首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The 40 kD monocyte Fc receptor for IgG is capable of binding murine IgG1 and of supporting an IgG1 anti-T3 T lymphocyte proliferative response among approximately 80% of Caucasian individuals (responders), whereas the 40 kD Fc receptor on monocytes of the remaining individuals (nonresponders) is incapable of interacting with murine IgG1. By using a monoclonal antibody (mab IV3) that reacts with the 40 kD receptor, we found that the monocyte 40 kD receptors from responder and nonresponder individuals cannot be distinguished by either electrophoretic mobility on SDS-polyacrylamide gels, or by the number of receptors per cell as determined by indirect immunofluorescence. However, isoelectric focussing of the purified radioiodinated 40 kD receptor revealed that the monocyte receptor from all of four nonresponder individuals evaluated has a single distinctive pattern of multiple, regularly spaced bands, whereas the pattern of the 40 kD monocyte receptor from 11 responder individuals is of two sorts. One (seen in four of 11 responders) consists of multiple, regularly spaced bands that are asynchronous with the nonresponder pattern, and the other (seen in seven of 11 responders) consists of multiple bands that correspond in mobility to all of the bands of both of the other two patterns. The incidence of these three patterns suggests that the 40 kD Fc receptor is encoded by a single structural gene with two alleles, both of which are expressed.  相似文献   

2.
Human monocytes and U937 cells bear two distinct Fc receptors for IgG   总被引:33,自引:0,他引:33  
Several convergent lines of evidence have led us to propose that human monocytes and the related cell line U937 possess a second class of IgG Fc receptor (FcR) in addition to the 72-Kd high affinity FcR previously described. IgG affinity purification from detergent lysates of surface radiolabeled U937 cells has yielded both a 40-Kd IgG-binding membrane protein (p40) and the 72-Kd FcR protein. By the same procedure, only the p40 was isolated from the erythroblast cell line K562 and from the B cell lines, Daudi and Raji. Serologic cross-reactivity between the 40-Kd FcR on U937 and Daudi cells was demonstrated using a goat anti-FcR antiserum. A murine (m) monoclonal antibody, raised against the FcR of K562 cells, precipitated the 40-Kd FcR from lysates of U937 and K562 cells but not from Daudi or Raji cells. This antibody, referred to as anti-p40 (IV.3), selectively inhibited the binding of murine IgG1-coated erythrocytes to U937 cells, whereas monomeric human IgG selectively inhibited binding of human anti-Rh(D)-coated erythrocytes to U937 cells. Both Daudi and U937 cells mediated mIgG1 anti-T3 (Leu-4)-induced stimulation of T lymphocytes. In contrast, mIgG2a anti-T3 (OKT3)-induced stimulation was supported effectively by U937 cells but only modestly by Daudi cells. Intact IgG or Fab fragments of anti-p40 (IV.3) blocked mIgG1 anti-T3 (Leu-4) stimulation but not mIgG2a anti-T3 (OKT3) stimulation of T cells; monomeric human IgG blocked only OKT3-induced stimulation. The simplest interpretation of these results is that human monocytes and U937 cells bear two classes of IgG FcR, one of 72 Kd and the other, as described above, of 40 Kd. We propose that the 72-Kd FcR mediates rosette formation with red cells coated by human anti-Rh IgG as well as T cell stimulation by mIgG2a anti-T3 (OKT3) and that the 40-Kd FcR mediates rosette formation with erythrocytes bearing mIgG1 as well as T cell stimulation by mIgG1 anti-T3 (Leu-4). Furthermore, we suggest that these two FcR are the human homologues of the murine macrophage FcRI (binding mIgG2a) and FcRII (binding mIgG2b/1).  相似文献   

