首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of sodium hydroxide (NaOH) and alkaline hydrogen peroxide (AHP) treatments on wheat straw (WS) and various cellulosic substrates were determined by measuring susceptibility to degradation by mixed ruminal organisms or Bacteroides succinogenes S85. In vitro incubations were used to measure differences in fermentation resulting from each successive step in the AHP treatment process. In vitro incubations through 48 or 108 h were conducted to measure these differences. The AHP treatment of WS increased (P less than 0.05) dry matter, neutral detergent fiber, and acid detergent fiber degradation over control WS when these substrates were incubated with mixed ruminal microorganisms or B. succinogenes S85. Fermentations containing AHP-treated WS had greater (P less than 0.05) microbial purine (RNA) and volatile fatty acid concentrations by 12 h compared with those containing untreated or NaOH-treated WS. Xylose in AHP-treated WS was utilized more extensively (P less than 0.05) by 12 h compared with the xylose of untreated or NaOH-treated WS. Treatment with AHP removed 23% of the alkali-labile phenolic compounds from WS. When substrates with high levels of crystalline cellulose (raw cotton fiber, Solka floc, and Sigmacell-50) were treated with NaOH or AHP and incubated for 108 h with B. succinogenes S85, extent of acid detergent fiber degradation of cotton fiber and Sigmacell-50 was similar to that of their respective controls. Sodium hydroxide and AHP treatments were effective in increasing acid detergent fiber degradation of the Solka floc which contained, on average, 3.3 and 4.8 percentage units more acid detergent lignin and hemicellulose, respectively, than cotton fiber and Sigmacell-50.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Cicer milkvetch (Astragalus cicer L.) is a perennial legume used as a pasture or rangeland plant for ruminants. A study was undertaken to determine whether reported variations in its ruminal digestibility may be related to the presence of an antinutritive material. In vitro fermentation of neutral detergent fiber (NDF) of cicer milkvetch by mixed rumen microflora was poorer than was the fermentation of NDF in alfalfa (Medicago sativa L.). Fermentation of cicer milkvetch NDF was improved by preextraction of the ground herbage with water for 3 h at 39 degrees C. Such water extracts selectively inhibited in vitro fermentation of pure cellulose by mixed ruminal microflora and by pure cultures of the ruminal bacteria Ruminococcus flavefaciens FD-1 and Fibrobacter succinogenes S85. Inhibition of the cellulose fermentation by mixed ruminal microflora was dependent upon the concentration of cicer milkvetch extract and was overcome upon prolonged incubation. Pure cultures exposed to the extract did not recover from inhibition, even after long incubation times, unless the inhibitory agent was removed (viz., by dilution of inhibited cultures into fresh medium). The extract did not affect the fermentation of cellobiose by R. flavefaciens but did cause some inhibition of cellobiose fermentation by F. succinogenes. Moreover, the extracts did not inhibit hydrolysis of crystalline cellulose, carboxymethyl cellulose, or p-nitrophenylcellobioside by supernatants of these pure cultures of cellulolytic bacteria or by a commercial cellulase preparation from the fungus Trichoderma reesei. The agent caused cellulose-adherent cells to detach from cellulose fibers, suggesting that the agent may act, at least in part, by disrupting the glycocalyx necessary for adherence to, and rapid digestion of, cellulose.  相似文献   

3.
Two predominant rumen cellulolytic bacteria, Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85, were incubated with ground filter paper (Whatman no. 1), cattle manure fiber, wheat straw, Kentucky bluegrass, alfalfa, and corn silage as substrates. Analyses of the initial substrate and the recovered residue after 48 h of static incubation showed that R. flavefaciens C94 was quantitatively more effective than B. succinogenes S85 in degrading total dry matter (32.3% versus 16.1%). However, B. succinogenes S85 demonstrated a qualitative advantage in degrading the hemicellulose and hemicellulosic sugars of particular substrates. R. flavefaciens degraded a mean 29.7% of the cellulose and 35.6% of the hemicellulose in the various substrates, whereas B. succinogenes degraded a mean 17.9 and 31.6% of these fractions, respectively. Gas-liquid chromatography was an important aid in characterizing the polysaccharide-degrading capabilities of these rumen species.  相似文献   

