable changes in the adaptation to effort manifesting themselves as an increase of the values of the determined physiological and biochemical indices. On the other hand, favourable changes were observed of the reaction to exercise while the subjects were breathing the helium-oxygen mixture during high-altitude hypoxia. The minute volume increased owing to increased tidal volume, and the exercise-induced rise of lactate (LA), pyruvate (PA) and the LA/PA ratio was lower. This may suggest reduced energy cost of respiration and reduced anaerobic metabolism under these conditions.  相似文献   

6.
First-breath ventilatory responses to graded elastic and resistive loads were obtained from 15 people with Duchenne muscular dystrophy (DMD), 5 people with facioscapulohumeral MD (FSH), 3 people with Becker MD, and 3 people with limb-girdle MD. For each load tidal volumes from different individuals ranged from relatively small to comparatively large values, indicating a correspondingly wide range of end-inspiratory efforts; strong tidal volume defenders generally employed longer inspirations and higher mean inspiratory airflows than did weak tidal volume defenders; and individual frequency responses were mediated by changes in inspiratory and/or expiratory timing. Thus the loaded breathing responses of people with MD are qualitatively the same as those of quadriplegic and able-bodied people. Quantitatively, however, the DMD group generated considerably larger tidal volumes than did the FSH group during both elastic and resistive loading. These larger tidal volumes were achieved by both longer inspirations (a neurally mediated phenomenon) and higher mean inspiratory airflows (a mechanically and/or neurally mediated phenomenon). These findings, which could not be attributed to differences in respiratory motor function, suggest that there are differences between the respiratory sensory and/or central functions in the Duchenne and facioscapulohumeral types of MD.  相似文献   

7.
In this study, we attempted to determine the role of GABA neurotransmission in augmentation of hypoxic respiration by antecedent hyperoxic breathing. The experiments were performed in anesthetized, paralyzed and vagotomized cats divided into control and bicuculline (a GABAA receptor blocker)-injected groups. The experimental protocol consisted of exposing the animals to successive hypoxic-hyperoxic-hypoxic conditions. Respiration was assessed using phrenic electroneurograms, from which the peak phrenic height, a surrogate of the tidal volume component, and respiratory rate were obtained, and their product, the respiratory minute output, was calculated. We found that prior hyperoxic ventilation increased the subsequent respiratory response to hypoxia by an average of 23.5%, compared with the preoxygen response. This increase was driven by volume respiration. The biphasic character of the hypoxic respiratory response, consisting of stimulatory and depressant phases, was sustained. Bicuculline abolished the augmentative effect on hypoxic respiration of prior hyperoxia, which suggests that oxygenation induces GABAA-mediated hyperexcitability of respiratory neurons, possibly by the liberation of reactive oxygen species. We concluded that GABA neurotransmission is pertinent to the effect of hyperoxia on hypoxic respiratory reactivity.  相似文献   

8.
The relative importance of the nose vs. the mouth in the perception of respiratory volumes has never been assessed, nor have previous respiratory perception studies been performed noninvasively. Using respiratory inductive plethysmography, we monitored 12 normal subjects noninvasively when breathing either exclusively through the nose or mouth. The sensation of inspired volume mouth breathing was compared with that of nose breathing over a wide range of the inspiratory capacity. The psychophysical techniques of tidal volume duplication, tidal volume doubling, and magnitude estimation were utilized. A just noticeable difference was calculated from the constant error of the tidal volume duplication trials. The exponents for magnitude estimation were 1.06 and 1.07 for nose and mouth breathing, respectively. The other psychophysical techniques also revealed no differences in nose and mouth volume perception. These results suggest that tidal volume changes are perceived equally well through the nose and mouth. Furthermore, the location of the receptors, important in volume perception, is probably at a distal point common to the nose and mouth.  相似文献   

9.
Respiratory sinus arrhythmia (RSA) may be associated with improved efficiency of pulmonary gas exchange by matching ventilation to perfusion within each respiratory cycle. Respiration rate, tidal volume, minute ventilation (.VE), exhaled carbon dioxide (.VCO(2)), oxygen consumption (.VO(2)), and heart rate were measured in 10 healthy human volunteers during paced breathing to test the hypothesis that RSA contributes to pulmonary gas exchange efficiency. Cross-spectral analysis of heart rate and respiration was computed to calculate RSA and the coherence and phase between these variables. Pulmonary gas exchange efficiency was measured as the average ventilatory equivalent of CO(2) (.VE/.VCO(2)) and O(2) (.VE/.VO(2)). Across subjects and paced breathing periods, RSA was significantly associated with CO(2) (partial r = -0.53, P = 0.002) and O(2) (partial r = -0.49, P = 0.005) exchange efficiency after controlling for the effects of age, respiration rate, tidal volume, and average heart rate. Phase between heart rate and respiration was significantly associated with CO(2) exchange efficiency (partial r = 0.40, P = 0.03). These results are consistent with previous studies and further support the theory that RSA may improve the efficiency of pulmonary gas exchange.  相似文献   