3.
The induction of human T cell proliferation by antibodies that cross-link T3 antigens is dependent on functional interactions of anti-T3 antibodies with monocyte Fc receptors. In this report, we used a panel of anti-T3 antibodies of differing heavy chain isotype and a variety of other monoclonal antibodies to analyze several features of the antibody-mediated interactions between T cells and monocytes that are required for mitogenesis. Whereas three IgG2a anti-T3 antibodies were mitogenic for cells from all individuals, IgM and IgG2b anti-T3 antibodies did not induce T cell proliferation in any donor and could block the proliferative responses induced by other mitogenic anti-T3 antibodies. Dose-response analyses with four IgG1 anti-T3 antibodies demonstrated donor heterogeneity as reported by other investigators. However, in contrast to these previous reports, high concentrations of IgG1 anti-T3 antibodies were found to be mitogenic for all donors, indicating that this heterogeneity is based on relative rather than absolute defects in low responder monocytes. Cell mixing experiments in which monocytes from two different low responder donors were co-cultured with T cells and IgG1 anti-T3 antibodies did not identify any complementary defects, suggesting that the low responder phenotype results from a relatively restricted polymorphism. To assess the nature of the signals required for inducing T cell proliferation, nonmitogenic anti-T3 antibodies were co-cultured with other pan-T cell antibodies having the IgG2a isotype. The combination of signals from T3 antigen cross-linkage and those independently generated by other IgG2a antibodies bound to monocyte Fc receptors did not induce T cell proliferation. Hence, it appears that the T3 antigen or closely associated structures must be clustered at the monocyte membrane for mitogenesis. Finally, in competitive inhibition experiments, the isotype specificity of monocyte Fc receptors involved in the induction of T cell proliferation was examined. Two distinct Fc receptor sites, one that binds murine IgG2a and IgG3 antibodies and a second that binds murine IgG1 antibodies, were identified. Murine IgM or IgG2b did not appear to bind either of these receptor sites. Taken together, these data indicate that human monocytes have two distinct Fc receptor sites, which must specifically and directly interact with T cell-bound anti-T3 antibodies for mitogenesis.  相似文献   

4.
We recently identified defective monocyte accessory function as the cause of T cell unresponsiveness to the mitogenic activity of OKT3 antibody in cultures of peripheral blood mononuclear cells (PBMC) from five healthy subjects, members of one family. We now report that the underlying abnormality in nonresponders is at the level of monocyte Fc gamma receptors for murine IgG2a. T cell unresponsiveness was not restricted to the signal provided by OKT3 but occurred also for two other anti-T3 antibodies of the IgG2a subclass, in contrast to a normal proliferative response to IgG1 anti-T3 antibodies in one of the OKT3 nonresponders. By using cytofluorography, we found that monocytes from responders but not from nonresponders bound OKT3-FITC to their membrane. The binding could be blocked by mouse IgG2a and by human IgG, but not by mouse IgG1 nor by serum albumin. The data suggest that, through specific Fc gamma receptors for murine IgG2a, monocytes bind the Fc portion of OKT3 during T cell activation. The function of this Fc gamma receptor binding was further studied by culturing PBMC from nonresponders on plates coated with affinity-purified goat anti-mouse IgG antibodies as a substitute for monocyte Fc gamma receptors. The addition of OKT3 to nonresponder PBMC, cultured on such plates, resulted in T cell activation, as evidenced by thymidine incorporation, IL 2 production, and expression of IL 2 receptors. Soluble anti-mouse IgG was not able to substitute for monocyte Fc gamma receptors. The results demonstrate the existence of polymorphism in monocyte Fc gamma receptors for murine IgG2a. They also substantiate that an essential helper function of monocytes in T cell activation by anti-T3 is to provide a matrix for multimeric binding of the Fc portion of the anti-T3 antibodies in order to cross-link T3 molecules.  相似文献   