4.
Weight increase of cotton fiber in an 18% NaOH solution, termed “alkali-centrifuge” or “AC” value, was measured after incubation of either 1 g or 100 mg of the fiber in ruminal fluid. The AC response was a sensitive measure of cellulolytic activity. Thus, fiber incubated at 21 and 51°C exhibited major AC increases even when direct weight losses of the unswollen fiber were less than 2%. Similarly, progressive additions of acetic acid to ruminal fluid progressively depressed both AC response and direct weight loss, but the former was still easily measurable when the latter was not. In tightly closed, completely filled vials with high ratio of ruminal fluid to sample, AC increased greatly and rapidly, i.e., in 6 h. This time could be further reduced to 2 h by overnight “preincubation” of the ruminal fluid with cotton fiber before starting the test incubation. Certain surfactants used to aid wetting of the fiber had a low but measurable potency in inhibiting cellulose digestion, but other surfactants were non-inhibitory. The AC response was maintained when ruminal fluid was diluted with an equal amount of McDougall's “artificial saliva” solution.  相似文献   

5.
Cells of the anaerobic ruminal bacterium Fibrobacter succinogenes subsp. succinogenes S85 (formerly Bacteroides succinogenes) exhibit arylesterase activity. When cells were grown on cellulose, it was found that 69% of the total esterase activity was extracellular while 65% was nonsedimentable upon centrifugation of the culture supernatant at 100,000 x g. Disruption of the cells by various different methods failed to increase the esterase activity, indicating that the substrate was fully accessible to esterase enzymes in intact cells. During growth of cells with either glucose or cellulose as the sole carbon source, the increase in acetylesterase activity corresponded to an increase in cell density, suggesting constitutive production. The enzyme(s) hydrolyzed alpha-naphthyl, p-nitrophenyl, and 4-methylumbelliferyl derivatives of acetic acid; xylose tetraacetate; glucose pentaacetate; acetylxylan; and a polymer composed of ferulic acid, arabinose, and xylose in molar proportions of 1:1.1:2.2 (FAX). These data demonstrate the presence of an acetylxylan esterase and a ferulic acid esterase. The cleavage of FAX also documents the presence of an alpha-l-arabinofuranosidase.  相似文献   

6.
Anaerobic fungi in ruminal fluid from cows eating Bermuda grass hay plus a grain and minerals supplement were evaluated for diversity in sporangial morphotypes and colony growth patterns and for the degradation of various lignocelluloses. In selective cultures containing streptomycin and penicillin, an active population of ruminal fungi colonized leaf blades and degraded fiber at rates and extents almost equal to that of the total ruminal population. Three major sporangial morphotypes were consistently observed on leaf blades: oval, globose, and fusiform. Fungal colonies representing three distinct growth types consistently developed in anaerobic roll tubes inoculated with strained ruminal fluid. Sporangial morphotypes could not be matched to colony types due to multiple sporangial forms within a colony. Under identical growth conditions, one type exhibited a monocentric growth pattern, while two types exhibited polycentric growth patterns previously unreported in ruminal fungi. Mixed ruminal fungi in selective cultures or in digesta taken directly from the rumen produced a massive clearing of the sclerenchyma. Quantitation of tissue areas in cross sections by light microscopic techniques showed that fungal incubations resulted in significant (P = 0.05) increases in sclerenchyma degradation compared to whole ruminal fluid incubations. The mestome cell wall was at times penetrated and partially degraded by fungi; the colonization was less frequent and to a lesser degree than with the sclerenchyma. Conversely, ruminal bacteria were not observed to degrade the mestome sheath. Phenolic monomers at 1 mM concentrations did not stimulate to a significant (P = 0.05) extent the dry weight loss or fungal colonization of leaf blades; at 10 mM concentrations cinnamic and benzoic acids were toxic to ruminal fungi.  相似文献   