10.
The effects of anxiety on the external respiration system and respiratory sinus arrhythmia (RSA) were studied in healthy subjects in real-life conditions. Changes in external respiration parameters and heart rate variability (HRV) in students going to take their end-of-term exams were assessed relative to a midterm period, and the cardiorespiratory system was monitored in a longitudinal study for 50 days. The function of the cardiorespiratory system was characterized by measuring external respiration parameters and calculating HRV parameters. State anxiety (SA) was assessed using Spielberger’s scale. An increase in SA before an exam was accompanied by a higher breathing rate, a higher tidal volume, and lower HRV indices, especially those related to respiratory sinus arrhythmia (HF and HF norm). The changes in the parameters depended on the increase in SA. A negative correlation was observed between midterm HF and pre-exam SA. The longitudinal study revealed a distinct negative correlation between respiratory sinus arrhythmia parameters and peak expiratory flow (PEF) and a positive correlation between SA and PEF in the majority of subjects. Changes in cardiorespiratory parameters depended on the changes in SA in the longitudinal study. An increase in SA was accompanied by substantial changes in respiratory sinus arrhythmia (RAS) and external respiration parameters, and their correlation was assumed to indicate that modification of parasympathetic activity plays a leading role in increasing PEF.  相似文献   

11.
An important feature of olfactory perception is its dependence on respiratory activity. By inspiration, olfactory information ascends directly to olfactory-related limbic structures. Therefore, every breath with odor molecules activates these limbic areas associated with emotional experience and memory retrieval. We tested whether odors associated with autobiographical memories can trigger pleasant emotional experiences and whether respiration changes during stimulation with these odors. During presentation of odors related to autobiographical memories and control odors, we measured minute ventilation, tidal volume, respiratory frequency, O2 consumption, and end tidal CO2 concentration. Findings showed that autobiographical memory retrieval was associated with increasing tidal volume and decreasing respiratory frequency more than during presentation of control odors. Subjective feelings such as emotional arousal during retrieval of the memory, arousal level of the memory itself, or pleasantness and familiarity toward the odor evoked by autobiographical memory were more specific emotional responses compared with those related to control odors. In addition, high trait anxiety subjects responded with a stronger feeling of being taken back in time and had high arousal levels with tidal volume increases. We discussed assumptions regarding how deep and slow breathing is related to pleasantness and comfortableness of an autobiographical memory.  相似文献   

12.
Controlled slow breathing (at 6/min, a rate frequently adopted during yoga practice) can benefit cardiovascular function, including responses to hypoxia. We tested the neural substrates of cardiorespiratory control in humans during volitional controlled breathing and hypoxic challenge using functional magnetic resonance imaging (fMRI). Twenty healthy volunteers were scanned during paced (slow and normal rate) breathing and during spontaneous breathing of normoxic and hypoxic (13% inspired O2) air. Cardiovascular and respiratory measures were acquired concurrently, including beat-to-beat blood pressure from a subset of participants (N = 7). Slow breathing was associated with increased tidal ventilatory volume. Induced hypoxia raised heart rate and suppressed heart rate variability. Within the brain, slow breathing activated dorsal pons, periaqueductal grey matter, cerebellum, hypothalamus, thalamus and lateral and anterior insular cortices. Blocks of hypoxia activated mid pons, bilateral amygdalae, anterior insular and occipitotemporal cortices. Interaction between slow breathing and hypoxia was expressed in ventral striatal and frontal polar activity. Across conditions, within brainstem, dorsal medullary and pontine activity correlated with tidal volume and inversely with heart rate. Activity in rostroventral medulla correlated with beat-to-beat blood pressure and heart rate variability. Widespread insula and striatal activity tracked decreases in heart rate, while subregions of insular cortex correlated with momentary increases in tidal volume. Our findings define slow breathing effects on central and cardiovascular responses to hypoxic challenge. They highlight the recruitment of discrete brainstem nuclei to cardiorespiratory control, and the engagement of corticostriatal circuitry in support of physiological responses that accompany breathing regulation during hypoxic challenge.  相似文献   