5.
A murine monoclonal antibody (MoAb) VM16a specifically binding to human platelets has been produced. Approximately 56,000 molecules of VM16a bound per platelet at saturation (Kd = 7.9 nM) but no binding to platelets from Glanzmann's thrombasthenia patients was detected. VM16a precipitated two proteins with molecular masses corresponding to those of glycoproteins (GP) IIb and IIIa from solubilized surface-labelled platelets. However, after dissociation of the GPIIb--IIIa complex with EDTA VM16a did not bind to platelets and precipitated nothing from their lysate, thus evidencing that its determinant is complex-dependent. VM16a had no effect on ADP-, thrombin- and ristocetin-induced platelet aggregation but inhibited the aggregation induced by collagen. This inhibitory effect was more pronounced in the presence of plasma. VM16a completely blocked the Fc-receptor-mediated aggregation induced by aggregated human IgG, aggregated murine IgG1 and the previously described MoAb VM58. F(ab')2 fragments of VM16a were also able to inhibit this aggregation by decreasing the rate of aggregation induced by aggregated IgG and by extending the lag phase of VM58-induced aggregation. These results suggest that the platelet Fc-receptor may be topographically associated with the GPIIb-IIIa complex.  相似文献   

6.
Evidence has recently been presented that a 40,000 dalton membrane sialoglycoprotein (p40) shared by monocytes and granulocytes serves as the human platelet receptor for aggregated IgG. We now report that the platelets of normal donors exhibit stable quantitative differences in the expression of this receptor molecule, as determined by flow cytometry using fluorescent staining with murine monoclonal antibody to p40 (mab IV.3). These inter-donor differences were reproducible on repeated testing over at least 4 mo. In concurrent assays, the binding of mab IV.3 to each donor's platelets was highly correlated with the binding of heat-aggregated human IgG, also assayed by flow cytometry. The biological relevance of this quantitative variation in IV.3 binding is suggested by its reproducible correlation with platelet responsiveness to aggregated IgG measured by aggregometry. Such stable quantitative variation in platelet Fc receptor expression among individual humans could contribute to differences in severity of certain pathologic processes initiated by IgG-containing immune complexes.  相似文献   

7.
Human FcR for IgG can be divided into three classes (Fc gamma RI, II, and III) based on their structure and reactivity with mAb. Fc gamma RII can be further subdivided into two categories based on functional and biochemical assays. These two Fc gamma RII subtypes were initially recognized by the failure of T cells from 40% of individuals to proliferate in response to mAb Leu 4 (mouse IgG1, anti-CD3), a response that requires the binding of the Fc region of the Leu 4 mAb to Fc gamma RII on monocyte accessory cells. Inas-much as mouse IgG1, does not bind efficiently to the nonresponder form of Fc gamma RII, mAb Leu 4 is unable to induce proliferation in these individuals. IEF data on Fc gamma RII from Leu 4 responder and nonresponder individuals suggested that the structural gene for Fc gamma RII consisted of two allelic forms R (responder) and N (nonresponder) producing the phenotypes RR, RN, and NN. Thus, exclusive expression of the nonresponder allele in monocytes of "nonresponder" individuals, appeared to be responsible for the lack of proliferation observed. In cooperation with the IVth International Conference on Human Leukocyte Differentiation Antigens, we analyzed CDw32 mAb to determine if they could distinguish the responder and nonresponder forms of Fc gamma RII. We report that mAb 41H16 binds preferentially to the responder allotypic form of Fc gamma RII expressed on human monocytes. When quantitative flow cytometry is used to measure the binding of both mAb 41H16 (responder Fc gamma RII) and mAb IV.3 (all myeloid cell Fc gamma RII), we are able to subdivide the responder population into homozygous and heterozygous responders. In addition, mAb 41H16 blocks the binding of mAb IV.3 to monocytes and inhibits proliferation when added to cells before addition of mAb Leu 4. We also show that polymorphonuclear leukocytes and platelets have the same allotypic differences in the binding of 41H16 as do monocytes. However, a subset of lymphocytes (previously shown to be B cells) expresses the 41H16 epitope with no evidence for donor to donor variability.  相似文献   

8.
Pretreatment of normal human lymphocytes with monoclonal IgG against the NK cell-FcR (IgG) or the T3 complex was found to potentiate killing of most NK sensitive target cells with the exception of T-cell derived cells. Anti-FcR IgM monoclonals were suppressive for all target cells. IgG anti-FcR mediated potentiation required minute amounts of antibody but was also seen at high anti-FcR concentrations that modulated FcR activity. Potentiated and FcR modulated cells retained anti-FcR IgG on the membrane and conjugated normally to target cells. Anti-FcR potentiation blocked antibody-dependent killing but did not influence lectin-dependent killing, with anti-T3 the opposed effect was seen. Combined anti-FcR and anti-T3 treatment resulted in decreased potentiation. The results suggest that the NK cell-FcR may be activated during normal NK cell killing (without the addition of antibody) as suggested for FcR in B cell triggering.  相似文献   