7.
Specific oligonucleotide probes targeted to sites on the 16S rRNA of Ruminococcus albus 8, Ruminococcus flavefaciens FD-1, and Fibrobacter succinogenes S85 and a domain Bacteria probe were used to study bacterial interactions during the fermentation of cellulose and alkaline hydrogen peroxide-treated wheat straw in monocultures, dicultures, and tricultures. Results showed that R. albus 8 inhibited the growth of R. flavefaciens FD-1 when grown as a diculture with cellulose or alkaline hydrogen peroxide-treated wheat straw as the carbon source. In dicultures containing R. albus 8 and F. succinogenes S85 grown on cellulose or alkaline hydrogen peroxide-treated wheat straw, competition was not detected. R. flavefaciens FD-1 outcompeted F. succinogenes S85 when cellulose was used as the carbon source. In tricultures with cellulose as the carbon source, R. flavefaciens FD-1 was inhibited, R. albus 8 appeared to dominate during the early phase of degradation (12 to 48 h), while F. succinogenes S85 became predominant during the later phase of degradation (60 to 70 h). When alkaline hydrogen peroxide-treated wheat straw was used as a growth substrate, F. succinogenes S85 showed better growth than either R. albus 8 or R. flavefaciens FD-1. However, R. flavefaciens FD-1 was present in small numbers throughout the incubation period, unlike the growth patterns when cellulose was the carbon source.  相似文献   

8.
Aspergillus oryzae fermentation extract (Amaferm) was evaluated for its ability to influence degradation of brome grass and switchgrass fiber fractions by mixed ruminal microorganisms in vitro. Addition of Amaferm at a concentration of 0.067 mg/ml, which is approximately the concentration found in the rumen ecosystem (0.06 mg/ml), increased the degradation of brome grass neutral detergent fiber (NDF) by 28% after fermentation for 12 h (P < 0.01), but had no effect after fermentation for 24 or 48 h. The levels of degradation of both the cellulose and hemicellulose fractions were increased after fermentation for 12 h (P < 0.01). Additions of 0.08 and 8% (vol/vol) Amaferm filtrate (12.5 g/100 ml) stimulated degradation of switchgrass NDF by 12 and 24% (P < 0.01), respectively, after fermentation for 12 h; when 80% filtrate was added, degradation was decreased by 38%. The concentrations of total anaerobes in culture tubes containing 80% filtrate were 5 times greater than the concentrations in the controls; however, the concentrations of cellulolytic organisms were 3.5 times lower than the concentrations in the controls (P < 0.05). These results suggested that the filtrate contained high concentrations of soluble substrate which did not allow the cellulolytic organisms to compete well with other populations. The remaining concentrations of esterified p-coumaric and ferulic acids were lower at 12 h in NDF residues obtained from fermentation mixtures supplemented with Amaferm. Because the total anaerobes were not inhibited in fermentation mixtures containing Amaferm, antibiotics are unlikely to be involved as a mode of action for increasing NDF degradation. The possibility that Amaferm contains enzymes (possibly esterases) that may play a role in stimulating the rate of fiber degradation by mixed ruminal microorganisms by removal of plant cell wall phenolic acid esters is discussed.  相似文献   