13.
The ventilatory and cardiovascular effects of i.v. administration of the respiratory stimulants etamiphylline and almitrine were investigated in conscious or decerebrate adult female domestic fowl. Infusion of etamiphylline (100 mg . kg-1) or injection of almitrine (2 mg . kg-1) evoked a potent long-lasting stimulation of ventilation in both conscious and decerebrate fowl. The pattern of the respiratory response was characteristically different to that observed in mammals in that the increased minute volume of ventilation was attained by large increases in respiratory frequency accompanied by a reduction in tidal volume. The pattern of respiration following drug-induced stimulation was, in some birds, typical of thermal panting although neither etamiphylline nor almitrine caused significant increases in body temperature. Differences in the pattern of responses of the rate and depth of breathing may be attributed in part to the differences in pulmonary receptor systems involved in the control of breathing in birds and mammals.  相似文献   

14.
Eight healthy male animals were inducted and kept for 2 1/2 years at 3 650 m altitude and subjected to normal work schedules. Physiological measurements viz. heart rate, blood pressure, minute ventilation, oxygen consumption, respiration rate, hemoglobin, packed cell haematocrit volume and eosinophil count were made on these animals at periodic intervals. On acute induction to an altitude of 3 650 m these animals demonstrated a sudden increase in tidal volume, a decrease in Rf and no change in VE, suggesting a decreased dead space/tidal volume ratio at altitude.However, all these changes stabilised within 3 weeks but on prolongation of stay, the physical state of these animals was adversely affected. The respiratory adjustments occurring on return to sea level appear to be a response to thermal stress. The initial increase in heart rate and blood pressure stabilised by the 2nd week.  相似文献   

15.
Inhibition of breathing associated with gallbladder stimulation in dogs   总被引:2,自引:0,他引:2  
The effect of mechanical stimulation of the gallbladder on breathing was studied in anesthetized spontaneously breathing dogs. Measurements of tidal volume, breathing frequency, rib cage and abdominal diameter, transdiaphragmatic pressure, and electrical activity of the diaphragm were made while traction or compression was applied to the gallbladder for periods of 30 s. Both forms of mechanical stimulation produced similar changes, including large decreases in tidal volume, respiratory rate, electrical activity of the diaphragm, and transdiaphragmatic pressure swings. Inspiratory rib cage expansion was little affected, but abdominal expansion was greatly reduced, and swings in gastric pressure were reduced more than swings in pleural pressure, indicating a selective decrease in diaphragmatic activity. Recovery of all measured parameters returned toward control values, despite continued traction or compression. Some inhibition persisted after the stimulus was withdrawn. The very brief interval between stimulus and response suggested that the mechanism was a neural reflex. The afferents involved are unknown but are not purely vagal in nature, since qualitatively similar results were seen in animals after vagotomy. The alteration in breathing frequency indicates that at least part of the reflex is supraspinally mediated. The change in pattern of breathing closely resembles that seen in subjects after abdominal surgery and supports the theory that reflex inhibition of breathing contributes to postoperative pulmonary complications seen in those subjects.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) was administered intracerebroventricularly and it's effects on respiration were evaluated in the alpha-chloralose anesthetized cat. Respiratory activity was measured using a Fleisch pneumotachograph to monitor tracheal airflow. TRH (0.28-28 nmol) caused an elevation in respiratory minute volume which was due to an increase in respiratory rate with no effect on tidal volume. The site of TRH-induced tachypnea was in the hindbrain as both injections into the cisterna magna and the fourth ventricle produced similar effects. No changes in respiratory activity were seen when TRH injection was restricted to the lateral and third ventricles (forebrain). Furthermore, systemic administration of TRH (28 nmol) produced no significant respiratory effects. The active analogue, [3-Me-His2]-TRH (2.7 nmol) produced the same respiratory effects as TRH. The inactive analogue, TRH free acid (28-280 nmol), caused no significant change in respiratory activity. The data suggest that TRH interacts with a specific receptor in the hindbrain of the cat to affect respiration.  相似文献   

17.
We studied the influence of mastication on respiratory activity in nine healthy volunteers who were requested to masticate a 5-g chewing gum bolus at a spontaneous rate (SR) for 5 min and "at the maximum possible rate" (MPR) for 1 min. Significant increases in respiratory frequency were induced by SR mastication due to a decrease in both the inspiratory and expiratory time. Tidal volume displayed slight nonsignificant decreases, but minute ventilation and mean inspiratory flow significantly increased. The duty cycle (TI/TT) did not change significantly. Total airway resistance significantly increased. Both peak and rate of rise of the integrated electromyographic activity of inspiratory muscles presented marked increases, accompanied by the appearance of a low level of tonic muscular activity. Similar but more intense effects on respiratory activity were induced by MPR mastication; in addition, a significant decrease in tidal volume and a significant increase in TI/TT were observed. Rhythmic handgrip exercise performed at metabolic rates comparable to those attained during SR or MPR mastication induced similar changes in the drive and time components of the breathing pattern, although accompanied respectively by nonsignificant or significant increases in tidal volume. Furthermore, the frequency of SR mastication significantly entrained the respiratory rhythm. The results suggest that mastication-induced hyperpnea does not merely represent a ventilatory response to exercise but also reflects complex interactions between respiratory and nonrespiratory functions of the upper airway and chest wall muscles.  相似文献   