9.
The use of murine monoclonal antibodies in the immunotherapy of human disease has prompted interest in the interactions of murine IgG with Fc receptors (FcR) expressed on human effector cells. We examined the heterocytophilic interactions between monomeric murine IgG subclass proteins and the FcR expressed on human monocytic cells (peripheral blood monocytes and interferon (IFN)-gamma-induced U937 cells). All four murine IgG2a antibodies and both murine IgG3 antibodies that were tested bound to human monocyte FcR with high affinity (10(8) to 10(9) M-1). By contrast, the affinities of four murine IgG1 and four IgG2b monomers were 100-fold to 1000-fold lower than the affinity of the human IgG1-FcR interaction. A 68,000 to 72,000 dalton protein was isolated by affinity chromatography from blood monocytes and from IFN-gamma-induced U937 cells on murine IgG2a, IgG3, and human IgG immunoadsorbents. In binding assays with IFN-stimulated U937 cells, murine IgG2a and IgG3 antibodies showed complete cross-blocking with a human IgG1 myeloma protein, indicating that murine and human IgG interact with the same population of Fc-binding proteins. No evidence for heterogeneity of cross-reactive FcR was observed. The ability of murine IgG2a and IgG3 monomers to compete with human IgG1 monomers for binding to human monocyte FcR suggests the potential usefulness of antibodies of these isotypes in the immunotherapy of diseases in which monocyte- or macrophage-mediated, antibody-dependent cellular cytotoxicity may play a role in the modification or remission of disease.  相似文献   

10.
Three different mAb directed against beta 2 microglobulin (two IgG1 and one IgG2a) were tested for their ability to activate human platelets. Although all three antibodies bound to platelets, only one of them, B2.62.2, of the IgG1 subclass, induced platelet activation. This activation is similar to the activation by SYB-1, a CD9 antibody of the same subclass previously described as activating platelets through platelet Fc gamma R. These similarities include serotonin secretion, a lag time preceding aggregation and the induction of a strong intracellular calcium mobilization from storage pools. As with CD9 antibodies, the F(ab')2 fragments of B2.62.2 did not induce activation but blocked the activation by the native antibody, by preventing the binding to beta 2 microglobulin. Also, this activation was inhibited by pretreating the platelet with IV-3, a mAb that blocks the Fc binding site of the FcR. Inasmuch as the same antibody does not prevent the binding of B2.62.2 on platelets, we conclude that the activation by B2.62.2 is mediated by the FcR. Nevertheless, there were differences with the activation by SYB-1. B2.62.2 activation was more dependent on thromboxane A2 formation and no cytoplasmic alkalinization was detected. Finally, contrary to SYB-1, B2.62.2 activation proved to be sensitive to platelet count, suggesting that it involves the formation of immune complexes consisting of antibodies and platelets, that activate nearby platelets.  相似文献   

11.
We have defined two distinct classes of IgG Fc receptors (FcR) on cells of a human monocytic line (U937) by analyzing the direct binding of murine IgG subclasses in medium of low ionic strength. Four lines of evidence support this contention. The binding of aggregated murine IgG2b (AggmIgG2b) to U937 and Daudi cells was enhanced at low ionic strength, whereas monomeric murine IgG2a (mIgG2a) did not bind to Daudi cells and its high affinity binding to U937 cells was unaffected by changes in ionic strength. Double reciprocal inhibition experiments with U937 cells indicated that the binding of both ligands was inhibited 30 to 135 times more efficiently by the homologous ligand than by the heterologous one. That is, the binding of 125I-AggmIgG2b was inhibited 50% by 3.5 micrograms/ml of AggmIgG2b and 100 micrograms/ml of mIgG2a. Similarly, the binding of 125I-mIgG2a was inhibited 50% by 2.5 micrograms/ml of mIgG2a and only 44% by 243 micrograms/ml of AggmIgG2b. A monoclonal antibody of the IgG2b subclass raised against an IgG FcR on K562 cells inhibited binding to U937 cells of AggmIgG2b but not of mIgG2a. Trypsinization of U937 cells abrogated by 32% the binding of mIgG2a but did not affect the binding of AggmIgG2b. Human IgG inhibited binding of both AggmIgG2b and mIgG2a to U937 cells. We propose that the newly recognized FcR that binds AggmIgG2b is the human homologue of the murine macrophage IgG2b/1 FcR (FcRII), and that the previously described 72,000 dalton high-affinity FcR on U937 cells that binds mIgG2a is the human equivalent of the murine macrophage IgG2a FcR (FcRI).  相似文献   