9.
Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2'-diamino[G-3H]pimelic acid [( 3H]DAP) as models of gram-positive and gram-negative bacteria, respectively. These radiolabeled bacterial mutants were incubated alone (control) and with mixed ruminal bacteria or protozoa, and the metabolic processes, rates, and patterns of radiolabeled products released from them were studied. Control incubations revealed an inherent difference between the two substrates; gram-positive supernatants consistently contained 5% radioactivity, whereas even at 0 h, those from the gram-negative mutant released 22%. Incubations with ruminal microorganisms showed that the two mutants were metabolized differently and that protozoa were the major effectors of their metabolism. Protozoa exhibited differential rates of engulfment (150 B. megaterium GW1 and 4,290 E. coli W7-M5 organisms per protozoan per h), and they extensively degraded [3H]DAP-labeled B. megaterium GW1 at rates up to nine times greater than those of ruminal bacteria. By contrast, [3H]DAP-labeled E. coli W7-M5 degradation by either ruminal bacteria or ruminal protozoa was more limited. These fundamental differences in the metabolism of the two mutants, especially by ruminal protozoa, were reflected in the patterns and rates of radiolabeled metabolites produced; many were rapidly released from [3H]DAP-labeled B. megaterium GW1, whereas few were slowly released from [3H]DAP-labeled E. coli W7-M5. Most radiolabeled products derived from [3H]DAP-labeled B. megaterium GW1 were peptides of bacterial peptidoglycan origin. The ruminal metabolism of DAP-containing gram-positive and gram-negative bacteria, even with the same peptidoglycan chemotype, is thus likely to be profoundly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Anaerobic fungi in ruminal fluid from cows eating Bermuda grass hay plus a grain and minerals supplement were evaluated for diversity in sporangial morphotypes and colony growth patterns and for the degradation of various lignocelluloses. In selective cultures containing streptomycin and penicillin, an active population of ruminal fungi colonized leaf blades and degraded fiber at rates and extents almost equal to that of the total ruminal population. Three major sporangial morphotypes were consistently observed on leaf blades: oval, globose, and fusiform. Fungal colonies representing three distinct growth types consistently developed in anaerobic roll tubes inoculated with strained ruminal fluid. Sporangial morphotypes could not be matched to colony types due to multiple sporangial forms within a colony. Under identical growth conditions, one type exhibited a monocentric growth pattern, while two types exhibited polycentric growth patterns previously unreported in ruminal fungi. Mixed ruminal fungi in selective cultures or in digesta taken directly from the rumen produced a massive clearing of the sclerenchyma. Quantitation of tissue areas in cross sections by light microscopic techniques showed that fungal incubations resulted in significant (P = 0.05) increases in sclerenchyma degradation compared to whole ruminal fluid incubations. The mestome cell wall was at times penetrated and partially degraded by fungi; the colonization was less frequent and to a lesser degree than with the sclerenchyma. Conversely, ruminal bacteria were not observed to degrade the mestome sheath. Phenolic monomers at 1 mM concentrations did not stimulate to a significant (P = 0.05) extent the dry weight loss or fungal colonization of leaf blades; at 10 mM concentrations cinnamic and benzoic acids were toxic to ruminal fungi.  相似文献   