18.
First-breath ventilatory responses to graded elastic (delta E) and resistive (delta R) loads from 10 people with spinal muscular atrophy (SMA), 15 people with Duchenne muscular dystrophy (DMD), and 80 able-bodied people were compared. The SMA and DMD groups produced equal tidal volume, respiratory frequency, inspiratory duration (TI), expiratory duration, mean inspiratory airflow, and duty cycle responses to both delta E and delta R. Thus SMA (primarily a motoneuron disorder) and DMD (primarily a muscle disorder) have the same net effect on loaded breathing responses. The SMA and DMD groups failed to duplicate the normal group's short expirations during delta E, long inspirations during delta R, and thus, extended duty cycles during both delta E and delta R. The deficit in load compensation therefore was due to impaired regulation of respiratory timing (reflecting neural mechanisms) but not airflow defense (reflecting mechanical and neural mechanisms). One-fifth of the normal but none of the SMA or DMD subjects actively generated an "optimal" TI response (defined theoretically as TI greater than 160% control during large delta R and TI less than 75% control during large delta E). This lack of optimal responses, which is the same abnormality exhibited by quadriplegic people, suggests that SMA and DMD also impair human ability to discriminate between large delta R and delta E. These findings support the hypothesis that neuromuscular disorders can lead to disturbances in respiratory perception.  相似文献   

19.
In order to characterize the variability and correlation properties of spontaneous breathing in humans, the breathing pattern of 16 seated healthy subjects was studied during 40 min of quiet breathing using opto-electronic plethysmography, a contactless technology that measures total and compartmental chest wall volumes without interfering with the subjects breathing. From these signals, tidal volume (VT), respiratory time (TTOT) and the other breathing pattern parameters were computed breath-by-breath together with the end-expiratory total and compartmental (pulmonary rib cage and abdomen) chest wall volume changes. The correlation properties of these variables were quantified by detrended fluctuation analysis, computing the scaling exponentα. VT, TTOT and the other breathing pattern variables showed α values between 0.60 (for minute ventilation) to 0.71 (for respiratory rate), all significantly lower than the ones obtained for end-expiratory volumes, that ranged between 1.05 (for rib cage) and 1.13 (for abdomen) with no significant differences between compartments. The much stronger long-range correlations of the end expiratory volumes were interpreted by a neuromechanical network model consisting of five neuron groups in the brain respiratory center coupled with the mechanical properties of the respiratory system modeled as a simple Kelvin body. The model-based α for VT is 0.57, similar to the experimental data. While the α for TTOT was slightly lower than the experimental values, the model correctly predicted α for end-expiratory lung volumes (1.045). In conclusion, we propose that the correlations in the timing and amplitude of the physiological variables originate from the brain with the exception of end-expiratory lung volume, which shows the strongest correlations largely due to the contribution of the viscoelastic properties of the tissues. This cycle-by-cycle variability may have a significant impact on the functioning of adherent cells in the respiratory system.  相似文献   

20.
After occurrence of spinal cord injury, it is not known whether the respiratory rhythm generator undergoes plasticity to compensate for respiratory insufficiency. To test this hypothesis, respiratory variables were measured in adult semiaquatic turtles using a pneumotachograph attached to a breathing chamber on a water-filled tank. Turtles breathed room air (2 h) before being challenged with two consecutive 2-h bouts of hypercapnia (2 and 6% CO2 or 4 and 8% CO2). Turtles were spinalized at dorsal segments D8-D10 so that only pectoral girdle movement was used for breathing. Measurements were repeated at 4 and 8 wk postinjury. For turtles breathing room air, breathing frequency, tidal volume, and ventilation were not altered by spinalization; single-breath (singlet) frequency increased sevenfold. Spinalized turtles breathing 6-8% CO2 had lower ventilation due to decreased frequency and tidal volume, episodic breathing (breaths/episode) was reduced, and singlet breathing was increased sevenfold. Respiratory variables in sham-operated turtles were unaltered by surgery. Isolated brain stems from control, spinalized, and sham turtles produced similar respiratory motor output and responded the same to increased bath pH. Thus spinalized turtles compensated for pelvic girdle loss while breathing room air but were unable to compensate during hypercapnic challenges. Because isolated brain stems from control and spinalized turtles had similar respiratory motor output and chemosensitivity, breathing changes in spinalized turtles in vivo were probably not due to plasticity within the respiratory rhythm generator. Instead, caudal spinal cord damage probably disrupts spinobulbar pathways that are necessary for normal breathing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号