12.
Stimulation of porcine platelets with ADP or thrombin and subsequent analyses of their cytoskeletons by SDS-polyacrylamide gel electrophoresis have shown the presence of a 30.5-kDa polypeptide in the cytoskeletons of activated as well as aggregated platelets. This polypeptide comigrates with pure porcine platelet tropomyosin in SDS gels, their mobilities being similarly and markedly decreased in the presence of 6 M urea. One-dimensional peptide mapping after limited proteolysis by Staphylococcus aureus protease gives the same pattern for pure tropomyosin and the 30.5-kDa polypeptide. This latter may thus be identified as the porcine platelet tropomyosin subunit, the role of which may not be solely structural.  相似文献   

13.
We have previously shown that monoclonal anti-T cell antibodies bound to their specific targets can trigger the activation of monocyte/macrophage oxidative metabolism through an Fc receptor-mediated interaction. The present study demonstrates that IgG coated platelets from patients with thrombocytopenia-associated diseases can induce a similar respiratory burst activation in polymorphonuclear and mononuclear phagocytes from normal individuals. The intensity of the oxidative reaction as measured by luminol-dependent chemiluminescence is in close correlation with the level of surface-bound IgG molecules as determined by a radioactive anti-immunoglobulin assay. This new methodology to evaluating IgG fixed on human platelets by their capacity to trigger the generation of highly reactive oxygen species by granulocytes and monocytes has also suggested a new mechanism in the genesis of thrombocytopenia associated with autoimmune diseases.  相似文献   

14.
The receptors for aggregated immunoglobulin G (IgG) (an Fc receptor) and for ristocetin-von Willebrand factor on human platelets were studied by means of various modifications of the platelet surface. The expression of these receptors was measured by the agglutination of platelets to ristocetin in the presence of von Willebrand factor, which is part of the factor VIII complex, and by the binding of aggregated IgG coupled to 3H-labelled diazobenzen. Treatment of platelets with chymotrypsin, trypsin, papain and pronase which removed protein and glycoprotein from the platelet under conditions where the release reaction was inhibited caused loss of the expression of the receptor for ristocetin-von Willebrand factor and an enhancement of that for aggregated IgG. Induction of membrane changes with ADP and of the release reaction with the ionophore A23187 abolished agglutination to ristocetin-von Willebrand factor but did not alter the receptor for aggregated IgG. Possible contributions of unspecific membrane changes, produced by protease treatment of platelets, to the modification of receptor expression were eliminated by the use of formaldehyde-treated platelets. Trypsin, papain and pronase destroyed the ability of these platelets to agglutinate to ristocetin-von Willebrand factor but produced no change in the binding of aggregated IgG. Therefore, the receptor for ristocetin-von Willebrand factor is truly sensitive to proteolysis while the Fc receptor is not, but is partially masked by protease-sensitive material.  相似文献   