11.
Bacillus megaterium GW1 and Escherichia coli W7-M5 were specifically radiolabeled with 2,2'-diamino[G-3H]pimelic acid [( 3H]DAP) as models of gram-positive and gram-negative bacteria, respectively. These radiolabeled bacterial mutants were incubated alone (control) and with mixed ruminal bacteria or protozoa, and the metabolic processes, rates, and patterns of radiolabeled products released from them were studied. Control incubations revealed an inherent difference between the two substrates; gram-positive supernatants consistently contained 5% radioactivity, whereas even at 0 h, those from the gram-negative mutant released 22%. Incubations with ruminal microorganisms showed that the two mutants were metabolized differently and that protozoa were the major effectors of their metabolism. Protozoa exhibited differential rates of engulfment (150 B. megaterium GW1 and 4,290 E. coli W7-M5 organisms per protozoan per h), and they extensively degraded [3H]DAP-labeled B. megaterium GW1 at rates up to nine times greater than those of ruminal bacteria. By contrast, [3H]DAP-labeled E. coli W7-M5 degradation by either ruminal bacteria or ruminal protozoa was more limited. These fundamental differences in the metabolism of the two mutants, especially by ruminal protozoa, were reflected in the patterns and rates of radiolabeled metabolites produced; many were rapidly released from [3H]DAP-labeled B. megaterium GW1, whereas few were slowly released from [3H]DAP-labeled E. coli W7-M5. Most radiolabeled products derived from [3H]DAP-labeled B. megaterium GW1 were peptides of bacterial peptidoglycan origin. The ruminal metabolism of DAP-containing gram-positive and gram-negative bacteria, even with the same peptidoglycan chemotype, is thus likely to be profoundly different.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
We investigated the influence of the composition of the fibrolytic microbial community on the development and activities of hydrogen-utilizing microorganisms in the rumens of gnotobiotically reared lambs. Two groups of lambs were reared. The first group was inoculated with Fibrobacter succinogenes, a non-H(2)-producing species, as the main cellulolytic organism, and the second group was inoculated with Ruminococcus albus, Ruminococcus flavefaciens, and anaerobic fungi that produce hydrogen. The development of hydrogenotrophic bacterial communities, i.e., acetogens, fumarate and sulfate reducers, was monitored in the absence of methanogens and after inoculation of methanogens. Hydrogen production and utilization and methane production were measured in rumen content samples incubated in vitro in the presence of exogenous hydrogen (supplemented with fumarate or not supplemented with fumarate) or in the presence of ground alfalfa hay as a degradable substrate. Our results show that methane production was clearly reduced when the dominant fibrolytic species was a non-H(2)-producing species, such as Fibrobacter succinogenes, without significantly impairing fiber degradation and fermentations in the rumen. The addition of fumarate to the rumen contents stimulated H(2) utilization only by the ruminal microbiota inoculated with F. succinogenes, suggesting that these communities could play an important role in fumarate reduction in vivo.  相似文献   

13.
Yang CM 《Bioresource technology》2005,96(12):1419-1424
Preservation of soybean milk residue (SMR) by ensiling with peanut hulls (PEH) and subsequent utilization of silage by mixed ruminal microorganisms were investigated. Treatments were combinations of SMR with PEH at the following ratios: 100:0, 78:22, 71:29, and 60:40 (fresh weight basis). After eight weeks of ensiling, silage lactic acid, crude protein, ether extract, and non-fiber carbohydrates were highest when SMR was ensiled alone and reduced as amounts of SMR decreased. Similar trends were observed for silage in vitro dry matter digestibility, and gas and volatile fatty acid production by ruminal microorganisms. Conversely, silage pH, dry matter, neutral detergent fiber, acid detergent fiber, cellulose, and lignin increased accordingly. The ensiling treatment appeared to alter silage cell wall composition. In particular, silage treated with PEH at the low level (78:22) resulted in reduced fiber contents and lignification. The silage (SMR:PEH=78:22) had enhanced efficiency of both silage fermentation and in vitro ruminal fermentation pattern.  相似文献   

14.
A study was conducted to compare the ensiling characteristics, chemical composition, and the ruminal and total tract nutrient degradabilities of leafy (Cargill F227) and brown midrib (Mycogen TMF94) corn silage hybrids. Corn was grown in Saint-Jean-sur-Richelieu, Quebec, Canada, harvested at a target 350 g kg(-1) dry matter (DM) content, and ensiled in mini-silos for 0, 2, 4, 8, 16, and 45 d. Two non-lactating Holstein cows fitted with ruminal and proximal duodenal cannulae were used to determine ruminal and whole tract nutrient degradability. Forage from both hybrids went through a rapid fermentation with a sharp decline in pH during the first 2 d of ensiling, pH in both silage being less than 4.0 after 45 d. Lactic acid concentration was however greater for leafy than brown midrib corn. Chemical analysis of silage after 45 d of ensiling revealed that hybrids differed in their composition. Compared to leafy corn, brown midrib corn had lower neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), crude protein (CP), and neutral detergent and acid detergent insoluble proteins, but higher starch and net energy of lactation (NEL) values. Results of the in situ incubation experiment indicated that compared to leafy corn brown midrib corn had greater ruminal DM (64 vs. 54%), CP (73 vs. 71%), and NDF (32 vs. 24%) degradabilities. Brown midrib corn silage also had greater DM ruminal (53 vs. 48%) and total tract (67 vs. 61%) digestibilities, as well as greater NDF ruminal (34 vs. 25%), intestinal (10 vs. 8%), and total tract (43 vs. 33%) digestibilities. Type of corn hybrid will thus greatly affect silage chemical composition and nutrient digestibility.  相似文献   

15.
The endoglucanase activity of cells and extracellular culture fluid of Fibrobacter succinogenes S85 grown on glucose, cellobiose, soluble polysaccharides (beta-glucan, lichenan) and intact plant polysaccharides, was compared. The specific activity of cells grown on cellulose or forages was 6- to 20-fold higher than that of cells grown on soluble substrates, suggesting an induction of endoglucanases by the insoluble substrates. The ratios of cells to extracellular culture fluid endoglucanase activities measured in cultures grown on sugars or insoluble polysaccharides suggested that the endoglucanases induced by the insoluble polysaccharides remained attached to the cells. The mRNA of all the F. succinogenes glycoside hydrolase genes sequenced so far were then quantified in cells grown on glucose, cellobiose or cellulose. The results show that all these genes were transcribed in growing cells, and that they are all overexpressed in cultures grown on cellulose. Endoglucanase-encoding endB and endA(FS) genes, and xylanase-encoding xynC gene appeared the most expressed genes in growing cells. EGB and ENDA are thus likely to play a major role in cellulose degradation in F. succinogenes.  相似文献   

16.
The polysaccharides from the outer membrane of the Gram-negative ruminal bacterium Fibrobacter succinogenes were isolated by phenol/water extraction and separated by size-exclusion chromatography in the presence of deoxycholate detergent into a lower-molecular-mass fraction designated 'glycolipid' and a high-molecular-mass 'capsular polysaccharide' fraction. Both fractions lacked typical lipopolysaccharide components including 2-keto-3-deoxyoctulosonic acid and 3-hydroxy fatty acids. Carbohydrate components of these fractions were represented by two polysaccharides and one oligosaccharide (possibly glycolipid) with the following structures: : : where HEAEP is N-(2-hydroxyethyl)-2-aminoethylphosphonic acid, found for the first time in natural compounds. The polysaccharides contained pentadecanoic acid and anteisopentadecanoic acid, possibly present as the acyl components. All constituent monosaccharides except L-rhamnose had a D-configuration. In addition to having a structural role in the outer membrane, these polysaccharides may provide protection for this lipopolysaccharide-less bacterium in the highly competitive ruminal environment, as phosphonic acids covalently linked to membrane polymers have in the past been attributed the function of stabilizing membranes in the presence of phosphatases and lipases.  相似文献   

17.
《Anaerobe》2000,6(3):155-161
The effect of chemically treating wheat straw (straw) with calcium oxide (CaO), Sodium hydroxide (NaOH) and alkaline hydrogen peroxide (AHP) on its subsequent colonization and degradation by rumen fungi was followed in sacco in the rumen of sheep. The colonization of treated straws was compared with untreated counterparts microscopically using a trypan blue lactophenol staining technique to reveal the fungal thalli and rhizoids. Structural disintegration of straw particles caused by chemical treatments was also observed. AHP caused the greatest fragility to straw particles followed respectively by NaOH and CaO treatments. Untreated straw showed relatively less fungal colonization compared with treated straws being heavily colonized by rhizoids and thalli. AHP-treated straw was most extensively colonized with rhizoids observed penetrating deep into straw tissues particularly the bundle sheath cells. The thalli of this study resembled mono- and poly-centric genera of anaerobicChytridiomycete fungi. The pattern of fungal colonization compared well with the previous degradability data on treated straws which demonstrates the value of such treatments to improve degradation of fibrous substrates by rumen micro-organisms, particularly fungi.  相似文献   