15.
The receptors for aggregated immunoglobulin G (IgG) (an Fc receptor) and for ristocetin-von Willebrand factor on human platelets were studied by means of various modifications of the platelet surface. The expression of these receptors was measured by the agglutination of platelets to ristocetin in the presence of von Willebrand factor, which is part of the factor VIII complex, and by the binding of aggregated IgG coupled to 3H-labelled diazobenzene. Treatment of platelets with chymotrypsin, trypsin, papain and pronase which removed protein and glycoprotein from the platelet under conditions where the release reaction was inhibited caused loss of the expression of the receptor for ristocetin-von Willebrand factor and an enhancement of that for aggregated IgG. Induction of membrane changes with ADP and of the release reaction with the ionophore A23187 abolished agglutination to ristocentin-von Willebrand factor but did not alter the receptor for aggregated IgC. Possible contributions of unspecific membrane changes, produced by protease treatment of platelets, to the modification of receptor expression were eliminated by the use of formaldehyde-treated platelets. Trypsin, papain and pronase destroyed the ability of these platelets to agglutinate to ristocetin-von Willebrand factor but produced no change in the binding of aggregated IgC. Therefore, the receptor for ristocetin-von Willebrand factor is truly sensitive to proteolysis while the Fc receptor is not, but is partially masked by protease-sensitive material.  相似文献   

16.
Agents that elevate cAMP levels in platelets decrease thrombin binding   总被引:8,自引:0,他引:8  
The effect of high intracellular levels of cAMP on the ability of rabbit and human platelets to bind and respond to thrombin was examined. Control rabbit platelets differed from human platelets in two interesting respects: they showed thrombin-dependent up-regulation of thrombin binding, but also a 3- to 5-fold lower thrombin-binding capacity. Nevertheless, treatment with prostaglandin E1 + theophylline or with forskolin decreased thrombin binding to both rabbit and human platelets by 60 to 70%. This effect was associated with a marked increase in the level of cAMP and seemed to depend on a decrease in number rather than affinity of thrombin-binding sites. Changes in thrombin binding correlated closely with changes in thrombin-stimulated incorporation of 32Pi into phosphatidic acid and a 40-kDa protein. However, regardless of the amount of thrombin that bound to treated platelets, thrombin-stimulated phosphorylation of a 20-kDa protein and serotonin secretion were severely inhibited. Thus, increased levels of platelet cAMP are associated with a reduced ability to bind and respond to thrombin. However, thrombin binding to platelets correlates more closely with some responses than others, presumably because cAMP inhibits additional platelet reactions.  相似文献   

17.
Induced and constitutive murine IgG-binding factors (IgG-BFs) have been purified by affinity chromatography from supernatants of T-cells preincubated with or without murine monoclonal IgG1 and IgG2b, respectively. IgG-BF Mr values have been studied by SDS-polyacrylamide gel electrophoresis (PAGE) after treatment with SDS under conditions which do not noticeably alter their immunosuppressive activities on the secondary in vitro IgG antibody response. Suppression was recovered at Mr values of 80000, 40000 and 20000. When induced IgG-BF was tested, the isotype-specific suppressive activity was found only at 40 kDa. The 20-kDa moiety appeared to derive from the 40-kDa component and the material found at 80 kDa exerted non-specific immunosuppressive effects. We conclude therefore that isotype-specific IgG-BF has an apparent Mr of 40000.  相似文献   

18.
It has recently been shown that the monoclonal antibody JAQ1 to murine glycoprotein VI (GPVI) can cause aggregation of mouse platelets upon antibody cross-linking and that collagen-induced platelet aggregation can be inhibited by preincubation of platelets with JAQ1 in the absence of cross-linking (Nieswandt, B., Bergmeier, W., Schulte, V., Rackebrandt, K., Gessner, J. E., and Zirngibl, H. (2000) J. Biol. Chem. 275, 23998-24002). In the present study, we have shown that cross-linking of GPVI by JAQ1 results in tyrosine phosphorylation of the same profile of proteins as that induced by collagen, including the Fc receptor (FcR) gamma-chain, Syk, LAT, SLP-76, and phospholipase C gamma 2. In contrast, platelet aggregation and tyrosine phosphorylation of these proteins were inhibited when mouse platelets were preincubated with JAQ1 in the absence of cross-linking and were subsequently stimulated with a collagen-related peptide (CRP) that is specific for GPVI and low concentrations of collagen. However, at higher concentrations of collagen, but not CRP, aggregation of platelets and tyrosine phosphorylation of the above proteins (except for the adapter LAT) is re-established despite the presence of JAQ1. These observations suggest that a second activatory binding site, which is distinct from the CRP binding site on GPVI on mouse platelets, is occupied in the presence of high concentrations of collagen. Although this could be a second site on GPVI that is activated by a novel motif within the collagen molecule, the absence of LAT phosphorylation in response to collagen in the presence of JAQ1 suggests that this is more likely to be caused by activation of a second receptor that is also coupled to the FcR gamma-chain. The possibility that this response is mediated by a receptor that is not coupled to FcR gamma-chain is excluded on the grounds that aggregation is absent in platelets from FcR gamma-chain-deficient mice.  相似文献   

19.
In humans, the Fc receptor for IgG, FcgammaRIIA, is expressed on macrophages and platelets and may play an important role in the pathophysiology of immune-mediated thrombocytopenia. Mice lack the genetic equivalent of human FcgammaRIIA. To better understand the role of FcgammaRIIA in vivo, FcgammaRIIA transgenic mice were generated and characterized. One transgenic mouse line expressed FcgammaRIIA on platelets and macrophages at levels equivalent to human cells, and cross-linking FcgammaRIIA on these platelets induced platelet aggregation. Immune-mediated thrombocytopenia in this transgenic line was studied using i.v. and i.p. administration of anti-mouse platelet Ab. In comparison with matched wild-type littermates that are negative for the FcgammaRIIA transgene, Ab-mediated thrombocytopenia was significantly more severe in the FcgammaRIIA transgenic mice. In contrast, FcR gamma-chain knockout mice that lack functional expression of the Fc receptors FcgammaRI and FcgammaRIII on splenic macrophages did not demonstrate Ab-mediated thrombocytopenia. We generated FcgammaRIIA transgenic x FcR gamma-chain knockout mice to examine the role of FcgammaRIIA in immune clearance in the absence of functional FcgammaRI and FcgammaRIII. In FcgammaRIIA transgenic x FcR gamma-chain knockout mice, severe immune thrombocytopenia mediated by FcgammaRIIA was observed. These results demonstrate that FcgammaRIIA does not require the FcR gamma-chain for expression or function in vivo. Furthermore, taken together, the data suggest that the human Fc receptor FcgammaRIIA plays a significant role in the immune clearance of platelets in vivo.  相似文献   

20.
Within the first minute after incubation with the mouse anti-human T cell orthoclone monoclonal antibodies OKT3, OKT4, and OKT8, and in the absence of complement, human monocytes generate a burst of highly reactive oxygen metabolites as detected by a luminol-dependent photometric chemiluminescence (CL) assay. The kinetics of the CL responses to these antibodies are identical to that induced by OKM1, the monoclonal antibody to human monocytes and granulocytes. With regard to CL response intensities, OKM1 induces the maximal response and those of OKT3, OKT4, and OKT8 closely reflect the proportion of T cell subsets recognized by these antibodies in peripheral blood. This reaction is also observed when monoclonal antibodies against mouse Lyt surface determinants (Lyt-1 and Lyt-2) and Thy-1 antigen are tested against murine spleen cells. This murine model was further used to investigate the specificity and the mechanism of this reaction. It was demonstrated that the CL response is Lyt antigen specific, occurs upon addition of monoclonal IgG but not IgM antibodies, requires the concomitant presence of CL-producing cells (CLPC) (promonocytes, monocytes, macrophages, and/or granulocytes) and of fully differentiated T cells, and lastly, is mediated via a T cell opsonization process. Selective blockade of bone marrow cell Fc receptors (FcR II) with monoclonal anti-mouse FcR II antibody inhibits the CL response to IgG2b anti-T cell antibody-coated thymocytes and thus strongly suggests that the stimulation of CLPC oxidative metabolism in this model results from the binding of opsonized T cells to plasma membrane Fc receptors. These observations lend additional support to increasing evidence that the initiation of effector functions by monoclonal anti-T cell antibodies may be strictly dependent upon the presence of monocytes and/or macrophages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号