18.
Five white-rot basidiomycetes were evaluated for their potential to improve ruminal degradation of wheat straw.Polyorus brumalis, Lyophyllum ulmarium III,Trametes gibbosa, Pleurotus ostreatus, and aPleurotus ostreatus mutant were incubated on wheat straw for 30 d at 28°C. Detergent fiber, crude protein andin vitro dry matter digestibility (IVDMD) were determined. The results showed increasing crude protein and ash contents in fungus-treated straw. IVDMD values were increased in straws treated withP. ostreatus, P. ostreatus mutant andT. gibbosa only. Relative to untreated wheat straw the detergent fiber content—neutral detergent fiber (NDF), and acid detergent fiber (ADF) was reduced in fungus-treated straw and out of three fractions—hemicellulose, cellulose and lignin, hemicellulose showed the largest proportionate loss whereas lignin the smallest one in all 5 samples of fungus treated straw.  相似文献   

19.
Prevotella (Bacteroides) ruminicola strains B(1)4 and S23 and Selenomonas ruminantium strain D used xylose as the sole source of carbohydrate for growth, whereas Fibrobacter succinogenes was unable to metabolize xylose. Prevotella ruminicola strain B(1)4 exhibited transport activity for xylose. In contrast, F. succinogenes lacked typical xylose uptake activity but did exhibit low binding potential for the sugar. Prevotella ruminicola strains B(1)4 and S23 as well as S. ruminantium D showed low xylose isomerase activities but higher xylulokinase activities, using assays that gave high activities for these enzymes in Escherichia coli. Xylose isomerase appeared to be produced constitutively in these ruminal bacteria, but xylulokinase was induced to varying degrees with xylose as the source of carbohydrate. Fibrobacter succinogenes lacked xylose isomerase and xylulokinase. All three species of ruminal bacteria possessed transketolase, xylulose-5-phosphate epimerase, and ribose-5-phosphate isomerase activities. Neither P. ruminicola B(1)4 nor F. succinogenes S85 showed significant phosphoketolase activity. The data indicate that F. succinogenes is unable to either actively uptake or metabolize xylose as a result of the absence of functional xylose permease, xylose isomerase, and xylulokinase activities, although it and both P. ruminicola and S. ruminantium possess the essential enzymes of the nonoxidative branch of the pentose phosphate cycle.  相似文献   

20.
Fibrobacter succinogenes S85, a cellulolytic rumen bacterium, is very efficient in degrading lignocellulosic substrates and could be used to develop a biotechnological process for the treatment of wastes. In this work, the metabolism of cellulose by F. succinogenes S85 was investigated using in vivo 13C NMR and 13C-filtered spin-echo difference 1H NMR spectroscopy. The degradation of unlabelled cellulose synthesised by Acetobacter xylinum was studied indirectly, in the presence of [1-13C]glucose, by estimating the isotopic dilution of the final bacterial fermentation products (glycogen, succinate, acetate). During the pre-incubation period of F. succinogenes cells with cellulose fibres, some cells ('non-adherent') did not attach to the solid material. Results for 'adherent' cells showed that about one fourth of the glucose units entering F. succinogenes metabolism originated from cellulose degradation. A huge reversal of succinate metabolism pathway and production of large amounts of unlabelled acetate which was observed during incubation with glucose only, was found to be much decreased in the presence of solid substrate. The synthesis of glucose 6-phophate was slightly increased in the presence of cellulose. Results clearly showed that 'non-adherent' cells were able to metabolise glucose very efficiently; consequently the metabolic state of these cells was not responsible for their 'non-adherence' to cellulose fibre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号